Commit
·
65e7c6e
1
Parent(s):
ced8f94
update model card README.md
Browse files
README.md
CHANGED
@@ -16,12 +16,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the reannayang/FL_pavement dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Mean Iou: 0.
|
21 |
-
- Mean Accuracy: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
-
- Per Category Iou: [0.0, 0.
|
24 |
-
- Per Category Accuracy: [nan, 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -52,16 +52,16 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|
|
55 |
-
| 1.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
- Transformers 4.19.2
|
65 |
-
- Pytorch 1.
|
66 |
-
- Datasets 2.2.
|
67 |
- Tokenizers 0.12.1
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the reannayang/FL_pavement dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4165
|
20 |
+
- Mean Iou: 0.6318
|
21 |
+
- Mean Accuracy: 0.9700
|
22 |
+
- Overall Accuracy: 0.9738
|
23 |
+
- Per Category Iou: [0.0, 0.964166382973358, 0.9809231860559384, 0.0, 0.9295139919583345, 0.9164463823409184]
|
24 |
+
- Per Category Accuracy: [nan, 0.9643001261034048, 0.9983497924348297, nan, 0.995031342981772, 0.9223532638507954]
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|
|
55 |
+
| 1.0651 | 10.0 | 20 | 1.3005 | 0.5967 | 0.9512 | 0.9534 | [0.0, 0.9462421185372005, 0.9681701711239586, 0.0, 0.7994398965962947, 0.8662896799897185] | [nan, 0.9462421185372005, 0.9693809143181291, nan, 0.9648149753011526, 0.9243828853538124] |
|
56 |
+
| 0.5732 | 20.0 | 40 | 0.6626 | 0.6287 | 0.9702 | 0.9760 | [0.0, 0.975246652572234, 0.985446932366533, 0.0, 0.9010974339804011, 0.9103918683964157] | [nan, 0.9772635561160151, 0.9952040842637238, nan, 0.9748678395008233, 0.9334887547997806] |
|
57 |
+
| 0.6987 | 30.0 | 60 | 0.4319 | 0.6317 | 0.9705 | 0.9758 | [0.0, 0.9709705045212967, 0.9798115236227942, 0.0, 0.9255918522130127, 0.9139245313729214] | [nan, 0.9722194199243379, 0.9986205296134905, nan, 0.9871161568015715, 0.924026330224904] |
|
58 |
+
| 0.6915 | 40.0 | 80 | 0.4382 | 0.6237 | 0.9634 | 0.9692 | [0.0, 0.9611727616645649, 0.9725125142706595, 0.0, 0.9147983251179308, 0.8937433316006894] | [nan, 0.9611727616645649, 0.9993811721630611, nan, 0.9971690210012422, 0.896023038946791] |
|
59 |
+
| 0.4373 | 50.0 | 100 | 0.4165 | 0.6318 | 0.9700 | 0.9738 | [0.0, 0.964166382973358, 0.9809231860559384, 0.0, 0.9295139919583345, 0.9164463823409184] | [nan, 0.9643001261034048, 0.9983497924348297, nan, 0.995031342981772, 0.9223532638507954] |
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
- Transformers 4.19.2
|
65 |
+
- Pytorch 1.7.1
|
66 |
+
- Datasets 2.2.1
|
67 |
- Tokenizers 0.12.1
|