File size: 1,557 Bytes
dc0047e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# BERT pt-BR Persons
This model is fine-tuned to primarily identify Brazilian names, ignoring street and place names, even if they contain a person's name.
![test](./figures/test.png)
## Basic Usage
```python
from transformers import pipeline, BertForTokenClassification, BertTokenizerFast
model_name = "rafola/BERT-base-pt-BR-person"
model = BertForTokenClassification.from_pretrained(model_name)
tokenizer = BertTokenizerFast.from_pretrained(model_name,use_fast=True)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
result=nlp("Como já dizia seu Zé Ricardo, A Luiza sempre vai atrás de uma encrenca, mesmo com todo o cuidado de tia Eliana com ela.")
print(result)
```
## Citations
If you use our work, please cite:
```
@misc{rafola2025BERTptBRpersons,
author = {Rafael Vitor Krueger},
title = {BERT pt-BR Persons: Fine-tuned model to identify brazilian person names},
year = {2025},
url = {https://huggingface.co/rafola/BERT-base-pt-BR-person},
}
```
This model has been treined using as base: [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)
```
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
``` |