File size: 3,114 Bytes
e8a4b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434c1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: afl-3.0
datasets:
- 0xZee/dataset-CoT-Advanced-Calculus-268
language:
- en
base_model:
- Qwen/Qwen3-14B
pipeline_tag: text-generation
library_name: transformers
tags:
- qwen3
- symbiotic
- symbioticai
- llm
- Symbols
---

# SymbioticLM-14B


**Model Type**: Hybrid Symbolic–Transformer with Persistent Memory  
**Base Model**: Qwen-14B  
**Framework**: PyTorch + HuggingFace Transformers  
**Purpose**: Full-scale cognitive reasoning model with self-organizing memory and generative symbolic evolution

---

## Overview

SymbioticLM-14B is a state-of-the-art 17.8 billion parameter symbolic–transformer hybrid model that tightly couples high-capacity neural representation with structured symbolic cognition. Designed to match or exceed performance of top-tier LLMs in symbolic domains, it supports persistent memory, entropic recall, multi-stage symbolic routing, and self-organizing knowledge structures.

This model is ideal for advanced reasoning agents, research assistants, and symbolic math/code generation systems.

---

## Architecture Highlights

- **Backbone**: Qwen-14B transformer with rotary embeddings + FlashAttention
- **Symbolic Dim**: 8192
- **Symbolic Modules**:
  - ThoughtDynamicsLNN (multi-head LSTM attention)
  - LiquidThoughtProcessor
  - CrystallineProcessor (DNAConv GNN)
  - HelicalDNAProcessor (linear helical encoding)
- **Memory**: 4096 symbolic states in FP32, retrieved using entropy + contextual similarity
- **Dream Mode**: Background symbolic simulation for open-ended cognition
- **Router**: Intent classifier + entropy gating for processor path selection

---

## Files Included

| File                     | Description                                              |
|--------------------------|----------------------------------------------------------|
| `model.bin`              | Transformer weights (LFS)                                |
| `model.safetensors`      | Memory-safe weights, optimized for loading               |
| `memory.pt`              | 4096-symbolic vector bank                                |
| `config.json`            | Model and architectural metadata                         |
| `generation_config.json` | Top-p, temperature, decoding settings                    |
| `tokenizer.json`         | Full tokenizer with symbolic tag support                 |
| `added_tokens.json`      | Tags like `<D_LIM>`, `<PROOF>`, `<BY_MEASURE>`, etc.     |
| `special_tokens_map.json`| Special token mapping for tokenizer                      |

---

## Intended Uses

- Multi-step conversational agents with true memory
- Long-form symbolic theorem generation and proof planning
- Scientific dialogue, symbolic simulations, math/code synthesis
- Reasoning in fuzzy, discontinuous, or non-smooth problem domains

---

## Limitations

- Memory requires curation and seeding for maximum utility
- Symbolic cognition is not instruction-tuned for general QA
- FlashAttention and symbolic modules increase VRAM usage during generation

---

## Citations


Please cite "SymbioticLM" when using symbolic memory components in research or applications.