--- license: mit tags: - yolo11 - ultralytics - image-segmentation - deep-learning datasets: - custom library_name: ultralytics base_model: yolo11 inference: library: ultralytics parameters: threshold: 0.5 iou_threshold: 0.5 format: pytorch model-index: - name: rayh/astro-seg results: - task: type: image-segmentation name: Instance Segmentation dataset: name: Custom Dataset type: custom metrics: - name: Mean Average Precision (mAP@50) type: mean_average_precision value: 0.5899 - name: Mean Average Precision (mAP@50-95) type: mean_average_precision value: 0.2497 fine-tuned-from: Ultralytics/YOLO11 labels: - normal - glint metadata: label2id: normal: 0 glint: 1 id2label: 0: normal 1: glint --- # rayh/astro-seg ## Model Information This is a YOLO-based segmentation model exported to ONNX and uploaded for use with Hugging Face Inference API. ## Example Visualizations ![MaskR_curve.png](./MaskR_curve.png) ![BoxP_curve.png](./BoxP_curve.png) ![results.png](./results.png) ![MaskF1_curve.png](./MaskF1_curve.png) ![MaskP_curve.png](./MaskP_curve.png) ![BoxR_curve.png](./BoxR_curve.png) ![MaskPR_curve.png](./MaskPR_curve.png) ![confusion_matrix_normalized.png](./confusion_matrix_normalized.png) ![confusion_matrix.png](./confusion_matrix.png) ![BoxPR_curve.png](./BoxPR_curve.png) ![BoxF1_curve.png](./BoxF1_curve.png) ## Validation Files