Weblem No.	Weblem Title	Page No.	Date	Sign
1.	Introduction to Sequence and Structure Database.	1	28/08/2024	
1A.	To explore the UniProt Database for further study of the query of Ig alpha chain C region (UniProt ID: P01878)	11	28/08/2024	
1B.	To study and explore the protein structure for the query Dimeric Immunoglobin A (dIgA) (PDB ID: 7JG1) using the Protein Data Bank (PDB) Database.	17	28/08/2024	
2.	Structural Antibody Database (SAbDab).	25	12/09/2024	
2A.	To study the Antibody structure for the query 'Bovine anti-HIV Fab ElsE6' (PDB ID: 8VBL) using the Structural Antibody Database (SAbDab).	29	12/09/2024	
3.	To study antibody sequence using ABCD database.	39	12/09/2024	
3A.	To study Foralumab antibody sequence using ABCD Database	41	12/09/2024	
4	Antibody numbering using Kabat and Chothia method - Write up and include KabatMan database working and an AbRSA numbering tool as a demo.	44	12/09/2024	
5.	Introduction to STCRDab database.	56	24/09/2024	
5A.	To retrieve CDR position in query 2UWE using STCRDab database.	60	24/09/2024	
6.	Introduction To Yvis Database to study variable and constant domain along with topology diagram.	69	25/09/2024	
6A.	To study the variable and constant domain along with the Topology Diagram using Yvis Platform.	81	25/09/2024	
7.	Introduction to Ag-Ab Interaction Database (AgAbDb).	92	04/10/2024	
8.	Introduction to Discotope Server 1.1 (IDEB Database) from IEDB Database.	94	25/09/2024	
8A.	To predict B-Cell epitope for query AMA1 (PDB ID: 1Z40) using Discotope Server 1.1 from IEDB Database.	104	25/09/2024	
9.	Introduction to Molecular Descriptors and PaDEL Descriptor Software.	113	01/10/2024	

9A.	To study ID, 2D & 3D descriptors for "Gallic Acid" (PubChem CID: 370) using PaDELPy Software	123	01/10/2024	
10	To understand various Web-based tools for vaccine designing -Write Up	128	4/10/2024	
11	Introduction to IEDB Database for prediction of cytotoxic and helper T cell epitopes (MHC Class I epitopes and MHC Class II epitopes).	134	28/09/2024	
11A	To Predict MHC Class I and Class II Molecules for Query Dopamine (accession no: P09172) using TepiTool.	139	28/09/2024	

DATE: 28/08/2024

<u>WEBLEM: 1</u> <u>Introduction to Sequence and Structure Database</u>

INTRODUCTION:

UniProt provides access to a vast collection of protein sequences, including those that are experimentally determined and those that are computationally predicted. The database includes extensive information about the function of proteins, such as their role in biological processes, molecular functions, and involvement in various pathways. UniProt integrates data on the 3D structures of proteins, where available, often linking to related resources like the Protein Data Bank (PDB). It provides cross-references to other biological databases, such as genomic, enzyme, and pathway databases, enabling a broad spectrum of data connectivity. UniProt includes information on different protein isoforms and variants, which are important for understanding protein diversity and function. The database distinguishes between manually curated entries (UniProtKB/Swiss-Prot) and automatically annotated entries (UniProtKB/TrEMBL), providing users with information on the reliability and source of the data.

The UniProt databases support biological and biomedical research by providing a comprehensive collection of protein sequence data, along with functional information. UniProtKB combines expert-reviewed data (Swiss-Prot) with automated entries (TrEMBL). UniRef clusters sequences based on similarity, and UniParc stores all known sequences, including obsolete ones. UniProt links to 180 resources, ensuring data is findable, accessible, interoperable, and reusable (FAIR). Recognized for its data quality, UniProt received the ELIXIR Core Data Resource and CoreTrustSeal certifications. The database continually evolves, adding new sequences from projects like the Darwin Tree of Life, growing by over 65 million entries in two years.

UniProt is the central hub for the collection of functional information on proteins, with accurate, consistent, and rich annotation. It consists of two sections:

- 1. Swiss-Prot (Reviewed): Contains manually annotated records with data added by expert biocurators giving information on protein function, structure, subcellular location, and molecular interactions. Each entry in UniProt/Swiss-Prot represents a single, non-redundant gene from a specific organism and all proteins and peptides transcribed by that gene are described within the record.
- 2. **TrEMBL (Unreviewed):** Contains computationally analyzed records with additional information transferred from related well annotated records in UniProt/Swiss-Prot (automatic annotation). There may be several separate UniProt/TrEMBL entries describing the proteins derived from a specific gene.

Fig 1: Homepage of UniProt Database

Fig 2: Search options in UniProt Database

Fig 3: Growth in the number of entries in the UniProt databases over the last decade.

APPLICATIONS:

- 1. **Protein Function Prediction**: UniProt provides functional information about proteins, helping researchers predict the roles of unknown proteins based on sequence data.
- 2. **Drug Discovery**: By understanding protein structures and functions, researchers can identify potential drug targets and design therapies, especially in areas like cancer and infectious diseases.
- 3. Genomics and Proteomics Research: UniProt is essential for annotating genomes and identifying proteins in proteomics studies, aiding in the understanding of cellular functions.
- 4. **Evolutionary Studies**: Researchers use UniProt data to study protein evolution and compare protein sequences across species.
- 5. **Disease Research**: UniProt helps link genetic mutations to protein functions, assisting in the study of genetic disorders and personalized medicine.
- 6. **Metagenomics and Environmental Studies**: UniProt data is used to analyze microbial communities in environments, supporting research in biodiversity and ecosystem functioning.

Introduction to Structure Databases

INTRODUCTION:

Structural bioinformatics, a branch of bioinformatics, is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. The main objective of structural bioinformatics is to create new methods for analyzing and manipulating biological macromolecular data to solve problems in biology and generate new insights.

Structural databases in bioinformatics are crucial resources that are modelled around experimentally determined protein structures, providing the biological community with access to valuable experimental data in a useful way. These databases aim to organize and annotate protein structures, and they often include three-dimensional coordinates, experimental information (such as unit cell dimensions and angles for x-ray crystallography determined structures), and sequence information. The primary attribute of a structure database is structural information, whereas sequence databases focus on sequence information and contain no structural information for most entries. Protein structure databases are critical for many efforts in computational biology, such as structure-based drug design, and they are used to provide insights about the function of proteins.

Prominent examples of structural databases include the Protein Data Bank (PDB), which contains experimentally determined three-dimensional structures of biomolecules, the Nucleic Acid Data Base (NDB), which contains experimentally determined information about nucleic acids, the carbohydrate structure databases (CSDB) ,which providing a curated repository of structural, taxonomical, bibliographic, and NMR-spectroscopic data on natural carbohydrates and carbohydrate-related molecules from bacterial, fungal, and plant origins, the Reactome databases which provides information about metabolic pathways, the PDBSum databases provides a pictorial summary and detailed analyses of 3D macromolecular structures deposited in the Protein Data Bank, the PDBTM databases provides information about transmembrane proteins from the PDB, the CATH classifies protein domains based on their architecture, topology, and homology and the Structural Classification of Proteins (SCOP), which provides a comprehensive description of the structural and evolutionary relationships between structurally known proteins. These examples are introduced in detail below.

1. Protein Data Bank (PDB) Database:

Protein Data Bank is an online structural library of biological macromolecules, which is the only worldwide repository of macromolecular structure. The PDB was organized in 1971 at Brookhaven National Laboratories (BNL) as a platform of crystal structures of biomolecules. Over the years, the data submitted to the PDB was modified and approaches to access the PDB have changed, because of advancements in technology.

In October 1998, Research Collaborator for Structural Bioinformatics (RCSB) has started to manage and maintain the activities of PDB. The major task of the RCSB is to generate such measures that allow the use and analysis of structural data. PDB stores 3D structural information of biological molecules mainly nucleic acid and proteins. The structural information of biomolecules is commonly acquired experimentally by NMR spectroscopy, X-ray crystallography, electron microscopy etc. Structural information of some chemical ligands and nucleotides are also available on PDB. PDB ID is a fourcharacter identifier that is entitled as PDB entry. A Searching through PDB is done by a vast range of search engines ranges from PDB ID and keywords to structural features of proteins and other biomolecules. There are two formats that PDB uses to keep structural data: The PDB file format and macromolecular crystallographic information file format (mmCIF). PDB file design is more commonly used in protein community as compared to mmCIF. PDB offers various molecular structural visualization soft wares including RasMol, Jmol, PDB simple viewer, PDB protein workshop and RCSB-Kiosk. Structural confirmation of secondary structure is also provided by PDB. The PDB depository is run by an association, named the Worldwide Protein Data Bank (wwPDB) which guarantees that the information is freely accessible to the public. Structures for huge numbers of the proteins and nucleic acids required in the central procedures of life are available on PDB.

PDB file format:

The Protein Data Bank (PDB) file format is a standard for files containing atomic coordinates of biological macromolecules. The PDB file format consists of lines of information in a text file, with each line of information in the file called a Record. A PDB file generally contains several different types of records, arranged in a specific order to describe a structure. The most common record types include:

- 1. ATOM: atomic coordinate record containing the X, Y, Z orthogonal Å coordinates for atoms in standard residues (amino acids and nucleic acids).
- 2. HETATM: atomic coordinate record containing the X, Y, Z orthogonal Å coordinates for atoms in non-standard residues (ligands, cofactors, etc.).
- 3. TER: record indicating the end of a chain of residues.
- 4. HEADER: record containing general details about the molecules in the file, as well as the experiment(s) used to elucidate their structures.
- 5. COMPND: record containing information about the compound, including its name, synonyms, and other identifiers.
- 6. REMARK: record containing additional information about the structure, such as refinement details, experimental conditions, and other annotations.

The formats of these record types are given in the PDB file specification. The PDB file format is limited to 80 columns per line, with each line terminated by an end-of-line indicator. The columns in the PDB file format for the ATOM record type include the atom serial number, atom name, residue name, chain identifier, residue sequence number, and atomic coordinates. The HETATM record type is like the ATOM record type, but is used for non-standard residues. The TER record type indicates the end of a chain of residues. The HEADER, COMPND, and REMARK record types contain general information about the structure, such as the name of the molecule, the authors of the structure, and the method of structure determination.

2. Nucleic Acid Knowledgebase (NAKB) Databases:

The Nucleic Acid Database (NDB) played a pivotal role as the first comprehensive resource for threedimensional (3D) structures of nucleic acids. Established in the 1990s at Rutgers University, NDB facilitated collaborative studies through a SQL-relational database, offering curated information from X-ray and nuclear magnetic resonance (NMR) experiments. Over its three-decade tenure, NDB evolved to become a valuable repository, collecting data from the Protein Data Bank (PDB) and the Cambridge Structural Database (CSD).

In response to the growing landscape of nucleic acid structures and emerging technologies like cryoelectron microscopy (EM), the Nucleic Acid Knowledgebase (NAKB) emerged as the modern successor to NDB. Initiated in 2019 and officially launched in May 2023, NAKB aimed to preserve and enhance NDB's functionality while incorporating structures from diverse methods, providing

comprehensive functional and structural annotations, and establishing links to broader nucleic acid-focused resources.

NAKB provides search, report, statistics, atlas, and visualization pages for all nucleic-acid containing experimentally determined 3D structures held by NDB and by the Protein Data Bank (PDB), including all major methods: X-ray, NMR, and Electron Microscopy. For each structure, links are provided to external resources that annotate and analyze nucleic acid structures and their complexes.

The NAKB website (nakb.org), introduced in July 2022, offers efficient search tools, tabular reports, 2D and 3D structure visualizations, educational content, standards information, and a curated nucleic acid community web and software resource list. With a user-friendly interface and modern web architecture, NAKB ensures an enhanced experience for users, supporting accessibility on both large and small devices. The website undergoes weekly updates, maintaining its commitment to providing timely and relevant nucleic acid structural information. Notably, NDB was officially retired in July 2023, marking the seamless transition to the advanced capabilities of NAKB in serving the scientific community.

NOTE: NAKB replaces the Nucleic Acid Database (NDB) resource that will be retired in July 2023.

3. <u>Carbohydrate Structure Database (CSDB)/CCSD/Gly-Tou-Can Database:</u>

The Carbohydrate Structure Database (CSDB) is a free curated database and service platform in glycoinformatics, launched in 2005 by a group of Russian scientists from N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences. The database aims to provide structural, bibliographic, taxonomic, NMR spectroscopic, and other information on glycan and glycoconjugate structures of prokaryotic, plant, and fungal origin. It serves as a platform for multiple glycoinformatic studies and web tools.

CSDB covers nearly all structures published up to the previous year in the scope of bacterial carbohydrates. Prokaryotic, plant, and fungal mean that a glycan was found in the organisms belonging to these taxonomic domains or was obtained by modification of those found in these organisms. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative, except DNA/RNA.

The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. CSDB contains manually curated natural carbohydrate structures, taxonomy, bibliography, NMR, and other data from literature. Coverage is close to complete up to the year 2020 for bacterial and fungal carbohydrates. Users can search the database by IDs, bibliographic data and keywords, biological source, structural fragments, and NMR data. The substructure search supports graphic input, structure wizard, selection from the library, and query language (expert form).

4. <u>**REACTOME Databases:</u>**</u>

Reactome stands as a cornerstone in the landscape of pathway databases, offering an open-source, openaccess, and meticulously curated resource dedicated to human pathways and biological processes. Developed through the collaborative efforts of expert biologists and Reactome editorial staff, pathway annotations within this database undergo a rigorous peer-review process. Notably, Reactome's annotations are intricately cross-referenced with various authoritative sources, including protein and gene information from UniProt, NCBI EntrezGene, Ensembl, UCSC, and HapMap, as well as small molecule data from KEGG Compound and ChEBI. Primary research literature from PubMed and GO controlled vocabularies further enriches the annotations, ensuring a comprehensive and well-rounded knowledgebase.

The unique data model employed by Reactome broadens the traditional concept of a reaction, encompassing diverse biological events such as entity transformations, compartmental transport, interactions leading to complex formation, and classical biochemical reactions. This inclusive approach allows Reactome to capture a wide spectrum of biological processes spanning signaling, metabolism, transcriptional regulation, apoptosis, and synaptic transmission. The resulting dataset is presented in a single, internally consistent, and computationally navigable format, making Reactome an indispensable resource for basic research, genome analysis, pathway modeling, systems biology, and education.

In response to the rapid growth of knowledge in the field, Reactome has not only doubled in size over the past two years but has also introduced new tools for data aggregation and analysis. To support this continuous evolution, Reactome has undergone a redesign, encompassing both its web interface and data analysis software. This redesign reflects Reactome's commitment to staying at the forefront of pathway databases, providing an up-to-date and user-friendly platform for researchers.

5. PDBSum Databases:

In the early years of the Protein Data Bank (PDB), researchers faced challenges navigating experimentally determined protein structures due to text file storage, lack of a user-friendly interface, and laborious methods for identifying entries of interest. The growing repository necessitated innovative solutions to efficiently access and analyze structural information.

In response to these challenges, the advent of the World Wide Web (WWW) in the early 1990s ushered in a transformative era for protein structure analysis. Among the pioneering platforms that leveraged the emerging web technology was PDBsum, developed at University College London (UCL) in 1995. Designed to harness the capabilities of the WWW, PDBsum sought to streamline the exploration of structural information in the PDB by creating a visually-oriented catalog. This compendium aimed to provide a rich array of pictorial representations, including unique structural analyses not readily available elsewhere. Alongside PDBsum, other early servers such as PDBBrowse, the Swiss-3Dimage collection, and the IMB Jena Image Library of Biological Macromolecules emerged, each contributing distinct approaches to presenting and visualizing protein structures.

PDBsum's development persisted at UCL until its transfer to the European Bioinformatics Institute (EBI) in 2001, marking a pivotal moment in its evolution. Subsequent enhancements and additions have further refined the database, while concurrent advancements in other servers, particularly those operated by members of the worldwide Protein Data Bank (wwPDB) consortium, have collectively propelled the field of protein structure analysis into a new era of accessibility and functionality. This narrative encapsulates the dynamic evolution of databases like PDBsum, which, through strategic adaptation to technological advancements, continue to play pivotal roles in facilitating the exploration and understanding of protein structures on a global scale.

6. **PDBTM Databases:**

The Protein Data Bank (PDB) is a critical repository of biological macromolecular structures, yet the representation of transmembrane proteins within this vast resource is notably scarce, constituting less than 2% of entries, as highlighted by the PDBTM database. Established in 2004, the PDBTM database emerged to address the challenges associated with identifying and characterizing transmembrane protein structures within the PDB.

Transmembrane proteins, pivotal for cellular functions such as energy production, regulation, and metabolism, are also frequent targets for drug development, with approximately half of contemporary drugs impacting these proteins. Recognizing the importance of these proteins, the PDBTM database pioneered a methodology reliant solely on 3D coordinates to identify transmembrane segments, circumventing the limitations of existing annotations in PDB entries.

Given the experimental intricacies in determining the orientation of transmembrane proteins relative to the lipid bilayer, the PDBTM database introduced the TMDET method to tackle this challenge. In the absence of solved atomic structures for the double lipid layer, theoretical methods, such as those employed by the PDBTM database, become indispensable for determining protein orientations.

Several other databases, each utilizing diverse theoretical algorithms, contribute to the understanding of transmembrane proteins. The OPM database offers a well-structured classification, emphasizing the protein-membrane relationship. The CGDB database employs sophisticated physics-based models derived from coarse-grained simulations, while Mpstruct stands out as a reliable resource for regularly updated membrane protein classifications.

In the landscape of transmembrane protein databases, PDBTM plays a distinctive role by systematically collecting and verifying the structures of transmembrane proteins from the PDB. This meticulous curation includes the correction of biologically active oligomer forms, definition of membrane orientation, and identification of transmembrane segments, re-entrant loops, and interfacial helices. Through these efforts, PDBTM significantly contributes to unraveling the complexities of transmembrane protein structures and their roles in cellular processes.

7. <u>Class, Architecture, Topology, And Homologous Superfamily (CATH) Databases:</u>

CLASS, ARCHITECTURE, TOPOLOGY, AND HOMOLOGOUS SUPERFAMILY (CATH) CATH, a database for hierarchical classification of protein domains was developed at University of London. The CATH database is a free, publicly available online resource that provides information on the evolutionary relationships of protein domains. It was created in the mid-1990s by Professor Christine Orengo and colleagues, and continues to be developed by the Orengo group at University College London.

At its core, CATH utilizes experimentally-determined protein three-dimensional structures sourced from the Protein Data Bank (PDB). These structures are meticulously dissected into their constituent polypeptide chains, and the identification of protein domains within these chains is a nuanced process involving a combination of automated methodologies and manual curation. The ensuing classification within the CATH structural hierarchy follows a multi-tiered approach.

The Class (C) level classification categorizes domains based on their secondary structure content, distinguishing between all-alpha, all-beta, a combination of alpha and beta, or domains with minimal secondary structure. Moving up the hierarchy, the Architecture (A) level considers the spatial arrangement of secondary structures in three-dimensional space. The Topology/fold (T) level focuses on the connectivity and arrangement of secondary structure elements. Finally, domains are assigned to the Homologous Superfamily (H) level when there is compelling evidence of evolutionary relatedness, indicating homology.

To supplement experimentally determined structures, CATH incorporates additional sequence data from Gene3D, a related resource. Gene3D provides information on domains lacking experimentally determined structures, aiding in the population of homologous super families, UniProtKB and Ensembl contribute to this process by having their protein sequences scanned against CATH Hidden Markov

Models (HMMs), facilitating the prediction of domain sequence boundaries and the assignment to homologous super families.

This intricate classification process, combining automated tools and manual curation, results in a wealth of information that is freely accessible to the scientific community and beyond. Furthermore, the CATH database remains dynamic, receiving periodic updates to ensure that the latest advancements in protein domain classification are reflected, demonstrating its commitment to serving as a valuable resource for researchers and bioinformaticians alike.

8. <u>SCOPe Databases (Structural Classification of Proteins – Extended):</u>

The Structural Classification of Proteins (SCOPe) database, established 27 years ago as the successor to the classic SCOP, continues to be a cornerstone in the field of protein structure and evolution. Designed as a manually curated hierarchy of domains from known protein structures, SCOPe's primary objective is to unravel the structural and evolutionary relationships among proteins.

SCOPe maintains a dynamic knowledgebase that evolves with the influx of new protein structures from the Protein Data Bank (PDB). Its hierarchical organization encompasses Families, Superfamilies, Folds, and Classes, providing a comprehensive framework for understanding the relationships between related proteins at various structural and functional levels. Expert curation, particularly at the Superfamily level, integrates diverse information to discern common ancestry.

The database excels in uncovering ancient homologous relationships, utilizing structural evidence when sequence similarity is absent. SCOPe annotates these relationships, grouping homologous domains into Superfamilies or, when evidence is inconclusive, categorizing them under common Folds.

Beyond classification, SCOPe offers valuable resources for computational analyses. It provides sequences and PDB-style coordinate files for all domains, ensuring accessibility for researchers. Post-translationally modified amino acids are meticulously translated, and sequences are curated to eliminate errors.

In alignment with FAIR principles (Findable, Accessible, Interoperable, Reusable), SCOPe ensures data availability through versioned releases, enabling findability and traceability over time. Major stable releases, accompanied by periodic updates, reflect the commitment to maintaining a stable and accurate database. The monthly updates, synchronized with the PDB, reflect the dedication to staying current in the rapidly evolving field.

Since 2001, SCOPe has adhered to stable identifiers, ensuring consistency across releases. The database is designed for both machines and humans, supporting download in various formats, and archived on Zenodo, an open-access data repository. The current SCOPe release, 2.08, stands as a testament to its growth, classifying 344,851 domains from 106,976 PDB entries. With each release, SCOPe continues to be a vital resource for researchers exploring the intricate world of protein structure and evolution.

REFERENCES:

- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). *The Protein Data Bank. Nucleic acids research*, 28(1), 235–242. <u>https://doi.org/10.1093/nar/28.1.235</u>
- 2. About RCSB PDB: *Enabling Breakthroughs in Scientific and Biomedical Research and Education. RCSB PDB*; [cited 2018 March 19]. Available from: <u>http://www.rcsb.org/pages/about-us/index</u>

- H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, *The Protein Data Bank (2000) Nucleic Acids Research* 28: 235-242 <u>https://doi.org/10.1093/nar/28.1.235</u>
- Coimbatore Narayanan, B., Westbrook, J., Ghosh, S., Petrov, A. I., Sweeney, B., Zirbel, C. L., Leontis, N. B., & Berman, H. M. (2014). *The Nucleic Acid Database: new features and capabilities*. *Nucleic acids research*, 42(Database issue), D114–D122. <u>https://doi.org/10.1093/nar/gkt980</u>
- 5. Introduction to Protein Data Bank Format. (n.d.). https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html
- 6. Catherine L Lawson, Helen M Berman, Li Chen, Brinda Vallat, Craig L Zirbel, *The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids, Nucleic Acids Research*, 2023;, gkad957, <u>https://doi.org/10.1093/nar/gkad957</u>
- 7. S.I. Shcherbinina, Ph.V. Toukach "Three-dimensional structures of carbohydrates and where to find them", Int J Mol Sci, 2020, 21(20): ID 7702. (PMID 33081008, DOI 10.3390/ijms21207702)
- David Croft, Gavin O'Kelly, Guanming Wu, Robin Haw, Marc Gillespie, Lisa Matthews, Michael Caudy, Phani Garapati, Gopal Gopinath, Bijay Jassal, Steven Jupe, Christina Yung, Ewan Birney, Peter D'Eustachio, Lincoln Stein, *Reactome: a database of reactions, pathways and biological processes, Nucleic Acids Research*, Volume 39, Issue suppl_1, 1 January 2011, Pages D691–D697, <u>https://doi.org/10.1093/nar/gkq1018</u>
- 9. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). *PDBsum: Structural summaries of PDB entries. Protein science: a publication of the Protein Society*, 27(1), 129–134. <u>https://doi.org/10.1002/pro.3289</u>
- 10. Kozma, D., Simon, I., & Tusnády, G. (2012). PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Research, 41(D1), D524–D529. <u>https://doi.org/10.1093/nar/gks1169</u>
- 11. Knudsen, M., & Wiuf, C. (2010). *The CATH database. Human genomics*, 4(3), 207–212. https://doi.org/10.1186/1479-7364-4-3-207
- Chandonia, J., Guan, L., Lin, S., Yu, C., Fox, N., & Brenner, S. E. (2021). SCOPe: improvements to the structural classification of proteins – extended database to facilitate variant interpretation and machine learning. Nucleic Acids Research, 50(D1), D553–D559. <u>https://doi.org/10.1093/nar/gkab1054</u>
- 13. Shaik, N. A., Hakeem, K. R., Banaganapalli, B., & Elango, R. (2019). Essentials of Bioinformatics, Volume I: Understanding Bioinformatics: Genes to Proteins. Springer.
- 14. Embl-Ebi. (n.d.). The UniProt databases. UniProt. <u>https://www.ebi.ac.uk/training/online/courses/uniprot-exploring-protein-sequence-and-functional-info/what-is-uniprot/the-uniprot-databases/</u>
- 15. UniProt Consortium (2021). UniProt: the universal protein knowledgebase in 2021. *Nucleic acids research*, 49(D1), D480–D489. <u>https://doi.org/10.1093/nar/gkaa1100</u>
- 16. Garcia L., Bolleman J., Gehant S., Redaschi N., Martin M., Consortium UniProt. FAIR adoption, assessment, and challenges at UniProt. Sci Data. 2019

DATE: 28/08/2024

WEBLEM: 1(A) UniProt Database

(URL: https://www.uniprot.org/)

AIM:

To explore the UniProt Database for further study of the query of Ig alpha chain C region (UniProt ID: P01878).

INTRODUCTION:

The UniProt database is a free resource for protein sequence and functional information. It contains over 60 million sequences, including over half a million that have been curated by experts. The database was originally created as a primary database for protein sequences and functional annotation based on experimental evidence. It now combines a network of sister databases that centralize all levels of annotation for protein sequences.

The UniProt databases are:

- 1. UniProt Knowledgebase (UniProtKB)
- 2. UniProt Reference Clusters (UniRef)
- 3. UniProt Archive (UniParc)

UniProt Database was created by combining Swiss-Prot, TrEMBL, and PIR. Many entries in the database are derived from genome sequencing projects.

The Protein Data Bank (PDB) is the central archive of all experimentally determined protein structure data. The PDB was established in 1971 and is maintained by an international consortium known as the Worldwide Protein Data Bank (wwPDB).

Ig alpha chain C region:

The Ig alpha chain C region, part of the heavy chain of immunoglobulins, plays a critical role in antibody structure and function, particularly in determining effector functions such as opsonization, complement activation, and antibody-dependent cellular cytotoxicity. It contributes to the stability and secretion of antibodies from B cells and is essential for maintaining the integrity of the immunoglobulin molecule during immune responses. Additionally, the C region is involved in B cell activation and class switching, allowing the immune system to produce different antibody types in response to various pathogens. Abnormalities in the C region can lead to autoimmune diseases, and its study is vital for developing monoclonal antibody therapies for treating cancers and immune disorders.

METHODOLOGY:

- 1. Go to the UniProt database homepage and type "Ig alpha chain C region" into the search box.
- 2. Decide whether you choose to view your results as a table or cards.
- 3. Use several filters to look for Ig alpha chain C region, such as organism popularity, taxonomy, proteins having 3D structures, sequence length, etc.
- 4. Save data in the FASTA format.
- 5. Results can be sorted by functions, name, taxonomy, subcellular location, disease and variations, structure, family & domains, sequence, and related proteins when you click on a result.

OBSERVATIONS:

Fig 1: Homepage of UniProt Database

A drop-down list next to the search box allows you to specify the protein you want to look up, and the search box itself can be used to look up many proteins.

UniProt BLAST Align P	Peptide search ID	map	ping SPARQL	UniProtKB • Ig alpha chain C region		X Advanced List Search	≜ ⇔ ⊠	Help
Status Reviewed (Swiss-Prot) (1,398)	UniPr	ot	KB 43,86	66 results ⊲ View: Cards ⊖ Table ® ∠ Customize columns ≪ Share	•			Î
Unreviewed (TrEMBL) (42.468)	Entry .		Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺	
	P01878	a	IGHA_MOUSE	lg alpha chain C region		Mus musculus (Mouse)	344 AA	- 1
Human (5.726)	D P01877	а	IGHA2_HUMAN	Immunoglobulin heavy constant alpha 2[]	IGHA2	Homo sapiens (Human)	391 AA	
Mouse (390)	P01876	а	IGHA1_HUMAN	Immunoglobulin heavy constant alpha 1[]	IGHA1	Homo sapiens (Human)	398 AA	
Rat (284)	D P01880	a	IGHD_HUMAN	Immunoglobulin heavy constant delta[]	IGHD	Homo sapiens (Human)	430 AA	
Bovine (231)	P01859	8	IGHG2_HUMAN	Immunoglobulin heavy constant gamma 2[]	IGHG2	Homo sapiens (Human)	395 AA	ba ck
Zebrafish (199)	D P01857	8	IGHG1_HUMAN	Immunoglobulin heavy constant gamma 1[]	IGHG1	Homo saplens (Human)	399 AA	Feed
Taxonomy	P01854	а	IGHE_HUMAN	Immunoglobulin heavy constant epsilon[]	IGHE	Homo sapiens (Human)	546 AA	
Filter by taxonomy	□ P30517	а	1C01_SAGOE	Saoe class I histocompatibility antigen, C alpha chain[]		Saguinus oedipus (Cotton-top tamarin)	365 AA	÷
Group by	P30686	a	1C01_PANTR	Patr class I histocompatibility antigen, C alpha chain[]		Pan troglodytes (Chimpanzee)	366 AA	
Taxonomy Keywords	P30383	8	1C01_GORGO	Class I histocompatibility antigen, Gogo-C*0101/C*0102 alpha chain		Gorilla gorilla gorilla (Western lowland gorilla)	365 AA	
Gene Ontology	P01768	а	HV330_HUMAN	Immunoglobulin heavy variable 3-30[]	IGHV3-30	Homo sapiens (Human)	117 AA	
Enzyme Class Proteins with	P30386	a	1C03_GORGO	Class I histocompatibility antigen, Gogo-C*0202 alpha chain		Gorilla gorilla gorilla (Western lowland gorilla)	366 AA	
3D structure (650) Active site (8.471)	P30385	a	1C02_GORGO	Class I histocompatibility antigen, Gogo-C*0201 alpha chain		Gorilla gorilla gorilla (Western lowland gorilla)	366 AA	
Activity regulation (199)	D P30387	a	1C04_GORGO	Class I histocompatibility antigen, Gogo-C*0203 alpha		Gorilla gorilla gorilla (Western lowland	366 AA	

Fig 2: Ig alpha chain C region reviewed (SwissProt) search (1,398 results) and 42,468 hits are displayed in the search results.

Names & Taxonomy Protein' ig alpha chain Cregion Anino acids 344 (ge to sequence) Subcaliular Location Status' UniProtik B reviewed (Swiss-Prot) Protein existence' Evidence at protein level Phenotypes & Variants Organim' Mus musculus (Mouse) Annotation scors' © PTM/Processing Entry Variant viewer IP Feature viewer Cenomic coordinates Publications External links History Ptm/External Reviewer Reviewer Reviewer Reviewer Reviewer Reviewer Ptm/External Reviewer <th>unction</th> <th>September 2018 Point Poi</th> <th></th>	unction	September 2018 Point Poi	
Subcellular Location Status' Vin/Prot/KB reviewed (Swiss-Prot) Protein existence' Evidence at protein level Protein existence' Entry Variant viewer ID Feature viewer Genomic coordinates Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature viewer ID Feature viewer Genomic coordinates Publications Publications Entry Variant viewer ID Feature Viewer ID <p< th=""><th>ames & Taxonomy</th><th>Proteinⁱ la alpha chain C region Amino acids 344 (ao to sequence)</th><th></th></p<>	ames & Taxonomy	Protein ⁱ la alpha chain C region Amino acids 344 (ao to sequence)	
henotypes & Variants Organism ¹ Mus musculus (Mouse) Annotation score ¹ Image: Comparism (Musculus (Mouse) Image: Comparism (Musculus (Musculuus (Musculus	ubcellular Location	Status ⁱ 3 UniProtKB reviewed (Swiss-Prot) Protein existence ⁱ Evidence at protein level	
Entry Variant viewer Feature viewer Genomic coordinates Publications External links History	henotypes & Variants	Organism ¹ Mus musculus (Mouse) Annotation score ¹	
Entry Variant viewer Peature viewer Genomic coordinates Publications External links History	TM/Processing		
A Tools & Download & Add a publication Entry feedback Function: Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Imiliar Proteins Miscellaneous The final C-region domain is deleted from PubMed:115680 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse IgA molecules contain 2 light and 2 heavy chain disulfide bond. M511 chain was isolated from anyeloma protein that binds phosphorylcholine. M513 equence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations ¹ Access the complete set of GO annotations on QuickGO L ²	xpression	Entry Variant viewer 🔝 Feature viewer Genomic coordinates Publications External links History	
Function i Function i Image: Specific and information and the prevent access of foreign antigens to the general immunologic system. Immunologic antigens to the general immunologic system. Immunologic antigens to the general immunologic as in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Immunologic as in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Immunologic as in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic as in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic as intervent access of foreign antigens to the general immunologic as in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic as intervent access of foreign antigens to the general immunologic as intervent access of foreign antigens to the general immunologic access the complex second and is deleted from PubMed:115869 chain. It was isolated from a myeloma protein that binds phosphory/choline. Immunologic as intervent access the complex second are deleted on the CH3 domain of the mutant chain is proposed. Immunologic as intervent access the complex second acces the complex second acces the complex second access th	teraction	📥 Tools - 📩 Download 🖶 Add Add a publication Entry feedback	
Function: Igainability & Domains Igainability &	tructure		1
Ig apha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115680 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. M511 chain was isolated from a myeloma protein that binds phosphory/choline. M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations ¹ Access the complete set of 60 annotations on GuickG0 [2]			
imiliar Proteins	amily & Domains	Function	Idback
Miscellaneous Control	amily & Domains	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.	Feedback
In the limit U-tergion domain is deeled from Youwee: 11 bood craam. It was toolated from a Myeloma protein that contains it light and 1 heavy chain disulfide bond. In contrast, normal mouse (gA molecules contain 2) light and 2 heavy chains and lack a light-heavy chain disulfide bond. M511 chain was isolated from a myeloma protein that binds phosphory(choline. M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations! Access the complete set of 60 annotations on QuickGO [2]	amily & Domains equence	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.	E Feedback
M511 chain was isolated from a myeloma protein that binds phosphory/choline. M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations ¹ Access the complete set of 60 annotations on GuickGO I2	amily & Domains equence imilar Proteins	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous	telp r Feedback
M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations ¹ Access the complete set of 60 annotations on QuickG0 [2]	amily & Domains equence milar Proteins	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115869 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse logk molecules contain 2 light and 2 heavy chains and lack a light-heavy chain disulfide bond.	Help Feedback
GO annotations! Access the complete set of GO annotations on QuickGO IC	amily & Domains equence imilar Proteins	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115869 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse IgA molecules contain 2 light and 2 heavy chains and lack a light-heavy chain disulfide bond. Mi11 chain was isolated from a myeloma protein that hids phosphory/chaline	Help Feedback
GO annotations' Access the complete set of GO annotations on QuickGO 12	amily & Domains equence imilar Proteins	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115869 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse IgA molecules contain 2 light and 2 heavy chains and lack a light-heavy chain disulfide bond. M511 chain was isolated from a myeloma protein that binds phosphory/choline.	Help E Feedback
Access the complete set of GO annotations on QuickGO L2	amily & Domains aquence miliar Proteins	Function ¹ Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115869 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse IgA molecules contain 2 light and 2 heavy chains and lack a light-heavy chain disulfide bond. M511 chain was isolated from a myeloma protein that binds phosphory/choline. M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed.	Help E Feedback
	amily & Domains aquence milar Proteins	Function: Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115669 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse IgA molecules contain 2 light and 2 heavy chains and lack a light-heavy chain disulfide bond. M511 chain was isolated from a myeloma protein that binds phosphory/choline. M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations ¹	Help Feedback
	amily & Domains equence imiliar Proteins	Function: Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system. Miscellaneous The final C-region domain is deleted from PubMed:115669 chain. It was isolated from a myeloma protein that contains 1 light and 1 heavy chain per molecule, linked by a disulfide bond. In contrast, normal mouse IgA molecules contain 2 light and 2 heavy chains and lack a light-heavy chain disulfide bond. M511 chain was isolated from a myeloma protein that binds phosphorylcholine. M511 chain was isolated from a myeloma protein that binds phosphorylcholine. M511 sequence was compared with that of mouse MOPC 47A, and a genetic mechanism for the deletion of the CH3 domain of the mutant chain is proposed. GO annotations1 Access the complete set of G0 annotations on QuickG0 L ⁶ Simming set.	Help Feedback

Fig 3: The first result on a search for "Ig alpha chain C region (UniProt ID: P01878)" is protein with 693 amino acids.

UniProt BLAST Align	Peptide search ID mapping	SPARQL UniProtKB +		Advanced List Search 🖴 🔂 🕻	🛛 Help
Function	퉐 P01878	· IGHA_MOUSE			, i
Names & Taxonomy	Protein ⁱ	Ig alpha chain C region	Amino acids	344 (go to sequence)	
Subcellular Location	Status ⁱ	S UniProtKB reviewed (Swiss-Prot)	Protein existence ¹	Evidence at protein level	
Phenotypes & Variants	Organism ⁱ	Mus musculus (Mouse)	Annotation score ⁱ	65	
PTM/Processing Expression	Entry Variant vie	wer 🚯 Feature viewer Genomic coordin	ates Publications External links	History	
Interaction	😤 Tools 🔹 土 Downloa	d 🖶 Add Add a publication Entry feedback			
Structure	Function				¥
Family & Domains	Ig alpha is the major in	mmunoglobulin class in body secretions. It may sen	e both to defend against local infection and to	prevent access of foreign antigens to the general immunologic	eedba
Sequence	system.				12
Similar Proteins	Miscellaneou The final C-region dor contrast, normal mous M511 chain was isolat M511 sequence was o	S nain is deleted from PubMed: 115869 chain. It was is the IgA molecules contain 2 light and 2 heavy chains ed from a myeloma protein that blinds phosphorylch compared with that of mouse MOPC 47A, and a ger	colated from a myeloma protein that contains and lack a light-heavy chain disuffide bond. olline. etic mechanism for the deletion of the CH3 do	t light and 1 heavy chain per molecule, linked by a disulfide bond. In smain of the mutant chain is proposed.	Help
	GO annotatio Access the complete set Slimming set:	INS ¹ of GO annotations on QuickGO			
	generic	v		د	

Fig 4.1: P01878 protein present in *Mus musculus* searched serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.

Fig 4.2: Number of Annotations and all molecular functions of site

UniProt BLAST Align Pepti	de search ID mapping \$	SPARQL UmiProtK8 - Advanced List Search 📥 🏟 🖸 Help
Function	Entry Variant viewe	r 🚯 Feature viewer Genomic coordinates Publications External links History
Names & Taxonomy Subcellular Location	Names & Ta	xonomy
Phenotypes & Variants	Protein names	
PTM/Processing	Recommended name	Ig alpha chain C region
Expression	Organism nam	
Interaction		
Structure	identifier	
Family & Domains	Organism ⁱ	Mus musculus (Mouse)
Sequence	Taxonomic lineage ⁱ	cellular organisms > Eukaryota (eucaryotes) > Opisthokonta > Metazoa (metazoans) > Eumetazoa > Bilateria > Deuterostomia > Chordata (chordates) > Craniata > Vertebrata (vertebrates) > Gnathostomata (laved vertebrates) > Teleostomi > Euteleostomi (honv vertebrates) > Sarconterviti >
Similar Proteins		Dipnotetrapodomorpha > Tetrapoda (tetrapoda) > Amniota (amniotes) > Marmalia (mammals) > Theria > Eutheria (picentals) > Boreeutheria > Euarchontoglires > Glires (Rodents and rabbits) > Rodentia (rodent) > Myomorpha (mice and others) > Muroidea > Muridae > Murinae > Mus (mice) > Mus
	Accessions	
	Primary accession	P01878
	Proteomes ¹	
	Identifier	UP00000589
	Component ⁱ	Unplaced
	Cubecilluler	Less tion :

Fig 5: Name and Taxonomy of Ig alpha chain C region

UniProt BLAST Align F	Peptide search ID mapping Entry Variant view	SPARQL UniPro	tKB • viewer Genomi	c coordinates	ublications	External lini	ks History	Advanced List Search	🚔 🕁 🗹 Help
Names & Taxonomy Subcellular Location Phenotypes & Variants PTM/Processing Expression Interaction [Structure Family & Domains Sequence Similar Proteins	Structure'		ξ	A Contraction					MP T-MOTOR
	SOURCE	IDENTIFIER	METHOD Select *	RESOLUTION	CHAIN	POSITIONS	LINKS		
	PDB	7JG1	EM	3.30 Å	A/B/C/D	1-344	PDBe · RCSB-PDB · PDBj · PD	Bsum 🛃 · Fo	dseek
	PDB	7JG2	EM	3.30 Å	A/B/C/D	1-344	PDBe · RCSB-PDB · PDBj · PD	Bsum 🛃 · Fo	dseek

Fig 6: Structure of Ig alpha chain C region

UniProt BLAST Align Pept	ide search ID mapping SPARQL UniProtKB •	Advanced List S	earch 🏯 🏦 🗹 Help
Function	Entry Variant viewer 🚯 Feature viewer Genomic coordinates Publications External links History		
Names & Taxonomy Subcellular Location	Sequence		
Phenotypes & Variants	Sequence status ⁱ Complete		
PTM/Processing	See also sequence in UniParc or sequence clusters in UniRef		
Expression	Tools - 🗄 Download 🌐 Add Highlight - Copy sequence		
Interaction	Length 344 Last updated 1986-07-21 v1 Mass (Da) 36,876 Checksum ¹ 3694CFFF9B19A9F8		
Structure	ESARIIPTIYP LTLPPALSSD PVIIGCLIHD YFPSGTMINT WGKSGKDITT VHFPPALASG GRYTMSNQLT LPAVECPEGE SVKCSVQHDS NPVQELDVNC	SGPTPPPPIT IPSC	LQPSLSL
Family & Domains	QRPALEDLLL GSDASITCTL NGLRIPEGAV FTWEPSTOKD AVQKKAVQNS CGCYSVSSVL PGCAERWNSG ASFKCTVTHP ESGTLTGTLA KVTVNITPPQ	VHLLPPPSEE LALP	IELLSLT
Similar Proteins	250 CLVRAFHPKE VLVRNLHGNE ELSPESYLVF EPLKEPGEGA TTYLVTSVLR VSAETWKQGD QVSCHVGHEA LPMNFTQKTI DRLSGKPTIV SVSVIPSEGD	GICY	de je
	Sequence caution ⁴ The sequence BAA02026.1 C ⁴ differs from that shown. Reason: Erroneous initiation Revenue		
	Features Showing features for non-terminal residue ¹ .		
	ର୍ ବ୍ ୍ ± Download		2 3
	sia nia nisa zia zia zia 1	300	344
	/		

Fig 7: Sequence of Ig alpha chain C region

RESULTS:

The first entry for Ig alpha chain C region is a *Mus musculus* creature with 334 amino acids. Immunoglobulins, also known as antibodies, are specialized glycoproteins produced by B lymphocytes. Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.

CONCLUSION:

The UniProt, Swiss-Prot and TrEMBL databases were explored for the query Ig alpha chain C region (Accession ID: P01878) and related information was searched.

REFERENCES:

- 1. UniProt. (n.d.). <u>https://www.uniprot.org/</u>
- Godwin, L., Sinawe, H., & Crane, J. S. (2022, September 24). Biochemistry, immunoglobulin e. StatPearls - NCBI Bookshelf. <u>https://www.ncbi.nlm.nih.gov/books/NBK541058/</u>
- 3. Sutton, B. J., Davies, A. M., Bax, H. J., & Karagiannis, S. N. (2019). IGE antibodies: From structure to function and clinical translation. Antibodies, 8(1), 19. <u>https://doi.org/10.3390/antib8010019</u>
- 4. Miles, E. (2013). Adverse immune reactions to foods. In Elsevier eBooks (pp. 573–613). https://doi.org/10.1533/9780857095749.4.573

DATE: 28/08/2024

WEBLEM: 1(B) Protein Data Bank (PDB) Database

(URL: https://www.rcsb.org/pdb/)

AIM:

To study and explore the protein structure for the query Dimeric Immunoglobin A (dIgA) (PDB ID: 7JG1) using the Protein Data Bank (PDB) Database.

INTRODUCTION:

The Protein Data Bank (PDB) is a comprehensive database that houses three-dimensional structural data of biological macromolecules, including proteins and nucleic acids. Established in 1971, it is managed by the Worldwide Protein Data Bank (wwPDB), an international consortium responsible for overseeing the deposition, validation, curation, and open-access dissemination of 3D structural data.

The PDB is a vital resource for structural biology, particularly in fields like structural genomics, enabling scientists to study the 3D architecture of biological macromolecules. The archive contains atomic coordinates and other relevant information about proteins and key biological molecules, with the primary data being coordinate files that describe the atoms in each molecule and their spatial positions.

Noteworthy features of the PDB include its historical role as the first open-access digital platform for sharing protein structures, its importance in computational biology for applications such as structurebased drug design, and its continuous growth, reflecting the ongoing research in laboratories worldwide.

The PDB file format, a text-based format used to describe molecular structures, includes data on atomic coordinates, secondary structure assignments, and atomic connectivity. While the PDB format is a legacy system, the database now stores biological macromolecule data in the updated mmCIF format.

Dimeric Immunoglobin A (dIgA):

Dimeric Immunoglobulin A (dIgA) is a key antibody involved in mucosal immunity, composed of two IgA monomers linked by a J chain. This structure enables dIgA to function effectively in mucosal tissues, where it is predominantly found in secretions like saliva, tears, and intestinal fluids. dIgA plays a crucial role in protecting mucosal surfaces by neutralizing pathogens and preventing their attachment to epithelial cells, thus inhibiting infection. It also supports immune responses by facilitating the clearance of antigens. Importantly, dIgA is transferred from mother to infant through breast milk, providing passive immunity in early life. Deficiencies in dIgA can lead to heightened susceptibility to infections and are linked to certain immunodeficiency disorders, making its study significant for developing vaccines and therapies.

METHODOLOGY:

- 1. Open the homepage of the Protein Data Bank (PDB) Database.
- 2. Enter the query 'Dimeric Immunoglobin A' and initiate the search.
- 3. After the retrieval of the query, observe the results. Apply specific refinements (filters) to narrow down the results based on the query.

- 4. Select a particular entry of interest ['7JG1: Dimeric Immunoglobin A (dIgA)] for further study in terms of its Structure Summary, 3D View, Annotations, Experiment, Sequence, Genome, and Versions.
- 5. To display and download the 3D structure of the protein, click on the 'Display and Download' option, and select the desired format.

OBSERVATIONS:

RCSB PDB Deposit - Sea	rch + Visualize + Analyz	e • Download • Learn • About • Documentation •	Careers COVID-19	
	225,681 Structures from the PI 1,068,577 Computed Structure Models (CSM)	AKB Water O Dimeric Immunoglobin A	(spA)	D
	CSB Protoin Data Ba	omputed Structure Models (CSMs) of available mo	October Melecule of the Month]
Welcome	science and education visualization, and analy	by providing access and tools for exploration, ysis of:		
Deposit	Experimentally-de Bank (PDB) archi	termined 3D structures from the Protein Data	S. Sterr	
Q Search	ModelArchive	ture Models (CSM) from Alphai-old DB and		
Visualize	a structural view of bio	lored in context of external annotations providing ogy.	AT STR	
📰 Analyze	Explore		and the second	
Learn	NEW Features	Training Resources	C. D. C.	
			Angiotensin and Blood Pressure	
Latest Entries	As of <u>Two Oct 01 2024</u>	Features & Highlights	News Publications -	
		Register New for Webnar: Undox Browner Browner Browner Standbarks and Standbark PDB Using BranyCIF and interchangeate yet and more effcert flaver of the PDB/smmCIF format Register for the October 8 Advanced	Epipere Indexed SciAl Images indoor is an annual ink drawing challenge to folion a stor of awing challenge to folion a stor of awing merge are publishing or of a store program and publishing or of a store PDB-Iwared Images for October in 2003 and 2002. + 09300204	

Fig 2: Homepage of the Protein Data Bank (PDB) Database

Fig 3: Number of hits obtained for Basic Search for the query

Fig 4: List of Refinements (Filters) applied

Fig 5: Results obtained after applying refinements (filters) and select the query

Fig 6: Entry opened that displays the Structure Summary

RCSB PDB Deposit + Search + Visualize + Analyze + Download + Learn + About + Documentation + Careers	COVID-19 MyPDB - Contact us
Constant Structures from the POB FROTEIN DATA BANK 225,611 Structures from the POB 1.068,577 Compand Structure Modelsr (CSM) -30 Structures Compand Structure Advenced Starch (Browse Annatotics	sequence Include CSM @ 🕥 🔍 Help
PDB-101 OPDB SIMDedexer & NAKB OPDB-Dev	₽ ¥∎Qin
Structure Summary Structure Annotations Experiment Sequence Genome Versions	
▲ 7JG1₀	Display Files • O Download Files •
Dimeric immunoglabin A (dlgA)	Help
Sequence of 73G1 [Dimetic # Chain # 1: lyh protein # A #	Structure
H000TLVTVSAESAANIPTIYPLILPPALSSOPVIIGCLHDYPPSOTMAVTMIKSKDITVMFPPALASORVTDKSQLTLRAWCEPKDESWKCSWCBWOPKLDWCS 240 273 273 243 249 253 253 253	7JG1 Dimeric Immunoglobin A (dlgA)
gepepetten opensionen sin statistikken sin seine seinen sin sin seine seine seine seine seine seine seine seine Verteen vari vari vari seine	Type Assembly
0	Asm Id 1: Author Defined Asse
0	Dynamic Bonds X Off
3	Nothing Focused
a	X Measurements
翠	Q Structure Motif Search
b .	Components 7351
\sim	미 Preset + Add 뿊 📀
	Polymer Cartoon @ 1 ····
	Carbohydrate 2 reprs @ 🗍 …
	Density
	Quality Assessment
	Assembly Symmetry
	Export Animation

Fig 7: 3D View of the structure

RCS	SB PDB Dep	osit - Search -	Visualize - Analy	ze • Download •	Learn - About	- Documentation	- Careers COVI	ID-19 M	rPDB - Contact us
PRO		ВАNК 225,6 ВАNК 1.068 Модек	81 Structures from the f ,577 Computed Structu s (CSM)	PDB - 31	D Structures 😧 En	ter search term(s), E nced Search Browse .	intry ID(s), or sequer	ice Includ	не CSM 🛛 🔵 🔍 На
1	PDB-101	PDB 🕯	MDataResource 🚳 N	IAKB S www.PDE	OPDB-Dev				¶y∎Qir
	Structure Summa	ary Structure	Annotations	Experiment	Sequence (Senome Versi	ons		
A	7JG1			_			🖺 Display Fi	les - O Download I	illes • Oata API
Di	meric Immuno	oglobin A (dlgA)							
Ex	Comain Annot Domain Annot IMGT Antibody Protein Family Gene Ontolog InterPro: Prote omain Annotat thains	rce: Annotation lation: ECOD Classif y Annotation y: Gene Product Anr ein Family Classificat tion: ECOD Class Family Name	Ication notation tion stification	Archilecture	Possible Homology	Homology	Topology	ECOD	Database Homepage Provenance Source (Version)
•	L	C1-set_3	e7jg1A2	A: beta sandwiches	X: Immunoglobulin- like beta- sandwich	H: Immunoglobulin- related	T: Immunoglobulin/ Fibronectin type III/E set domains/PapD- Iike	F: C1-set_3	ECOD (1.6)
A		C1-set	e7jg1A1	A: beta sandwiches	X: Immunoglobulin- like beta- sandwich	H: Immunoglobulin- related	T: Immunoglobulin/ Fibronectin type III/E set domains/PapD- like	F: C1-set	ECOD (1.6)
в		C1-set_3	e7jg182	A: beta sandwiches	X: Immunoglobulin-	H: Immunoglobulin-	T: Immunoglobulin/	F: C1-set_3	ECOD (1.6)

Fig 8: View of the Annotations Section

R	CSB PDB Deposit	✓ Search ✓ Visualize ✓ Ana	alyze 👻 Download 👻	Learn - About - Documentatio	on - Career	rs COVID-19	MyPDB - Contact us
0.C0	ROTEIN DATA BA	 225,681 Structures from th 1,068,577 Computed Structures (CSM) 	e PDB ture	tructures Finter search term(s) Advanced Search Brow), Entry ID(s), se Annotations	or sequence	Include CSM @ 🕥 🔍
	PDB-101 💮	PDB StMDarksoure	NAKB S Average	O PDB-Dev			¶y∎0,ir
	Structure Summary	Structure Annotations	Experiment	Sequence Genome Ve	rsions		
	7JG1 Dimeric Immunogle	obin A (dlgA)			C	n Display Files + 🛛 Do	wnicad Files - 🌣 Data API
	ELECTRON	IICROSCOPY					
	Refinement						
	RMS Deviations						
	Key R	efinement Restraint Deviation					
	f_dihedral_angle_d 1	1.453					
	f_angle_d 2	02					
	f_chiral_restr 0.	087					
	f_bond_d 0	018					
	f_plane_restr 0	017					
	Sample			Data Acquisition			
	Secretory Immunoglobi	nA		Detector Type		GATAN K3 BIOQ	UANTUM (6k x 4k)
				Electron Dose (electro	ns/Å**2)	60	
	Specimen Preparation	1					
	Sample Aggregation	State PARTICLE		Imaging Experiment		1	
	Vitrification Instrumen	11 FEI VITROBOT MARK IV		Date of Experiment			
	Cryogen Name	ETHANE		Temperature (Kelvin)			
	Sample Vitrification Details	Wait time - 0s Drain time - 0 5	os Blot time - 6s Blot Ford	e - Microscope Model		FEI TITAN KRIOS	

Fig 9: View of the Experiment Section

RCSB PDB Deposit -	Search • Visualize • Analyze • Download • Learn • About • Documentation • Careers COVID-19
	225,581 Structures from the POB 10 Structures • 30 Structures • 30 Structures • 30 Structures • 30 Structures
	Advanced Search Browse Annotations Help
PD8-101 🚭 🍽	B \$1400aRecore & NAKB Window O PDB-Dev
Structure Summary	Structure Annotations Experiment Sequence Denome Versions
A 7JG1	Chapting Files - O Download Files -
Dimeric Immunoglobin	A (dlgA)
CHAIN A V Ig alp	Help
	0 10 100 100 200 200 100 100
CHAIN A UNIPROT P01870 SECONDARY STRUCTURE UNMODELED	
BURIED RESIDUES DISULFIDE BRIDGE	
HYDROPATHY	
DISORDEF	and the second se
DISORDERED BINDING	
PEAN	
ANTIBODY DOMAIN	
MOLECULE PROCESSING GENOME VARIANT	• • • • • • • • • • •
GLYCOSYLATION DOMAIN	
NON TERMINAL RECIPUS	

Fig 10: View of the Sequence Section

RCSB PDB Deposit + Search + Visualize + Analyze + Download + Learn + About + Documentation + Careers COVID-19 (MP08+) Contact us	
PROTEIN DATA BANK 225,681 Structures from the FDB PROTEIN DATA BANK 1,685,377 Comparing Structure Models (CSM) Structure: O Structure: O Structure: O Structure: O Structure: O Structure: O	
1920-101 OPDB 100000000 (1990)	
Structure Summary Structure Annotations Experiment Sequence Genome Versions	
▲ 7JG1	
Dimeric Immunoglobin A (dlgA)	
EXITY 7JG1_2 V Immunoglobulin J chain - Mus musculus	
CHR080500ME NC_000071 V Mus musculus strain C578U/6J chromosome 5, GRCm39 / Region; [08669175 - 86675638]	
र संसंदर्भ की	
ຍັງເຫັງແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ ແມ່ນ້ຳແຮ່ "	
7/01,2 Note increases UNPROFENSION	
About Help RCSB PDB (citation) RCSB PDB is a RCSB Partners About Us Contact Us is hosted by member of the Nucleic Acid	
Citing Us Documentation Knowledgebase Publications Website FAQ Rutters	

Fig 11: View of the Genome Section

PROTEIN DATA	BANK 225,681 Structu BANK 1,068,577 Com Models (CSM)	res from the PDB	res Finter search term(s), Advanced Search Brows	Entry ID(s), or sequence	Include CSM @ D
§ PDB-101		ance 🗟 NAKB 🔞 www.FDB 🚳 F	PDB-Dev		El¥ Cl Oin
Structure Sumr	nary Structure Ann	otations Experiment Sequ	rence Genome Ver	sions	
▲ 7JG1 Dimeric Immur	noglobin A (dlgA)			Display Files + 🔘	Dosmood Files • C Data API
Changes made to information about t	a PDB entry after its initial relea he PDB versioning is available.	se are considered to be either "major"	or "minor". The latest minor vers	ion of each major version is avai	iable as a file download. More
Version Number	Version Date	Version Type/Reason	Version Change	Revised CIF Category	
1.0	2020-11-11	Initial release			Download
About	Help		RCSB PDB (citation)	RCSB PDB is a	RCSB Partners
About About Us	Help Contact Us		RCSB PDB (citation) is hosted by	RCSB PDB is a member of the	RCSB Partners Nucleic Acid
About About Us Otting Us Publications	Help Contact Us Documentation Website FAQ		RCSB PDB (citation) is hosted by RUTGERS	RCSB PDB is a member of the	RC58 Partners Nacial: Acid Knowledgebase
About About Us Criting Us Publicators Team Carres	Help Contact Us Documentation Website FAQ Glossary Service Status		RCSB PDB (citation) is hosted by RUTGERS UC San Diceo	RCSB PDB is a member of the	RCSB Partners Nucleic Acid Norwindgecase wwPDB Partners perse para
About About Us Cring Us Polivicators Team Careers Usage & Prince	Help Contact Us Documentation Website FAQ Glossary Service Status		RCSB PDB (citation) is hosted by RUTGERS UC San Diego SDSC	RCSB PDB is a member of the	RCSB Partners Nucleic Add Knowledgebate wePDB Partners RCSB POB POBe

Fig 12: View of the Version Section

RCSB PDB Deposit - Search - Visualize - Ar	nalyze - Download - Learn - About - Docum	entation - Careers COVID-19	MyPDB Contact us
PROTEIN DATA BANK	+ 3D Structures	term(s), Entry ID(s), or sequence	Include CSM @
	NAKB 🕼 www.PDB 🔕 PDB-Dev		ii ک D O in
Structure Summary Structure Annotations	s Experiment Sequence Genome	Versions	
Biological Assembly 1 •	7JG1 Dimeric Immunoglobin A (dlgA) PDB Dol: https://dol.org/10.2210/pdb7JG1/pdb E Classification: IMMUNE SYSTEM Organism(s): Mus musculus Expression System: Homo saplens Mutation(s): No @ Deposited: 2020/07.18 Released: 2020.11.11	FASTA Sequence FASTA Sequence mmCIF Format mmCIF Format (Header) PDB Format PDB Format PDB Format	Obwekad Files • © Data API FASTA Sequence PDBx/mmClF Format PDBx/mmClF Format (gz) BinaryClF Format (gz) PDB Format PDB Format PDB Format (gz) PDB Format PDB Format (gz)
the second se	Deposition Author(s): Kumar Bharathkar, S., Par Funding Organization(s): National Institutes of H National Institutes of Health/National Institute Of A	ker, B.P., Malyutin, A.G., Stadtmuć ealth/National Institute of General lergy and Infectious Diseases (NII	EM Map EMD-22309 (map - gz) Validation Full PDF
Explore in 3D: Structure Sequence Annotations Electron Density Validation Report	Experimental Data Snapshot Method: ELECTRON MICROSCOPY Resolution: 3.30 Å	Metric	Validation (XML - gz) Validation (CIF - gz)
Global Symmetry: Asymmetric - C1 Global Stolchiometry: Hetero 5-mer - A4B1	Aggregation State: PARTICLE Reconstruction Method: SINGLE PARTICLE	Ramachandran outliers	Biological Assembly 1 (CIF - gz) Biological Assembly 1 (PDB - gz)

Fig 12: Display And Download Options

Fig 13: View of the sequence in PDB file format (Header)

RESULTS:

The Protein Data Bank (PDB) database was examined to investigate protein structures using the query 'Dimeric Immunoglobin A' with the PDB ID: 7JG1. A total of 219,335 protein structure entries were initially obtained through a basic search. The results have been categorized into different sections, including Structure Summary, 3D View, Annotations, Experiment, Sequence, Genome and Versions. The entry can be displayed and downloaded in the desired format for further analysis.

CONCLUSION:

The Protein Data Bank (PDB) stands as an essential and foundational resource in structural biology and bioinformatics. It serves as a repository for experimentally determined three-dimensional structures of biological macromolecules, including proteins, nucleic acids, and complex assemblies. Key features and contributions of the PDB include Comprehensive Repository, Global Collaboration, Structural Insights, etc. Thus, the Protein Data Bank remains an indispensable resource for structural biologists, researchers, educators, and clinicians worldwide. Its wealth of structural information plays a pivotal role in advancing scientific knowledge, aiding in various research endeavors, and paving the way for innovations in biomedicine and biotechnology.

REFERENCES:

- 1. Berman, H. M. (2000, January 1). The Protein Data Bank. *Nucleic Acids Research*, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
- Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank: A computer-based archival file for macromolecular structures. *Journal of Molecular Biology*, *112*(3), 535-542. <u>https://doi.org/10.1016/s0022-2836(77)80200-3</u>
- 3. Herr, A. B., Ballister, E. R., & Bjorkman, P. J. (2003). Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. *Nature*, 423(6940), 614-620. <u>https://doi.org/10.1038/nature01685</u>

DATE: 12/09/2024

<u>WEBLEM: 2</u> Structural Antibody Database (SAbDab)

(URL: https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab)

AIM:

To study the antibody structure information using SAbDab Database.

INTRODUCTION:

Antibodies form the foundations of the vertebrate immune response. These proteins form complexes with potentially pathogenic molecules called antigens and inhibit their function or recruit other components of the immunological machinery to destroy them. In addition to the biological importance of antibodies, their ability to be raised against an almost limitless number of molecules has made them useful laboratory tools and increasingly useful as therapeutic agents in humans. This biopharmaceutical application has motivated the desire to understand how binding, stability and immunogenic properties of the antibody are determined and how they can be modified.

Computational analyses and tools are increasingly being employed to aid the antibody engineering process. Many of these tools now use only the antibody data, as opposed to general protein data, because this has been shown to increase performance. The publicly available structural data for most types of proteins are too sparse to merit protein-specific prediction methods. However, since the first antibody structure was deposited in 1976, the number of antibody structures in the protein data bank (PDB) has grown, and it now represents approximately 1.75% of the total 91939 entries.

Several databases that handle antibody data currently exist (7–13). Of these, most are sequence-based or are antibody discovery tools. The most recent, DIGIT, provides sequence information for immunoglobulins and has the advantage over earlier sequence databases [Kabat, IMGT, Vbase2] of providing heavy and light chain sequence pairings. However, it does not incorporate structural data. Antigen DB and IEDB-3D do include structural data. However, both focus on collecting epitope data and do not include unbound antibody structures. In comparison, both IMGT and the Abysis portal provide the ability to inspect and download individual bound and unbound antibody structures. Neither allow for the generation of bespoke datasets nor for the download of an ensemble of curated structural data.

To address this problem, we have developed a Structural Antibody Database (SAbDab), a database devoted to automatically collecting, curating, and presenting antibody structural data in a consistent manner for both bulk analysis and individual inspection. SAbDab updates on a weekly basis and provides users with arrange of methods to select sets of structures. For example, users can select by species, experimental details (e.g. method, resolution, and r-factor), similarity to a given antibody sequence, amino acid composition at certain positions and antibody–antigen affinity. Entries can also be selected using structural annotations including, for example, the canonical form of the complementarity determining regions (CDR), orientation between the antibody variable domains and the presence of constant domains in the structure. Structures can be inspected individually or downloaded en masse either as the original file from the PDB or as a structure that has been annotated using the Chothia numbering scheme. In all cases, a tab-separated file detailing heavy and light chain pairing, antibody–antigen pairing and all other an-notations is generated.

Structural antibody database is an online resource containing all the publicly available antibody structures annotated and presented in a consistent fashion. The data are annotated with several properties including experimental information, gene details, correct heavy and light chain pairings, antigen details and, where available, antibody-antigen binding affinity. The user can select structures, according to these attributes as well as structural properties such as complementarity determining region loop conformation and variable domain orientation. Individual structures, datasets and the complete database can be downloaded.

Fig 1: SAbDab's workflow

Fig 2: Homepage of SAbDab Database

🚱 SAbDab	SAbDab ♥ Thera-SAbDab ♥ CoV-AbDab Statistics ♥ About. ♥ More OPIG Resources♥
	About Thera-SAbDab
N/ P	
About Thera-SAbDab	About Thera-SAbDab
Example Queries	The Therapeutic Structural Antibody Database (Thera-SAbDab) is a database of immunotherapeutic variable domain sequences and their corresponding structural representatives in SAbDab (which harvests data from the PDB).
Contact	It updates structural mappings alongside SAbDab on a weekly basis. It detects not only exact sequence matches to known structures, but also close sequence matches (divided into two categories: 95-98% seqID, or 99% seqID).
<u></u>	We update Thera-SAbDab whenever a new WHO International Non-proprietary Name (INN) list is released, adding all therapeutics with an accompanying variable domain sequence. We also update the clinical trial status of all actively-developed therapeutics according to the latest updates on AdisInsight. We host this up-to-date list of therapeutic sequences with metadata on the Thera-SAbDab search page.

Fig 3: Homepage of Thera-SAbDab

Fig 4: Homepage of CoV-AbDab

🕵 SAbDab	SAbDab ▼ Th	nera-SAbDab 🔻 CoV-AbDab Statistics 🕶 a	About 👻 More OPIG Resources 👻	
SA	oDab-na	ano Statistics		YH
		•	1 /	
	Database last update	ed Fri 06 Sep 2024 13:08:57		
Overview		Experimental Me	thods	
Summary statistics for the database:		Structures determined by each experi	imental method:	
Total number of nanobody structures	1726	Method	No. of Structures	
Number of F _V regions	3664	X-Ray Diffraction	1032	
Number of structures with antigen	1627	Electron Microscopy	685	

Fig 5: SAbDab-nano Statistics

Fig 6: The antibody Prediction Toolkit

REFERENCES:

- Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., Shi, J., & Deane, C. M. (2014). SAbDab: the structural antibody database. *Nucleic acids research*, 42(Database issue), D1140–D1146. <u>https://doi.org/10.1093/nar/gkt1043</u>
- Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., Shi, J., & Deane, C. (2013). SAbDab: the structural antibody database. <u>https://www.semanticscholar.org/paper/SAbDab%3A-the-structural-antibody-database-Dunbar-Krawczyk/fefea2b9ed93a0c3163432c52a67cf34efa868f7</u>

DATE: 12/09/2024

WEBLEM: 2(A)

The Structural Antibody Database (SAbDab)

(URL: https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab)

AIM:

To study the Antibody structure for the query 'Bovine anti-HIV Fab ElsE6' (PDB ID: 8VBL) using the Structural Antibody Database (SAbDab).

INTRODUCTION:

SAbDab Database

The Structural Antibody Database (SAbDab) is a comprehensive online resource dedicated to the collection and curation of antibody structures. It provides researchers with access to all publicly available antibody structures, which are annotated and presented in a standardized format. This database is particularly valuable for those working in the fields of antibody structure prediction, docking, and therapeutic design.

Key Features of SAbDab

- 1. Extensive Data Collection: SAbDab includes a significant number of antibody structures, with around 7,184 variable domain structures recorded from 3,663 entries in the Protein Data Bank (PDB) as of August 2019.
- 2. **Detailed Annotations:** Each structure in the database is annotated with various properties, such as experimental details, gene information, heavy and light chain pairings, antigen details, and where available, antibody-antigen binding affinities. This comprehensive annotation allows users to filter and select structures based on specific criteria, including experimental methods and structural properties.
- 3. User-Friendly Tools: The database features several tools for users, such as:
 - a. **ABangle Tool:** This tool allows users to characterize the orientation between the antibody's variable domains (VH and VL) and visualize conformational changes.
 - b. **CDR Search and Clustering:** Users can select hyper-variable loops based on their length and type, facilitating the study of antibody variability.
 - c. **Template Search:** Users can submit antibody sequences to find structural templates suitable for homology modeling.
- 4. **Regular Updates:** SAbDab is updated weekly, ensuring that it reflects the latest entries from the PDB and includes new sequence data as it becomes available. This continuous updating process enhances the database's relevance for ongoing research.
- 5. Accessibility: The database is freely available for public use, encouraging collaboration and innovation in antibody research. Users can download individual structures or entire datasets for further analysis.

Bovine anti-HIV Fab ElsE6

Bovine anti-HIV Fab ElsE6 is a specific antibody fragment derived from bovine sources, designed to target HIV-1 antigens, particularly the p24 protein. As a fragment antigen-binding (Fab) region, ElsE6 binds with high specificity to HIV p24, making it a key tool in the detection and quantification of the

virus. It is primarily used in immunoassays, such as enzyme immunoassays, to enhance the sensitivity of HIV detection, especially in early stages of infection before antibodies are detectable. Beyond diagnostics, ElsE6 also serves in HIV research, helping to study viral interactions with the immune system. While its primary use is in diagnostics, there is potential for therapeutic applications if modified for neutralizing HIV activity.

METHODOLOGY:

- 1. Open the Protein Data Bank (PDB) website. (URL: <u>https://www.rcsb.org/</u>) to obtain the PDB ID of the structure (query).
- 2. Open the Structural Antibody Database (SAbDab). (URL: <u>https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab</u>) that contains structural information on antibodies and antibody-antigen complexes.
- 3. Select the 'Structure Search' option from the SAbDab portal.
- 4. Select the 'Search for a specific PDB entry' option to search for antibody structures by their PDB ID.
- 5. Enter the PDB ID of the query (PDB ID: 8JXR), obtained from the Protein Data Bank (PDB) and select the entry from the results obtained to view detailed information about the antibody structure.
- 6. Study the Structure Details, Structure Visualization, Fv regions. Structures can further be downloaded using the links provided in the 'Download' section.

OBSERVATIONS:

Fig 1: Homepage of the Protein Data Bank (PDB) database

Fig 2: Retrieving the query 'Bovine anti-HIV Fab ElsE6' (PDB ID: 8VBL) from the PDB database

Fig 3: Homepage of the Structural Antibody Database (SAbDab)

Fig 4: Selecting the 'Structure Search' option in the SAbDab portal

Search	 Find antibody structures that have been deposited in the FDE. Use the 'Get all structures' tab to get a list of all antibodies in SADDab. You can search for a specific entry using its PDB code. Search for a subset of antibodies by attribute - such as species, experimental method, resolution, residue at a particular position etc. Create a non-redundant set of antibody structures by sequence, with specified maximum sequence identity and structure quality cutoffs. Clustering is performed using CD-HIT. For more help, see the About page. 	
	> Get oll structures	
	> Search for a specific PDB entry	
	Please enter a PDB code: Get structure	
	> Search structures by attribute	
	> Search for a non-redundant set of antibodies	
	> Create email alert for new additions to SAbDab	

Fig 5: Selecting the 'Search for a specific PDB entry' option and searching for the PDB code: '8JXR'

SAbDab	SAbDab - Thera SAb	Dab 🕶 CoV-AbDab Statisti	es • About •	More OPIG Resources.
	Search Str	uctures		
			1	
View results	Search results			
Downloads	l structure(s) fit your criteria. Click on th	e PDB code to view the struct	ure.	
Search	PDB Species Method	Resolution Chain Pairings	Antigens	Downloads
	BVD1 BOS TAURUS X-RAY DIFFRACTION	Fv mo. 1 2.35 Å VH: H VL: L	None	• Structure (as FOB) • Structure (Chothia) • Structure (INGT) • Summary file
	Download results			

Fig 6: Search Results obtained for searching the PDB ID: 8JXR

S/ A	SAbDab	SAbDab + Thera SA	bDab • CoV-AbDab Statistics • About • More OPIG F	Resources V
		Structure Vi	ewer: 8vbl	
	(Me			X//
	Details	> Structure details		
	Visualisation	Structure of Bovine anti-Hiv Fal	o Else6	
	Fvs	PDB	8vbl	
	Downloads	Species	BOS TAURUS	
	PDB /	Method	X-RAY DIFFRACTION	
		Resolution	2.35Å	
		Number of Fvs	1 False	
		Light chain type	Lambda	

Fig 7: Results obtained for the entry

Details		
Visualisation	Structure of Bovine anti-Hiv Fab E	seó
E	PDB	avbl
FVS	Species	BOS TAURUS
Downloads	Method	X-RAY DIFFRACTION
	Resolution	2.35Å
PDB /	Number of Fvs	1
	In complex	False
	Light chain type	Lambda
	Has constant region	True
	 Structure visualisation 	

Fig 8: Results obtained: 'Structure Details'

Details	
Visualisation	
Fvs	Key (Default Scheme):
Downloads	VI. Charles CDRs
PDB 2	Display options:
	Spacefill
	O Ballástick Cartoon
	Default colours Colour by B-factor
	CO The Colour by chain Colour by sec. structure Colour by sec. structure
	Spin on/off
	0
	Please note the WebGL plugin needs to be enabled to use PV Viewer.
	Please note the WebGL plugin needs to be enabled to use PV Viewer.
	Please note the WebGL plugin needs to be enabled to use PV Viewer.

Fig 9: Results obtained: 'Visualization'
	> Fv information		
Details	This PDP has I Eu(a)		
Visualisation			
E.c.	> H/L		
FVS			
Downloads		Fv Details	
PDB /	Heavy chain	н	-
	Light chain	L	
	Heavy subgroup	IGHV1	
	Light subgroup	IGLV1	
	Species	BOS TAURUS	
	In complex?	False	
	SCFV?	False	
	has constant domain:	irue	_
		Numbered Sequences (imgt)	
	Heavy chain		_
	1 2 3 4 5 K V 0 L 0	6 7 8 9 11 12 13 14 15 16 17 18 E S G P S L V K P S O T	1

Fig 10: Results obtained: 'Fv Information' [Header information for the Fv (H/L)]

	Has constant domain?		True	
Details				
Visualisation		Numbered See	quences (imgt)	
Fvs	Heavy chain 22 23 24 25 25	27 28 29 3	9 35 36 37 38 <mark>3</mark>	19 40 41 42 4
Downloads	тсття	G F S L	. S D N A	V G W V F
PDB 2	↓ Light chain			•
		CDR Sequences	(imgt definition)	
		CDP Serverses	(imat definition)	
	CDBUD			
	CDIGHT		GFSLSDNA	
	CDRH2		GFSLSDNA	
	CDRH2 CDRH3		GFSLSDNA IDSGGST TTVHQQTRKSCPAGYTLAKDCGFYG ^O TTYELHVDA	rGSEDCYDDCSDILSSHTLSPT
	CDRH2 CDRH3 CDRH3		GFSLSDNA IDSGGST TTVHQQTRKSCPAGYTLAKDCGFVG TTYELHVDA SSNVGNGY	/GSEDCYDDCSDILSSHTLSPT
	CDI8H2 CDI8H2 CDI8H3 CDIRL1 CDIRL1		GFSLSDNA IDSGGST TTVHQQTRKSCPAGYTLAKDCGFYG TTYELHVDA SSNVGNGY GDT	rGSEDCYDDCSDILSSHTLSPT
	CDB12 CDB13 CDB14 CDB12 CDB12 CDB13		GFSLSDNA IDSGGST TTVIQQTRKSCPAGYTLAKDCGFYG TTVELHVDA SSNVCNGY GDT ASAEDSSSNAV	YGSEDCYDDCSDILSSHTLSPT
	CDBL3		GF5LSDNA ID5GGST TTVHQTRKSCPAGYTLAKDGGFYG TTYFLHYDA SSNVCNCY GDT ASAEDSSSNAV	YGSEDCYDDCSDILSSHTLSPT

Fig 10.a: Marked positions for the heavy chain and light chain for the Fv (H/L) through the chothia numbering system

Details		CDR Sequences (imgt definition)	
Visualisation	CDRH1 CDRH2	GFSLSDNA	
Fvs	CDRH3	TTYHQQTRKSCPAGYTLAKDCGFYGYGSEDCYDDCSDILSSHTLSPT TTYELMYDA	
Downloads	CDRL1	SSRVGNGY	
	CDRL2	GDT	
PDB /	CDRL3	ASAEDSSSNAV	
		Orientation Angles (from Allangle)	
	HL	-55.48°	
	HCL	73.38*	
	HC2	120.37°	
	LCL	118.63°	
	40	84.17* 15.62Å	
		101028	
	> Downloads		^

Fig 10.b: CDR Sequences (IMGT definition) and Orientation angles for the Fv (H/L)

\ <i>I</i>		
Visualisation	Additional links and files for download: se	e <mark>help</mark> for more details.
Fvs	Chothia-numbered structure	3 Download
Downloads	IMGT-numbered structure	O Download
	Non-annotated structure from the PDB	Ownload
PDB '	Summary file for this antibody	O Download
- chneider, C., Raybould, M.I.J., E	Deane, C.M. (2022) SAbDab in the Age of Biotherapeutics: no the Nanabady Structure Tracker Nucleic Acids Res	Qpi

Fig 11: Links for downloading the structure under the 'Downloads' section

RESULTS:

The query 'Bovine anti-HIV Fab ElsE6' (PDB ID: 8VBL) was searched and studied using the Structural Antibody Database (SAbDab). Following information was studied for the selected entry:

1. Structure Details

Name	Structure of bovine anti-HIV Fab ElsE6
PDB	8VBL

Species	Bos taurus
Method	X-RAY DIFFRACTION
Resolution	2.35Å
Number of Fvs	1
In complex	False
Light chain type	Lamba
Has constant region	True

2. <u>Structure Visualization</u>

The structure can be observed in terms of VH Chains, VL Chains and CDRs in the form of various display options (example: Wire) and colors.

Following information was studied for the Fvs:

Fv	Header Information		Numbered Sequences (chothia)
H/L	Heavy chain	Н	Heavy chain:
	Light chain	L	27 - 38, 56 - 65, 105 - 117
	Heavy subgroup	IGHV5	
	Light subgroup	IGKV8	Light chain:
	Species	MUS MUSCULUS	27 – 38, 56 – 65, 105 – 117
	In complex?	True	
	scFv?	False	
	Has constant domain?	True	

Further information was studied about antigen details, CDR sequences (chothia definition) and orientation angles for each of the Fvs.

3. Downloads

Various links have been provided for the downloading:

- **a.** Chothia-numbered structure
- **b.** IMGT-numbered structure
- **c.** Non-annotated structure from the PDB
- **d.** Summary file for this antibody

CONCLUSION:

The Antibody structure for the query 'Bovine anti-Hiv Fab Else6' (PDB ID: 8VBL) was studied using the Structural Antibody Database (SABDab). The SAbDab entry page provides extensive details about the antibody structure, including:

- 1. Structure details: resolution, R-factors, experimental method, etc.
- 2. Visualization tools: to view the antibody structure
- 3. Information on the antibody variable (Fv) regions
- 4. Options to download the structure coordinates in various formats

REFERENCES:

- Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., Shi, J., & Deane, C. M. (2014). SAbDab: the structural antibody database. Nucleic acids research, 42(Database issue), D1140–D1146. <u>https://doi.org/10.1093/nar/gkt1043</u>
- Schneider, C., Raybould, M.I.J., Deane, C.M. (2022) SAbDab in the Age of Biotherapeutics: Updates including SAbDab-Nano, the Nanobody Structure Tracker. Nucleic Acids Res. 50(D1): D1368-D1372. <u>https://doi.org/10.1093/nar/gkab1050</u>
- 3. wwPDB.org. (n.d.). wwPDB: 8VBL. <u>https://www.wwpdb.org/pdb?id=pdb_00008vbl</u>

DATE: 12/09/2024

WEBLEM: 3 **AntiBodies Chemically Defined Database (ABCD)**

(URL: https://web.expasy.org/abcd/)

AIM:

To study antibody sequence using ABCD database.

INTRODUCTION:

The ABCD (for AntiBodies Chemically Defined) database is a repository of sequenced antibodies, integrating curated information about the antibody and its antigen with cross-links to standardized databases of chemical and protein entities. It is freely available to the academic community, accessible through the ExPASy server (https://web.expasy.org/abcd/). The ABCD database aims at helping to improve reproducibility in academic research by providing a unique, unambiguous identifier associated to each antibody sequence. It also rapidly determines whether a sequenced antibody is available for a given antigen.

The ABCD (AntiBodies Chemically Defined) database is a manually curated repository of sequenced antibodies, developed by the Geneva Antibody Facility at the University of Geneva, in collaboration with the CALIPHO and Swiss-Prot groups at SIB Swiss Institute of Bioinformatics. The ABCD database is part of a broader project, aiming to promote the widespread use of recombinant antibodies by academic researchers and, ultimately, the replacement of animal-produced antibodies. This concerted effort also includes the Geneva Antibody Facility (for discovering and producing antibodies) and the scientific journal Antibody Reports (publishing technical articles on antibody characterization).

ABCD is a huge collection of AD-related data of molecular markers. The web interface contains information concerning the proteins, genes, transcription factors, SNPs, miRNAs, mitochondrial genes, and expressed genes implicated in AD pathogenesis. In addition to the molecular-level data, the database has information for animal models, medicinal candidates and pathways involved in the AD and some image data for AD patients.

Fig 1: Homepage of ABCD Database

REFERENCES:

- 1. ABCD Database Commons. (n.d.). https://ngdc.cncb.ac.cn/databasecommons/database/id/6464
- Lima, W. C., Gasteiger, E., Marcatili, P., Duek, P., Bairoch, A., & Cosson, P. (2019). The ABCD database: a repository for chemically defined antibodies. Nucleic Acids Research, 48(D1), D261–D264. <u>https://doi.org/10.1093/nar/gkz714</u>
- 3. ABCD SIB Swiss Institute of Bioinformatics | Expasy. (n.d.). https://www.expasy.org/resources/abcd
- 4. ABCD Database Commons. (n.d.-b). <u>https://ngdc.cncb.ac.cn/databasecommons/database/id/6771</u>
- 5. Expasy ABCD (AntiBodies Chemically Defined). (n.d.). https://web.expasy.org/abcd/

DATE: 12/09/2024

<u>WEBLEM: 3(A)</u> AntiBodies Chemically Defined Database (ABCD) (URL: https://web.expasy.org/abcd/)

AIM:

To study Foralumab antibody sequence using ABCD Database.

INTRODUCTION:

Antibodies are one of the most widespread tools used in biological sciences. However, they are currently deemed one of the major culprits in the reproducibility crisis plaguing bio-medical research. Problems include batch-to-batch variability, poorly characterized and/or non-validated antibodies that sometimes do not recognize the presumptive target, or recognize more than one target, lack of explicitly described procedures adapted to each antibody, decreasing scrutiny of results by scientists and misleading antibody nomenclature. The 2 million antibodies available on the market might represent as few as 250'000 actual clones.

The ABCD (for AntiBodies Chemically Defined) database is a repository of sequenced antibodies, integrating curated information about the antibody and its antigen with cross-links to standardized databases of chemical and protein entities. It is freely available to the academic community, accessible through the ExPASy server (https://web.expasy. org/abcd/). The ABCD database aims at helping to improve reproducibility in academic research by providing a unique, unambiguous identifier associated to each antibody sequence. It also allows to determine rapidly if a sequenced antibody is available for a given antigen.

<u>Foralumab</u>

Foralumab is a fully human anti-CD3 monoclonal antibody that targets the CD3 complex on T cells, playing a significant role in modulating immune responses. By binding to CD3, it suppresses T cell activation and promotes the expansion of regulatory T cells, reducing inflammation and immune hyperactivity. Nasal administration of Foralumab has shown potential in reducing lung inflammation in COVID-19 patients, as evidenced by decreased pro-inflammatory cytokines. It is also being investigated for autoimmune diseases like multiple sclerosis and type 1 diabetes, as well as preventing transplant rejection. With an acceptable safety profile at lower doses, Foralumab represents a promising therapeutic agent for immune-related conditions.

METHODOLOGY:

- 1. Open the home page of ABCD Database (URL: https://web.expasy.org/abcd/)
- 2. Search for query Foralumab.
- 3. Open one entry (ID: ABCD_AA611) from the obtained entries.
- 4. Interpret the results.

OBSERVATION:

ABCD		
Expasy -	A Home	Contact
The ABCD (AntiBodies Chemically Defined) Databa	se	
The ABCD (AntiBodies Chemically Defined) database is a manually curated depository of sequenced antibodies, developed by the Geneva Antibody Facility at the University of Geneva, in collaboration with the CALIPHO and Swiss-Prot groups at SIB Swiss Institute of Bioinformatics.	Discovery	
Search by antibody name, species or target (UniProt or ChEBI ID) Foralumab Search Clear Example searches: 9E10, P07766, 37926, Escherichia coil, Protein tag, Nanobody	GENEVA	
The ABCD database is part of a broader project, with the mission of promoting the widespread use of recombinant antibodies by academic researchers and, ultimately, the replacement of animal-produced antibodies. This concerted effort also includes the Geneva Antibody Facility (for discovery and production of antibodies) and the scientific journal Antibody Reports (publishing technical articles on antibody characterization).	ANTIBODY	Production
Release information: Version 15.0 (September 2024) 28'088 sequenced antibodies, against 4'259 different targets		
If you'd like to cite the ABCD database: Lima WC, Gasteiger E, Marcatili P, Duek P, Bairoch A, Cosson P. The ABCD database: a repository for chemically defined antibodies. Nucleic Acids Res. 2020, 48:D261-D264. doi: 10.1093/nar/gkz714	tabase Hyl Seq	bridoma Juencing
About us Frequently asked questions (FAQ) Submit a new Antibody Antibodies to Protein tags and Subcellular markers		-

E			ABCD			
Expasy -					A Home	Contact
Foralumab		Search Clear				
ABCD (An	tiBodies (Chemically Defined) Database resu	ult: 1 hit for Foral	umab		
Identifier	Antibody name	Target	Organism			
ABCD_AA611	foralumab	CD3e, T-cell surface glycoprotein CD3 epsilon chai	Homo sapiens (Human)			
SiB		Expasy is o	perated by the SIB Swiss Terms of Use Privac	nstitute of Bioinformatics y policy		Back to the top

Fig 2: Result page for Query Foralumab

(D. 0. 0) (3	ABCD		
(pasy -		A Home	Contact
	Search Clear		
	ABCD_AA611 in the ABCD (AntiBodies Ch	emically Defined) Database	
	Antigen information		
Target type	Protein		
Target link	UniProt: P07766 Homo sapiens (Human)		
Target name	CD3e, T-cell surface glycoprotein CD3 epsilon chain, T-cell surface antigen T3/Leu-4 epsilon chain		
	Antibody information		
Antibody name	foralumab		
Antibody synonyms	NI-0401, 28F11		
Applications	ELISA, Flow cytometry, Surface plasmon resonance, Therapeutic		
Cross-references	IMGT/mAb-DB: 350		
Publications	Patent: US20060177896 Patent: WO2005118635 PMID: 33649101 PMID: 28098333 PMID: 20848453		
	Would you like to obtain this antibody?		
It can be produced	at the Geneva Antibody facility (for more information, please check here).		
	Expasy is operated by the SIB Swiss Institute of	f Bioinformatics	Back to the to

Fig 3: After Selecting an entry (ID: ABCD_AA611)

RESULTS:

ABCD Database was explored to study the antigen-antibody information for query Foralumab the query was searched and 1 hit was obtained which was opened and studied. It contained information about target type, target link (UniProt: P07766), antibody name, cross references (IMGT/mAb-DB: 350) etc.

CONCLUSION:

ABCD Database was explored for query Foralumab for antigen and antibody information. ABCD Database represents a vital resource for organizations seeking to optimize data management and analysis. Its combination of usability, analytical capabilities, and security makes it an invaluable tool for driving informed decisions and enhancing operational efficiency. As organizations increasingly rely on data-driven strategies, the ABCD Database is well-positioned to support their needs effectively.

REFERENCES:

- Moreira, T. G., Matos, K. T. F., De Paula, G. S., Santana, T. M. M., Da Mata, R. G., Pansera, F. C., Cortina, A. S., Spinola, M. G., Baecher-Allan, C. M., Keppeke, G. D., Jacob, J., Palejwala, V., Chen, K., Izzy, S., Healey, B. C., Rezende, R. M., Dedivitis, R. A., Shailubhai, K., & Weiner, H. L. (2021). Nasal Administration of Anti-CD3 Monoclonal Antibody (Foralumab) Reduces Lung Inflammation and Blood Inflammatory Biomarkers in Mild to Moderate COVID-19 Patients: A Pilot Study. Frontiers in immunology, 12, 709861. <u>https://doi.org/10.3389/fimmu.2021.709861</u>
- Lima, W. C., Gasteiger, E., Marcatili, P., Duek, P., Bairoch, A., & Cosson, P. (2019). The ABCD database: a repository for chemically defined antibodies. Nucleic Acids Research, 48(D1), D261–D264. <u>https://doi.org/10.1093/nar/gkz714</u>

DATE: 12/09/2024

WEBLEM: 4

<u>Antibody Numbering using KabatMan and Chothia Database and AbRSA</u> <u>Numbering Tool as Demo</u>

<u>AIM:</u>

To use KabatMan database and AbRSA numbering tool as demo.

INTRODUCTION:

An important prerequisite for antibody humanization requires standardized numbering methods to define precisely complementary determining regions (CDR), frameworks and residues from the light and heavy chains that affect the binding affinity and/or specificity of the antibody-antigen interaction. The recently generated deep-sequencing data and the increasing number of solved three-dimensional structures of antibodies from human and non- human origins have led to the emergence of numerous databases. However, these different databases use different numbering conventions and CDR definitions. In addition, the large fluctuation of the variable chain lengths, especially in CDR3 of heavy chains (CDRH3), hardly complicates the comparison and analysis of antibody sequences and the identification of the antigen binding residues. This review compares and discusses the different numbering schemes and "CDR" definition that were established up to date. Furthermore, it summarizes concepts and strategies used for numbering residues of antibodies and CDR residues identification. Finally, it discusses the importance of specific sets of residues in the binding affinity and/or specificity of immunoglobulins.

Antibody engineering methods require precise identification of the residues that have an impact on the interaction or affinity of the antibody for its target antigen. CDR-grafting aims to decrease the immunogenicity of non-human antibodies by engineering the variable regions directed against the target antigen. This method requires an accurate identification of the CDRs and therefore an adequate alignment of antibody sequences from human and non-human species. Moreover, it has been shown that residues from the framework regions might also exert a strong impact on the antibody affinity. Thus, the precise identification of corresponding positions in human and animal immunoglobulin chains is essential. However, the use of different amino acid numbering schemes currently available in the literature is confusing and might lead to aberrant identification of framework and CDR residues. Therefore, it is of crucial importance to understand the different numbering schemes and, consequently, being able to compare them.

KabatMan database: To enter KabatMan database (<u>http://www.bioinf.org.uk/abs/simkab.html</u>). The purpose of maintaining the Kabat Database of aligned sequences of proteins of immunological interest, it provides useful correlations between structure and function for this special group of proteins from their nucleotide and amino acid sequences to their tertiary structures. The Kabat Database was initially started in 1970 to determine the combining site of antibodies based on the available amino acid sequences at that time. Bence Jones proteins, mostly from human, were aligned, using the now-known Kabat numbering system, and a quantitative measure, variability, was calculated for every position. Immunologists have extensively used it to derive useful structural and functional information from the primary sequences of these proteins. The Kabat Database may be accessed for searching, sequence retrieval and analysis by a few different methods: electronic mail, WWW, and ftp.

AbRSA tool: To enter AbRSA tool enter (<u>http://cao.labshare.cn/AbRSA/index.html</u>). Antibody sequence numbering and complementarity determining region (CDR) delimitation have wide applications in antibody engineering. They are generally obtained by mapping query sequences to the retrospective patterns. However, due to the enormous diversity of antibody sequences, novel patterns are often generated in antibody affinity maturation. They may not be recognized by the traditional methods. Antibody Region-Specific Alignment (AbRSA) integrates the biological insight of antibody region-specific feature with dynamic programming to improve the robustness of antibody numbering. Benchmarks show AbRSA is a powerful method in numbering unusual antibodies and distinguishing between antibody and non-antibody sequences.

Workflow: The pipeline of AbRSA web service is shown in the following Figure. The input could be either the protein sequence or structure. Multiple protein sequences are supported if the sequences are in FASTA format. The program judges whether it is a heavy chain, light chain or neither by comparing the sequence identities with consensus sequences. After all the possible heavy or light chains are found out, the program will output the numbering results and the location of FRs and CDRs in the sequences. If the input is a protein structure (PDB format), the web page will generate its interactive 3D visualization powered by 3Dmol JavaScript library. CDRs will be highlighted in colors. The 3D view can be rotated, translated, and re-sized by dragging, scrolling the mouse. We believe this feature could help to understand where and how antibody binding with antigen.

Fig 1: Workflow of AbRSA tool

OBSERVATIONS:

KabatMan database:

	There will be a planned outage of around 20 minutes on 17th October 2024 between 00.01am and 6am (BST).
www.bioinf.org.uk	⁺UCL
Prof Andrew C R Martin's	Group Antbodies - Mutations - Other servers - Software - Information -
T.	
Andrew C	.R. Martin's group at
UCL	d Computational Biology areas associations in automates and the
effects of mutations on pro Welcome to our new web s	ted
% Read more	
hu the star	Rect Allmant ells
	New Softwara
	We have just developed a simple web page for doing builk annotation of antibody sequences to identify the CDRs. This is currently a test version, so feel free to try it and let us know how it works for you.

Fig 213: Main page to enter KabatMan database

	There will be a planned outage of around 20 minutes on 17th October 2024 between 00.01am and 6am (BST).
www.bioinf.org.uk	[▲] UCL
	Prof Andrew C R Martin's Group 🕷 Home 🗸 Antibodies 🗸 Mutations 🗸 Other servers V Software V Information V
	Home : Antibodies : KabatiMan KabatiMan
	Simple Interface to the Kabat Sequence Database This page provides a simple point-and-click interface to the KabatMan database. This interface only lets you create simple queries; for more complex cases, you must write queries directly using the in the KabatMan SQL-like query language • Full query page • Query language • Statistics News 05.12.11 Data residing Asmal number of sequences with insertions (e.g. 180-6 light chain, 10 007779) were not being read correctly as the Kabat format wes inconsistent. This is now fixed.
	^

Fig 3: Antibodies page which gives the list of all available tools

Fig 4: Antibodies page which shows KabatMan database

	There will be a planned outage of around 20 minutes on 17th October 2024 between 00.01am and 6am (BST).
www.bioinf.org.uk	⁺UCL
	Prof Andrew C R Martin's Group # Home < Antibodies < Mutations < Other servers < Software < Information <
	Home > Antibodies > KabatMan KabatMan
	Simple Interface to the Kabat Sequence Database This page provides a simple point-and-click interface to the KabatMan database. This interface only lets you create simple queries; for more complex cases, you must write queries directly using the in the KabatMan SQL-like query language

Fig 5: Homepage of KabatMan database

In the examples below, keywords are given in upper case, but this is only done for darity. The database is completely case-insensitive. 1. Find all complete antibodies where the antigen is known with loop lengths: SELECT name, antigen, length(11), length(12), length(13), lengt	ılts in
1. Find all complete antibodies where the antigen is known with loop lengths: SELECT name,antigen,length(13),length(12),length(13), length(h3),length(h2),length(13), MeERE antigen ne '' complete eq true AND 2. Get the sequences of all complete mouse antibodies which bind to lysozyme, display the resul PIR format: SELECT pir MeERE source includes mouse AND Complete eq true AND 3. Find all antibodies with 11 residue CDR-L1s and a proline at the sixth position:	ılts in
SELECT name,antigen,length(11),length(12),length(13), length(h1),length(h2),length(h3) MEEE artigen ne '' couplete at true MID 2. Get the sequences of all complete mouse antibodies which bind to lysozyme, display the result PIR format: SELECT pir MEEE source includes mouse antigen includes lysozyme AND complete eq true AND 3. Find all antibodies with 11 residue CDR-L1s and a proline at the sixth position:	ılts in
 Get the sequences of all complete mouse antibodies which bind to lysozyme, display the resul PIR format: SELECT pir. MEEE source includes mouse antigen includes lysozyme AND complete eq true AND Find all antibodies with 11 residue CDR-L1s and a proline at the sixth position: 	ılts in
SELECT pir WHERE source includes mouse antigen includes Tysopyme AND complete eq true AND 3. Find all antibodies with 11 residue CDR-L1s and a proline at the sixth position:	
3. Find all antibodies with 11 residue CDR-L1s and a proline at the sixth position:	
SELECT name, 11 WHERE len(11) eq 11 res(129) eq P AND	
4. Find all complete antibodies with the sequence Ser-Ala-Ser-Ser-Ser in the light chain:	
Note that there must be no spaces in the sequence	
SELECT name, light WHERE complete = t light includes SASSS AND	

Fig 6: Example queries available in KabatMan database

Home > Antibodies > KabatMan KabatMan
Simple Interface to the Kabat Sequence Database This page provides a simple point-and-dick interface to the KabatMan database. This interface only lets you create simple queries; for more complex cases, you must write queries directly using the in the KabatMan SQL-like query language S Full query page S Statistics
06.12.11 Data reading A small number of sequences with insertions (e.g. 18D-8 light chain, ID 007779) were not being read correctly as the Kabat format was inconsistent. This is now fixed.
What information do you wish to display?
Accession number (and link to raw data): Dight chain _ Heavy chain Sequence of:

Fig 7: Click on full query on KabatMan homepage

READ THE I	NSTRUCTIO	ONS FIRST!!!	
Or use the simple point-and-click Plasse do not just enter a serve	k interface.		
Enter your query to KabatMan her	к.		
To submit your query, press here:	submit query		

Fig 8: Search bar to enter sequence taken from PDB database

 O (A Not secare bioinforgule/stocksbarran. 	ch.	\$
KabatMan Query Results		
betian V2.26 pright (c) 1904-2008, Dr. Andrew C.R. Hartin / Unlive is program is copyright. Any copying without the perm ther is prohibited.	reity College London / Undversity of Reading. London of the	
he query was:		
LBCT name, 13 ERE lan(11) eq 11 res(L29) eq P AND		
esults were:		
L, SARALPAQVAF 14-27 °CL, SQBALPAQVAF VA-55 °CL, SBBALPAQVAF VA-55 °CL, SQBALPAQVAF 1-387 °CL, SBBALPAQVAF 1-387 °CL, SBBALPAQVAF CSB °CL, SBBALPAQVAF VSB VS-SSBALPAQVAF		
, элэцглиуни Y-CL, элэцглүүни Y, SDALHYNY Y, SDALHYNY WRRYCL, SADLHYNY WRRYCL, SADLHYNY WRRYCL, SADLHYNY		

Fig 9: Result page for the query

CSM,LB*CL, SADH,UNQ*F CSM,LB*CL, SADH,UNQ*F CSM,LB*CL, SADH,UNQ*F SMLAF*CL, SADH,UNQ*F MRLAF*CL, SADH,UNQ*F MRLAF*CL, SADH,UNQ*F SMLSF*CL, SADH,UNQ*F SMLSF*	Image:	弁	*
Constant CL, Sebul Prove Constant CL, Sebul Prove SPELLECC, Sebul Prove SPELLECCC, Sebul Prove SPELLECCCC SPELLECCCC SPELLECCCC SPELLECCCC SPELLECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	in terci, terci, tercient		
Cujustor CL, Securatory SPELLAR'CL, Securator	vs.40'CL_SEDELEVING		
CSm.57CL, SERV.PRQMV BFSL42CL, SERV.PRQMV BFSL42CL, SERV.PRQMV BFSL57CL, SERV.PRQMV BFSL57CL, SERV.PRQMV BFSL57CL, SERV.PRQMV BFSL57CL, SERV.PRQMV BFSL57CL, SERV.PRQMV BFSL57CL, SERV.PRQMV CFSL57CL, SERV.PRQMV CFSL57CL, SERV.PRQMV TFSL57CL, SERV.PRQMV	VA.A2'CL BADALPREVEZ		
SHELAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY SHULAYCL SECURDATY HULLAYCL SECURDATION HULLAYCL SECURDATION HULLA	vs.53°CL_SEDULPRIVEZ		
APBLLAYCL, SUDUPRY APBLAYCL, SUDUPRY <	ILLA2'CL, SHOVLPKDEVY		
SPELSPICL SOULPROVE SPELSPICL SOULPROVE SPELSPICLS SOULPR	RLLAR'CL, RADALPKEPTY		
APRLS.1C.L., SIGNLPROPY SPLS.SYCL, SOCUPORAVY SPLS.SYCL, SOCUPORAVY SPLS.BYCL, SOCUPORAVY <	BLLSBYCL, SBDWLPKDYWY		
PHLLSPCL, SOBULPHQYPS PHLLSPCL, SOBULPHQYPS <td< td=""><td>BLLSI'CL, SACHLPKEPTY</td><td></td><td></td></td<>	BLLSI'CL, SACHLPKEPTY		
MeLLSPC, SADALPROVY PHLLSPC, SADALPROVY	EU.53°CL, SØDEURKSPVY		
MHLLM (C., SADALPROVY MHLLY (C., SADALPROVY	ALTER CT REPORTED FOR A PARTY AND A		
PHLLE'CL, SOBULPROVAY PHLLE'CL, SOBULPROVAY	RLL60'CL, SADALPKONTY		
PHLLBYCL, SBUHLPROVY PHLLBYCL, SBUHLPROVY PHLBYCL, SBUHLPROVY	BLL1'CL, SØBALPRINAY		
PRULEY'CL, SOULPROYNY PRULEY'CL, SOULPROYNY	BL126°CL, SADHLPKKYHF		
MELLS2'CL, SORU-NEYNW MELLS2'CL, SORU-NEYNW	BUL27°CL, SBDHUPKDYRY		
MELLEY'CL, SODULARQYW MELLEY'CL, SODULARQYW	BLL31'CL, SØHALPKOYAF		
PRULEY'CL, SORU-PROVY PRULEY'CL, SORU-PROVY PRULEY'CL, SORU-PROVY PRULEY'CL, SORU-PROVY PRULEY'CL, SORU-PROVY PRULEY'CL, SORU-PROVY PRULY'CL, SORU-P	BLL13'CL, SADALPKDYM		
Mallar CL, SOBALPROYN Mallar CL, SOBALPROYN	BLL12°CL, SØDHLPKDYKY		
MELLSY'CL, SOULPROYNY MELLSY'CL, SOULPROYNY	BLL13°CL, SBDHLPKDWP		
PRLLBYCL, SODALPRQYAF PRLLBYCL, SODALPRQYAF	SULISTCL, SIGNLPROMTY		
PELLBY CL, SUBAT, PROVING PELLBY CL, SUBAT, PRO	BLLSFCL, SEDHLPREMY		
PaLLNY CL, SUBAL/PAQYNY PALLNY CL, SUBAL/PAQYNY	ELLES'CL, BAATLPKQYDH		
PELL'N'CL, SODULFRQYN' PELL'N'CL, SODULFRQYN' PELLB'CL, SODULFRQYN' PELLB'CL, SODULFRQYN' PELLB'CL, SODULFRQYN' PELLB'CL, SODULFRQYN' PELLB'CL, SODULFRQYN' PELLB'CL, SODULFRQYN' PELLB'CL, SODULFRQYN'	SLL70°CL, SIDHLPHOP17		
MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER' MELLER'CL, SOLU-MERYER'	ELL'N'CL, SHORAPHQYAY		
PELLEY CL, SOULFREYOV PELLEY CL, SOULFREYOV	PCF26.CF78.CF78.DecFacEarth		
MELLEY CL, SOBULPROYAY MELLEY CL, SOBULPROYAY MELLEY CL, SOBULPROYAY MELLEY CL, SOBULPROYAY MELLEY CL, SOBULPROYAY MELLEY CL, SOBULPROYAY MELLEY CL, SOBULPROYAY	ELLBP CL, SUDWLPROPER		
MELLEY'CL, SORU-MERYNY MELLEY'CL, SORU-MERYNY MELLEY'CL, SORU-MERYNY MELLY'CL, SORU-MERYNY MELLY'CL, SORU-MERYNY MELLY'CL, SORU-MERYNY MELLY'CL, SORU-MERYNY	PTTR3.CT* PROPT-ArGAR.		
MELLEY CL, SOBULFICKYOF MELLEY CL, SOBULFICKYOF MELLEY CL, SOBULFICKYOF MELLEY CL, SOBULFICKYOF MELLEY CL, SOBULFICKYOF MELLEY CL, SOBULFICKYOF	SURAC CT DECEMBER AND		
MELLEY CL, SEGULFACYAY MELLY CL, SEGULFACYAY MELLY CL, SEGULFACYOY MELLY CL, SEGULFACYAY MELLY CL, SEGULFACYAY	LLSFCL, SECHLARGEN		
MELLY'CL, SOBULFACYTY MELLY'CL, SOBULFACYTY MELLN'CL, SOBULFACYTY MELLN'CL, SOBULFACYTY	Fulder CL, DECNUPATION		
MELLS'CL, SEBULFREYTY MELLN'CL, SEBULFREYTY MELLN'CL, SEBULFREYTY	ELL'N' LL SEAR AND THE		
METTP.CT* 2019/14/44/ METTP.CT* 2019/14/44/ METTP.CT* 2019/14/44/	Buch's La Decempropries		
MELLE CL, SUBALFACTOR MELLE CL, SUBALFACTOR	ELL'S LL DEMERSION		
anta tri membahat	No. 1 No.		
	and and the second s		
Number of hits = 108 (Dotoset created Hed Jul. 12 09:55:03 2000)	unter of hits = 108 (Dotoset created Hed Jul 12 08:58-03 2000)		

Fig 10: Result page showing the number of hits for the entered query

AbRSA tool:

Y AbRSA A Tool for Antibody Numbering and CDR Delimiting	
tone Submit V-Gene Relp Downlaad	
Introduction	CDRs of Antibody
Antibody sequence numbering and compensationity determining region (CDR) delinitation have wells applications in antibody engineering. They are generally obtained by mapping query sequences to the refrospective petterms. However, due to the enormous diversity of antibody sequences, novel patterns are often generated in antibody affinity maturation. They may not be recognized by the Inditional methods. Antibody Region-Specific Alignment (ABRSA) integrates the biological insight of antibody region-specific feature with dynamic programming to improve the robustness of antibody numbering, Benchmarks show ABRSA is a powerful method in numbering unusual antibodies and distinguishing between antibody and non-antibody sequences.	1 th
The pipeline of AbRSA web service is shown in the following Figure. The input could be either the protein sequence or structure. Multiple protein sequences are supported if the sequences are in FASTA format. The program judges whether it is a heavy chain, light chain or neither by comparing the sequence identifies with consensus sequences.	C Str Con
After all the possible heavy or light chains are found out, the program will output the numbering results and the location of EBs and CDRs in the sequences. If the locat is a protein structure (PCR format), the web once will operate its	Acknowledgement
Interactive 3D visualization powered by 3Dmol JavaScript library (Rego and Koes, 2015). CDRs will be highlighted in colors. The 3D view can be rotated, translated, and re-sized by dragging, scrolling the mouse. We believe this feature	Yang Cao is supported by National Natural Science

Fig 11: Homepage of AbRSA tool

- (a)***	serve i caosensar celvesco-tasse bib		
Y	AbRSA A Tool for Antibody Number	ring and CDR Delimiting	
Name Salari	R V-Gene Help Downland		
Pasta pro	Antibody Numb	ering and CDRs Delimiting	CDRs of Antibody
			11 - F
Numberi	ng Scheme: Othothia #Kabat		Acknowledgement
		suberit Clear Load Example	e Natural Science Foundation of China

Fig 12: Paste the FASTA sequence taken from PDB database

RCSB PDB Deposit + Search + Visualize +	Analyze - Download - Learn - More -	Documentation - Careers	
Brackee Summary 30 Vew Acedato	ara Esperiment Sequence Our	ame Versions	
Stopped Assembly 1 0	2H32 Crystal structure of the pre-8 cel Doi: 10.22100pc8.2422pc8 Classifications: IMMURE STRITEM Organization(s): Home segments Representer: Trafficialistic ni Mutation(s): Ho Deposited: 2006-85-82 Released: 2007 Deposited: 2006-85-82 Released: 2007 Deposited: 2006-85-82 Released: 2007	I receptor	Coupley First - Desentual Fire
S CAS	Experimental Data Snapshot	wwP08 Validation 0	C 30 Report Full Rep
Cu.	Netbod: X-RAY DIFFRACTION Resolution: 2.70 Å R-Value Pres: 0.255	Metric Nites Cesitocore	Percentile Ranks Val 0.2
© 3D View: Structure Electron Density Ligand Interaction	R-Value Work: 0.207 R-Value Observed: 0.208	Remachandrun outlien	
Global Barmany, Assessments, C10		NDF2 sulliers	14.

Fig 13: Result page of PDB database

Fig 14: FASTA sequence received from PDB database

Fig 15: FASTA sequence pasted in AbRSA tool page

	A Not secure cao.labshare.cn/AbRSA/o	drs.php				\$	*
	Y AbRSA A Tool for Antibody	/ Numbe	ring and Cl	DR Delimiting			
Home	Submit V-Gene Help Download						
	AbRSA Result (Kabat) Marning: No Antibody Variable Domain Sequenc	e was Deter Su	(16d for 2H32_2) (19606) mmary of C	CHAIN BINMUNOOLOBULIN DRS	OMEGA CHAIN(HOMO SAPIENS	CDRs of Antibody	>
	Name	Type	CORI	CDR2	COR)	1 Martha	
	THESE DISTANCES IN CONTRACTOR						
	HIIIMMUNOGLOBULIN HEAVY CHAIN/HOMO SAPIENS (9606)	VH	SYWIG	IIYPODSDTRYSPSFQ0	HYYYYYOMDV	A PELO	

Fig 16: Result page of AbRSA tool which shows summary of CDRs

Variable Persia	
	Y. Gao is supported by National Natural Science Foundation of
>2H32_1(CHAIN A(IMMUNOGLOBULIN IOTA CHAIN(HOMO SAFIENS (9606)	China
1 QPVLHQPPAMSSALOTTIRLTCTLRNDHDIOVYXVYWYQQRPOHPPRFLLRYF8QSDRAQ 60 61 GDQVPPRFSGSKUVARNRGYLSISELQPEDRAMYYCANGARSEDDERRSUNKERMEPTA 120 121 ARTEVP	
>2B32_2[CHAIN B INMUNOGLOBULIN OMEGA CHAIN HOMO SAPIENS (9606)	
1 SVTHVFGSUTQLTVLSQVKATFSVTLFPESSEELQANKATLVCLMNDYPGILTVTWKKN 60 61 GYFLYQGVNDHTFSEQSSNKKYAABSYLSLTPEQMANKSYSCQVMHEGSTVEETVAFAEC 120 121 #	
>2832_31CHAIN C[AUTH H] INNUNOGLOBULIN HEAVY CHAIN+HOMO SAPIENS (9606)	
1 EVQLVQEGAEVYKKPGESLKISCKGSGYEFTSTWIGWYXMPGEGLEMMG: (TPGCSUTN) 60 61 REGYCKQYTISADKSISTATICGMESTANYCGAENTYYYYMMONOGOTYYYUSEN 120 121 SAAFTLEPEVACENAPERSYNVOCLAQUID/DSITYFEKYTMONOGOTYYTVESH 120 121 GAAFTLEPEVACENAPERSYNVOCLAQUID/DSITYFEKYTMONSDISSISTERFPEVAL 180 161 GOEYAATSQUILEERDYWEGYTDERVYCEVQEPERKINDUSSDISSISTERFPEVAL 180	
CDRs are highlighted in colors (CDR1, CDR2, CDR3). The gray letters indicate the non-variable-domain region.	

Fig 17: Variable domain results

Fig 18: Light chains for the query sequence entered

Fig 19: Heavy chain for the sequence entered

CONCLUSION:

KabatMan database and AbRSA tool was used for antibody numbering.

REFERENCES:

1. Abhinandan, K.R., and Andrew C.R. Martin. Analysis and Improvements to Kabat and Structurally Correct Numbering of Antibody Variable Domains. Molecular Immunology, vol. 45, no. 14, Aug. 2008, pp. 3832–3839, <u>https://doi.org/10.1016/j.molimm.2008.05.022</u>

- 2. AbRSA: A Tool for Antibody Numbering and CDR Delimiting. Cao.labshare.cn, <u>https://cao.labshare.cn/AbRSA/index.html</u>
- 3. Bioinf.org.uk Prof. Andrew C.R. Martin's Group at UCL. https://www.bioinf.org.uk
- Johnson, G. "Kabat Database and Its Applications: 30 Years after the First Variability Plot." Nucleic Acids Research, vol. 28, no. 1, 1 Jan. 2000, pp. 214–218, <u>https://doi.org/10.1093/nar/28.1.214</u>

DATE: 24/09/2024

<u>WEBLEM: 5</u> <u>Introduction to STCRDab database</u>

(URL: https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred/)

INTRODUCTION:

The Single-chain T-cell Receptor Database (STCRDab) is a specialized repository designed to support the study and development of single-chain T-cell receptors (scTCRs), which are key players in the immune response. T-cell receptors (TCRs) are essential in recognizing antigenic peptides presented by Major Histocompatibility Complex (MHC) molecules, allowing T-cells to identify and attack infected or abnormal cells. Single-chain T-cell receptors, which are engineered forms of natural TCRs, are increasingly used in research and immunotherapy, particularly in personalized cancer treatments and autoimmune disease research. The STCRDab provides a comprehensive collection of sequence, structure, and functional data on these receptors, thus facilitating their analysis, modification, and application in various biological and clinical contexts.

T-cell receptors are surface proteins found on T-lymphocytes, specialized white blood cells that play a critical role in the adaptive immune system. TCRs enable T-cells to detect and bind to specific antigens, such as viral or tumor-derived peptides, that are presented on the surface of infected or abnormal cells via MHC molecules. Once the TCR recognizes an antigen, the T-cell is activated and triggers an immune response to eliminate the threat.

TCRs are typically composed of two chains: α (alpha) and β (beta) in most T-cells, or γ (gamma) and δ (delta) in a smaller subset. These chains combine to form a unique antigenbinding site, providing the ability to recognize a vast array of foreign peptides. TCRs do not directly bind free-floating antigens, unlike antibodies. Instead, they recognize antigenic peptides that are presented by MHC molecules on the surface of cells.

This specific interaction between TCRs, MHC molecules, and peptides is at the heart of T-cellmediated immunity, which is crucial for identifying and eliminating virus-infected, malignant, or abnormal cells.

Single-Chain T-Cell Receptors (scTCRs)

Single-chain T-cell receptors (scTCRs) are engineered constructs that combine the antigenbinding domains of TCRs into a single polypeptide chain. These constructs simplify the natural heterodimeric structure of TCRs into a single chain, retaining the binding specificity while making them more stable and easier to produce for therapeutic purposes. scTCRs have become highly valuable in immunotherapy, particularly in CAR-T cell therapies (Chimeric Antigen Receptor T-cells), where engineered TCRs are modified to recognize specific tumor antigens, enabling precision targeting of cancer cells.

The primary advantage of scTCRs lies in their ability to be custom-designed for antigens, making them powerful tools for personalized medicine. They can be used in treating cancers, viral infections, and autoimmune diseases by enabling highly targeted immune responses.

The STCRDab database was created to provide a centralized platform for the accumulation, sharing, and analysis of single-chain T-cell receptor data. Its goal is to advance the understanding of TCRs and their therapeutic applications by providing a comprehensive resource for researchers engaged in T-cell biology, immunotherapy, and vaccine development.

STCRDab serves as a multi-functional database offering several key features to facilitate research:

- 1. **TCR Sequences and Annotations**: The database contains a vast array of TCR sequences, focusing on both natural and engineered single-chain TCRs. Each sequence entry is accompanied by relevant annotations, such as the antigen it binds to, the MHC class involved, and structural features.
- 2. **Structural Data**: For many TCRs and scTCRs, structural data is available, allowing researchers to explore the three-dimensional conformation of these receptors. The structure-function relationship is critical for designing scTCRs with enhanced binding properties or specificity, making this feature of great importance to those involved in rational drug design or antigen-targeted therapy.
- 3. **Functional Information**: In addition to sequence and structural data, STCRDab includes functional characterizations of TCRs, such as antigen specificity, binding affinity, and T-cell activation strength. This data helps researchers understand how different TCRs function in diverse immunological contexts, which is crucial for developing therapies targeting specific diseases like cancer or autoimmune disorders.
- 4. **Mutational Analysis**: STCRDab offers information on mutated TCRs and their effects on binding affinity, antigen specificity, and MHC interaction. This feature supports the engineering of optimized scTCRs for use in experimental models or therapeutic applications.
- 5. **Cross-Species Data**: The database includes TCR data from various species, allowing researchers to perform comparative studies that might offer insights into evolutionary conservation and diversity of T-cell receptors. This cross-species comparison is particularly valuable for preclinical studies where animal models are used to test TCR-based therapies.
- 6. **MHC-TCR-Peptide Complex Information**: Given the critical role of MHC in TCRantigen recognition, STCRDab provides information on MHC-bound peptides and their interactions with TCRs. This helps in understanding the specificity of TCRs for certain MHC alleles and the potential for cross-reactivity with other peptides.
- 7. Search and Analysis Tools: The database offers a suite of bioinformatics tools that allow users to search, compare, and analyze TCR data. This includes sequence alignment, structural modeling, and antigenic epitope prediction, which are crucial for researchers looking to design novel TCRs for therapeutic use.

STCRPred:

STCRPred is a bioinformatics tool used for modeling the structure of T-cell receptors (TCRs). It includes several computational tools designed to predict and analyze TCR structures, which are essential for understanding immune responses and designing therapeutic TCR-related proteins.

One of its main functions is the **sequence-based prediction** of complementarity-determining regions (CDRs), which are crucial for TCR recognition of antigens. STCRPred uses a tool called SCALOP-TCR to predict the canonical form of CDRs based on sequence data. The tool

assigns sequences to clusters by analyzing the structural information available from databases like the Protein Data Bank (PDB).

Home STCRDab-	STCRPred	Help *	SAbDab	SAbPred		©p≀g			
STCRDab The Structural T-Cell Receptor Database									
	An automated, curated set of T-Cell Receptor structural data from the PDB.								
				Search Databas	e Orientation Search	Gamble			
				CDR Search	Sequence Search				
			1	TCR Structures in the P	DB; last updated Mon 09 Sep 2024 13:26:55				
	700			Cumulati	ve total Deposition per year				
Sector Se	600 500 400								
Nu much or of s	200								

Fig 1: Homepage of STCRDab

Home STCF	ab STCRPred -	Help *	SAbDab	SAbPred	ώp/g
				S	FCRPred
				A Structure	al T-Cell Receptor Modelling Tool
					SCALOP-TCR
					TCRBuilder2
					Welcome to STCRPred
	STCRPred co	ntains con can	nputational help enrich	tools that ma the sequence	ke predictions about the structure of T-cell receptors. TCR informatics tools e repertoire and aid the design of TCR-related proteins.
				TC	R structures in the PDB
			© (Wong e Wong e Leem et al., Copyright 2019.	et al., Bioinformatics. (2020), btaa194. t al., Front. Immunol. (2019), 10 , 2454. Nucleic Acids Res. (2018), 46 , D406-D412. Developed by OPIG using Bootstrap and Flask.

Fig 2: Homepage of STCRPred

REFERENCES:

 Li, J., & Zhang, C. (2020). Advances in T-cell receptor engineering for cancer immunotherapy. Frontiers in Immunology, 11, 1082. <u>https://doi.org/10.3389/fimmu.2020.01082</u>

- Morris, G. P., & Allen, P. M. (2012). How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nature Immunology, 13(2), 121–128. <u>https://doi.org/10.1038/ni.2190</u>
- Smith, J. A., & June, C. H. (2019). CAR T cell therapies: The road to universal T cells. Nature Reviews Drug Discovery, 18(7), 481–493. <u>https://doi.org/10.1038/s41573-019-0025-2</u>

DATE: 24/09/2024

WEBLEM: 5(A)

Structural T-cell Receptor Database (STCRDab)

(URL: https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred/)

AIM:

To retrieve CDR position in query 2UWE using STCRDab database.

INTRODUCTION:

The STCRDab Database is an essential online resource designed to assist researchers working on single-chain T-cell receptors (scTCRs), which play a pivotal role in the immune system's ability to recognize and respond to antigens. scTCRs are engineered constructs that simplify the natural T-cell receptor, allowing for greater stability and targeted therapeutic use. This database offers a rich collection of information on TCR sequences, structural data, and functional characterizations, facilitating in-depth studies into how these receptors interact with antigens presented by MHC molecules.

The database serves as a valuable tool for advancing research in areas such as cancer immunotherapy, where engineered TCRs are used to precisely target tumor antigens, and in the study of infectious diseases, where TCRs recognize pathogen-derived peptides. Additionally, STCRDab provides insights into autoimmune conditions by analyzing how TCRs interact with self-antigens. Key features of STCRDab include a robust set of tools for sequence alignment, structural modeling, and mutational analysis, as well as comprehensive data on TCR-antigen specificity and MHC interactions. The database supports cross-species comparisons, helping researchers understand evolutionary aspects of TCR diversity and function. By centralizing TCR-related data, STCRDab accelerates discoveries in immunology, fosters the development of novel therapies, and plays a critical role in the growing field of personalized medicine.

METHODOLOGY:

- 1. Visit the homepage of the STCRDab Database by accessing the URL: <u>https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred/</u>
- 2. Retrieve the antibody PDB ID: 2UWE from the PDB Database.
- 3. Input the retrieved PDB ID (2UWE) into the PDB search option in STCRDab.
- 4. Examine each section of the results displayed.
- 5. Provide an interpretation of the observed results.

OBSERVATIONS:

Fig 1: Homepage of STCRDab database

Home STCRDab - STCRPred He	ip- SAbDab SAbPred OPIg
CDR search Search CDRs based on sp	ecific criteria.
Search	Get all structures.
	Search for a specific PDB.
	2. Get the CDR loops of a particular PDB in STCRDab.
	Please enter the PDB Code:
	2uwe
	Get CDR structures
	Advanced search of CDR structures.
	Search for unique CDR structures.
	About the canonical forms
Leem et al., t	Vucleic Acids Res. (2018), 46, D406-D412. © Copyright 2017. Developed by OPIG using Bootstrap and Flask.

Fig 2: Enter the PDB ID: 2UWE in CDR search of STCRDab

CDR sear Search CDRs b	rch based on sp	ecific	criteri	a.			100	306
View results	>	PDB	Species	Method	Resolution (Å)	View CDR loop Structure	View TCR Structure	Downloads
Downloads Search 1 structure(s) fit y	> our criteria.	2uwe	mouse	X-RAY DIFFRACTION	2.4	TCR FE: CDRA1: STYSPF CDRA2: SFTONR CDRA3: ALFLASSSFKLV CDRB3: N4H-NY CDRB2: SYVADS CORB3: ASSOWSYEQY TCR ML: CDRA1: STYSPF CDRA2: STYSPF CDRA3: ALFLASSSFKLV CDRB3: ALFLASSSFKLV CDRB3: NSHNDY CDRB3: NSHNDY CDRB3: SYVADS CDRB3: NSHNDY CDRB3: STYADS	View Structure	IMGT-numbered Structure Summary file
		Do	wnlo	oad res	ults			

Fig 3: Result page of PDB ID: 2UWE

Home STCRDab STCRPred + Help + SAbDab	SAbPred	opig
Details for 2uwe CDF	RA1	
Click on any of the table below to see the	detailed information about the attructure	
Click off any of the tabs below to see the	detailed mormation about the structure.	
Structure visualisation		
	Key (Default Scheme):	
	MOT defined ODD loss	
	IMG1-defined CDR 100p	
	Display options:	
	Cartoon model	
	Spacefill model	
	Wire model	
	Ball&stick model	
	Default colouring	
	Color by atom	
	Color by B-factor	
	Spin: on off	
	Spin. on on	
	Show anchor residues (?):	
	None	
	Orthophysic	

Fig 4: CDRA1 loop structure summary of 2UWE

THE STORDAD	STCKPTed* Help* SADL	SADPred					~	P (8
Basic parent structu	ure information							
Large Cdr3a	Loop alteration as a F	unction of MHC Muta	tion					
Item			Info					
PDB			2uwe					
Organism			MUS	MUSCULUS				
Method			X-RA	Y DIFFRACTION				
Resolution			2.4Å	2.4Å				
IMGT Numbered s	equence	420	426		407		439	
821	A20	× ×	A30		P		AJ0	
Comparison to an	tibody CDR loops		Ŭ					
Antibody PDB	Antibody CDR loop	Antibody CDR sequence	Ð	Backbone RMSD (A))	SADDaD link to	Antibody PDB	
4јубА	CDRL1	SIGSRA		1.39		view structure		
4fqcL	CDRL1	SLGSRA		1.40		view structure		

Fig 4.1: CDRA1 details of 2UWE (TCR F/E)

Home STCRDab - STCRPred Help - SAbDab SAbPred	©p∣g
Structure summary for 2uwe Detailed entry information.	
Details for 2uwe Click on any of the tabs below to see the detailed in	formation about the structure.
Structure visualisation	
	Key (Default Scheme):
	Vβ Chains
	Bound Antigen Chains
Part and a start and a start a	MH1 Chain
	B2M Chain
	Display options:
Same the	Cartoon model
	Spacefill model
	Mine model

Fig 5: Structure summary for 2UWE

Fig 5.1: Visualization of structure in space fill model

Structure visualisation Key (Default Scheme): Vβ Chains Vα Chains IMGT CDRs Bound Antigen Chains MH1 Chain B2M Chain Display options:	Structure visualisation Key (Default Scheme): Vß Chains Va Chains IMGT CDRs Bound Antigen Chains MH1 Chain B2M Chain Display options: Cartoon model Spacefill model Wire model Ball&stick model	Structure visualisation Key (Default Scheme): Vβ Chains Vα Chains IMGT CDRs Bound Antigen Chains MH1 Chain B2M Chain Display options: Cartoon model Spacefill model Wire model Ball&stick model Default colouring Color by B-factor Color by B-factor Color by chain Color by chain	Home STCRDab * STCRPred Help * SAbDab SAt	Pred	pig
Key (Default Scheme): Vβ Chains Vα Chains MGT CDRs Bound Antigen Chains MH1 Chain B2M Chain Display options:	Key (Default Scheme): Vβ Chains Vα Chains IMGT CDRs Bound Antigen Chains MH1 Chain B2M Chain Display options: Cartoon model Spacefill model Wire model Ball&stick model	Key (Default Scheme): Vβ Chains Vα Chains IMGT CDRs Bound Antigen Chains MH1 Chain B2M Chain Display options: Cartoon model Spacefill model Wire model Ball&stick model Default colouring Color by B-factor Color by sec, structure	Structure visualisation		
Bound Antigen Chains MH1 Chain B2M Chain Display options:	Bound Antigen Chains MH1 Chain B2M Chain Display options: Cartoon model Spacefill model Wire model Ball&stick model	Bound Antigen Chains MH1 Chain B2M Chain Display options: Cartoon model Spacefill model Wire model Ball&stick model Default colouring Color by B-factor Color by B-factor Color by chain		Key (Default Scheme): Vβ Chains Vα Chains IMGT CDRs	
	Cartoon model Spacefill model <u>Wire model</u> Ball&stick model	Cartoon model Spacefill model Wire model Ball&stick model Default colouring Color by B-factor Color by chain Color by sea, structure		Bound Antigen Chains MH1 Chain B2M Chain Display options:	

Fig 5.2: Visualization of structure in wire model

Fig 5.3: Visualization of structure in Ball and stick model

Fig 5.4: Visualization of structure in color by B-factor

Fig 5.5: 15 Visualization of structure in color by chain

Но	me STCRDab - STCRPred Help - SAbDab SAbPred		ρig.
		Color by sec. structure Color by element Spin: on off	
	Structure information		
	Large Cdr3a Loop alteration as a Function of MHC Mu	tation	
	Item	Info	
	PDB	2uwe	
	Organism	MUS MUSCULUS	
	Method	X-RAY DIFFRACTION	
	Resolution	2.4Å	
	Number of TCRs	2	
	Paired chains information		
	Available downloads		
	Leem et al., Nucleic Acids Res. (2018), 46, D406-D412.	© Copyright 2017. Developed by OPIG using Bootstrap and Flask.	

Fig 6: Structure information details for 2UWE

ome STCRDab + STCRPred Help + SAbDab S	SAbPred	g
Paired chains information		
This PDB has 2 TCR(s).		
<u>F/E</u>		
TCR Details:		
Item	Info	
VB chain	F	
VA chain	E	
VB IMGT details	TRBV13/TRBJ2	
VA IMGT details	TRAV12/TRAJ50	
Species	mouse	
Antigen Details:		
Item	Info	
Antigen Chain	C	
Antigen Type	Peptide	
Antigen Organism	HOMO SAPIENS	
Antigen Sequence	ALWGFFPVL	
Antigen Length	9	
MHC details:		
Item	Info	
MHC Chain	A B	
мнс туре	MH1	
MHC Species	human	

Fig 7: Pair chain information of F/E TCR showing TCR, Antigen details and MHC details

STCRDab*	STCRPred Help	 SAbDab Si 	AbPred				¢.p.		
CDR Sequence	es:								
Loop	Sequence			Pred	licted canonical form		CDR Length		
CDRB3	ASSDWVS	SYEQY		None	e		11		
CDRB2	SYVADS			None	e	6			
CDRB1	NNHDY			None	e		5		
CDRA3	ALFLASS	SFSKLV		A3-1	3-D		13		
CDRA2	SFTDNKR			None	None				
CDRA1 STYSPF			None	None					
Orientation and	d docking angles:								
Angle				Value	Value				
BC2			109.04°	109.04°					
BC1			74.17°	74.17°					
BA			-66.62°	-66.62°					
AC2			74.12°	74.12°					
AC1				124.21°					
dc Docking angle				16.65Å	16.65A 68.54°				
				68.54°					
TCRs with sim	ilar orientations:								
TCR PDB	BC2	BC1	BA	AC2	AC1	dc	TRangle Distance		
1lp9_FE	108.68°	73.78°	-66.70°	74.14°	123.92°	16.54Å	0.6		
2j8u_FE	108.31°	74.02°	-66.29°	74.42°	123.85°	16.69Å	0.9		
2jcc_FE	109.08°	74.58°	-66.28°	75.05°	124.04°	16.62Å	1.1		
1lp9_ML	108.14°	73.36°	-66.36°	74.25°	124.79°	16.60Å	1.4		
2i8u MI	107.93°	72.98°	-66.36°	73.99°	124.42°	16.81Å	1.7		

Fig 7.1: Pair chain information of M/L TCR showing CDR sequences, orientation and docking angles and TCRs with similar orientations

RESULTS:

The CDR search for the query PDB ID-2UWE was conducted in the STCRDab database to identify the CDR position for drug design purposes. STCRDab is a database of T-cell receptor (TCR) structures. The results section showed one structure, along with its species name, method, and resolution. One of the CDR loop structures, 'CDRA1,' was visualized, and both its parent structure information and CDR loop details were explored. Following this, the TCR structure of 2UWE was visualized using different display options. The paired chain information of the 2UWE structure revealed two TCRs, named F/E and M/L, displaying details such as TCR, antigen, MHC information, numbered sequences, CDR sequences, orientation and docking angles, and TCRs with similar orientations.

CONCLUSION:

The retrieval of CDR positions in query 2UWE using the STCRDab database provided valuable structural insights into the antigen-binding mechanisms of T-cell receptors. This information was crucial for understanding the CDR loops, which played an essential role in drug design and therapeutic development.

REFERENCES:

- 1. Davis, M. M., & Bjorkman, P. J. (1988). T-cell antigen receptor genes and T-cell recognition. *Nature*, 334(6181), 395–402. <u>https://doi.org/10.1038/334395a0</u>
- Garcia, K. C., Adams, J. J., Feng, D., & Ely, L. K. (2009). The molecular basis of TCR germline bias for MHC is surprisingly simple. *Nature Immunology*, 10(2), 143–147. <u>https://doi.org/10.1038/ni.1698</u>
- 3. Smith-Garvin, J. E., Koretzky, G. A., & Jordan, M. S. (2009). T cell activation. *Annual Review of Immunology*, 27, 591–619. https://doi.org/10.1146/annurev.immunol.021908.132706

DATE: 25/09/2024

<u>WEBLEM: 6</u> Introduction to Yvis Database

(URL: http://bioinfo.icb.ufmg.br/yvis/)

INTRODUCTION:

Yvis Database is a modern, versatile data management platform that addresses the growing needs of today's data-centric environments. It supports a wide range of data types, including relational, non-relational, and semi-structured formats, making it ideal for applications ranging from IoT data streams and big data analytics to cloud-native solutions. One of its key strengths lies in its high performance and scalability, enabling it to handle large-scale, high-volume transactions with ease. Its distributed architecture ensures efficient processing, while resources are dynamically adjusted to maintain peak performance.

Security is a core focus for Yvis, with robust encryption, role-based access control (RBAC), and compliance with major standards such as GDPR, HIPAA, and SOC2. This ensures that sensitive data always remains secure. Yvis also integrates real-time analytics and machine learning, allowing users to process and analyze data as it's ingested and apply predictive analytics or anomaly detection without exporting data to separate systems.

The platform is designed for flexibility, supporting seamless integration with various data sources, including traditional SQL databases, cloud services, and data lakes. Continuous data ingestion from APIs and streaming services like Kafka is also easily managed. Users benefit from both an intuitive graphical interface and comprehensive API support, enabling efficient data management regardless of technical proficiency. Yvis Database is a powerful solution that combines speed, security, and flexibility for the most demanding data-driven applications.

Antibodies or immunoglobulins are vertebrate immune system proteins that are produced by B cells and can bind to antigens with high specificity and affinity. For this reason, antibodies are an important tool in diagnosis, therapy, and experimental biology. To elucidate the antibody characteristics, large numbers of antibody structures and sequences have been generated in the last years. The number of antibodies or antibody fragment structures deposited in Protein Data Bank (PDB) has increased exponentially, leading to the development of databases of antibody structures. Moreover, many antibody sequences have been obtained by high-throughput sequencing of the B-cell receptor repertoire. This extraordinary and still increasing number of antibody structures and sequences demands integrative data organization and tools for their analysis, comparison, and visualization. One of the major bottlenecks in this field is the concomitant visualization of a large amount of antibody data. AbYsis and IMGT/3Dstructure-DB allow antibody visualization, but only a limited number of sequences can be analyzed at a time. Indeed, abYsis presents a classical multiple sequence alignment (MSA) that displays a limited number of sequences and positions each time. IMGT/3Dstructure-DB display only one antibody sequence using the IMGT/Collier des Perles representation that allows sequence analysis related to the antibody structure. To fill this gap, we developed the antibody highdensity alignment visualization and analysis (Yvis) platform that includes:

1. an updated weekly and curated antibody structure database (Yvis database)

2. integrated antibody analysis resources, such as an antibody high-density alignment visualization called Collier de Diamants, and multiple filter options to analyze data from user files or from the Yvis database.

Vi s	Home	Analyze	Statistics	Tutorial	About						
I Alley to conner	r alled to connect to myocket. Access defined for user contentitienace @ localitost (using password, in EO)										
Yvis: Antibo	Yvis: AntibodY high-density alignment visualization and analysis platform with integrated database										
Y-Vis is a web-based platform that allows the analysis of antibody sequences through a new visualization called <i>Collier des Diamants</i> . This new visualization is based on the IMGT/ <i>Collier de Perles</i> representation, and provides information on the amino acids present in the variable domain of an antibody chain together with their position in the conserved beta-strands and loops that define the antibody structure. Moreover, <i>Collier des Diamants</i> allows visualizing the alignment of multiple antibody chain sequences using the IMGT/ <i>Collier de Perles</i> graphical representation, thus providing a new way to analyse antibody variable domain sequences on the basis of the amino acid composition and their positions in the antibody structure.											
Yvis allows analysing user-defined sequences or antibody data from the Yvis database that contains pre-processed information on Protein Data Bank (PDB) antibody structures. User-defined sequences can be uploaded as FASTA files, or as IMGT/DomainGapAligner or IMGT/HighV-QUEST results files.											
After the <i>Collier des Diamants</i> visualization, the user can select filters to better refine the initial set of analysed sequences and retrieve textual data on the visualized sequences. Moreover, the data visualization can be saved as an image, and textual data can be exported in traditional data file formats to be used with other tools.											
The users ca	an perform t	he analysis in	the "Analyze	" tab.							
The "Statistic	cs" tab show	ws data from t	he database (of pre-proces	ssed PDB structures.						
The "Tutorial visualization	l" tab prese	nts a tutorial e	explaining hov	/ to use this t	tool and interpret the Collier de Diamants						

The "About" tab shows information on the Yvis authors and interface versions.

Fig 1: Homepage of Yvis Database

Vis Home Analyze Statistics Tutorial About	
Choose an option to exhibit the antibody variable domain analysis:	
Structures from Protein Data Bank (PDB) that contain antibodies:	
how all stored antibody PDB sequences 🧿	
ilter by PDB IDs 9	
ilter by antibody-producing organism 🥹	
ilter by antigen-producing organism 🥥	
ilter by germline classification 9	
ilter by literature keywords 0	
Jser defined sequences:	
/ariable domain sequences 📀	
CDR sequences 🚱	
MGT/DomainGapAlign results file 🥹	
MGT/HighV-QUEST results file O	
Jser defined gapped sequences intervals 🕄	

Fig 2: Analysis options in Yvis Database
1. <u>Structures from Protein Data Bank (PDB) that contain antibodies:</u>

VIS Home Analyze Statistics Tutorial About	
Choose an option to exhibit the antibody variable domain analysis:	
Structures from Protein Data Bank (PDB) that contain antibodies:	
Show all stored antibody PDB sequences	
Analyze Analyze Show only sequences with the right amino acid in conserved positions Show only one VH/VL pair for each PDB file Use identity filter. Cutoff: 0.0 %	
Filter by PDB IDs 🔂	
Filter by antibody-producing organism 0	
Filter by antigen-producing organism 9	
Filter by germline classification 2	
Filter by literature keywords 9	
User defined sequences:	
Variable domain sequences 9	
CDR sequences	
IMGT/DomainGapAlign results file	
IMGT/HighV-QUEST results file 9	
User defined gapped sequences intervals 9	

Fig 3: Show all Stored antibody PDB sequences

Select this option to show information on all antibody sequences from PDB and stored in Yvis database.

V 5 Home Analyze Statistics Tutorial About	
Choose an option to exhibit the antibody variable domain analysis:	
Structures from Protein Data Bank (PDB) that contain antibodies:	
Show all stored antibody PDB sequences 📀	
Filter by PDB IDs 📀	
Choose one of the following options: Specify PDB IDS O Specify PDB IDs and chain name Load example	
Enter PDB IDs separated by commas, semicolons or in new lines:	
Show engineered antibodies Analyze Show only sequences with the right amino acid in conserved positions Show only one VH/VL pair for each PDB file Use identity filter. Cutoff. 0.0 %	ß
Filter by antibody-producing organism 🕄	
Filter by antigen-producing organism 📀	
Filter by germline classification 3	
Filter by literature keywords Q	
User defined sequences:	
Variable domain sequences 🧿	
CDR sequences 📀	

Fig 4: Filter by PDB IDs.

Select this option to show only chains from structures of a user-defined list of PDB identifiers, with or without chain specification.

You can specify a list of PDB IDs by selecting the "Specify PDB IDs" option and inserting in the textbox the PDB IDs separated by commas, semicolons, or by putting each ID in a new line. In this case, Yvis will show the chains stored in the Yvis database that are part of the indicated structures.

If you want to restrict the analysis to specific chains, you should select the "Specify PDB IDs and chain name" option and insert in the textbox a list of chains separated by commas, semicolons, or in new lines. Each chain must be specified by the PDB ID followed by a colon and the chain name.

Y ^{1 5} Home Analyze Statistics Tutorial About	
cu la connece la myoqu. Access acrica la asci concrimentace 🕲 localitose (asing passivola, i neo)	
Choose an option to exhibit the antibody variable domain analysis:	
Structures from Protein Data Bank (PDB) that contain antibodies:	
Show all stored antibody PDB sequences Q	
Filter by PDB IDs	
Filter by antibody-producing organism 🕑	
Choose one or more species from the list (press Ctrl while selecting to choose more than one): Load example	
*	
Show engineered antibodies Analyze Show only sequences with the right amino acid in conserved positions	
Show only one VH/VL pair for each PDB file	
Filter by antigen-producing organism 🔮	
Filter by germline classification 📀	
Filter by literature keywords 9	
User defined sequences:	

Fig 5: Filter by antibody producing organism.

Select this option to show only chains of antibodies produced by specific organisms. Choose one or more species from the list of all antibody-producing organisms stored in the database, standardized by species, based on the UniProt Taxonomy Database.

Vis Home Analyze Statistics Tutorial About	
си то соппесс то туроче. Ассезо челиси тог изст-соппетниет все селосаннозе (изпуразотноги, т. с.)	
Choose an option to exhibit the antibody variable domain analysis:	
Structures from Protein Data Bank (PDB) that contain antibodies:	
Show all stored antibody PDB sequences 3	
Filter by PDB IDs 0	
Filter by antibody-producing organism 🥹	
Filter by antigen-producing organism 9	
Choose one or more organism from the list (press Ctrl while selecting to choose more than one):	ble
	•
Show engineered antibodies	
Show only one VH/VL pair for each PDB file	
Use identity filter. Cutoff: 0.0 %	
Filter by germline classification 😧	
Filter by literature keywords O	
User defined sequences:	
Mestable description and A	

Fig 6: Filter by antigen producing organism.

Select this option to show only chains from antibody structures that presents an antibodyantigen complex, or choose the "None" option to show only chains of antibodies that are not in complex with antigens. The list presents non-protein antigens type (carbohydrate, hapten, and nucleic acid) and, for proteins or peptide antigens, the antigen-producing organisms stored in the database, standardized by species, based on the UniProt Taxonomy Database. Choose one or more items from this list.

VIS Home Analyze Statistics Tutorial About	
Choose an option to exhibit the antibody variable domain analysis:	
Structures from Protein Data Bank (PDB) that contain antibodies:	
Show all stored antibody PDB sequences 3	
Filter by PDB IDs	
Filter by antibody-producing organism 9	
Filter by antigen-producing organism Q	
Eiter by germline classification Choose one or more options from lists (press Ctrl while selecting to choose more than one): Load exampl Assigned graanism: V gene allele name: J gene allele name:	e
Show engineered antibodies Analyze Show only sequences with the right amino acid in conserved positions Use identity filter. Cutoff: 0.0 %	
Filter by literature keywords	
User defined sequences:	
Variable domain sequences 9	

Fig 7: Filter by germline classification

Select this option to show only chains assigned to specific germline alleles by IMGT/DomainGapAlign. You can restrict the assigned species and V or J alleles by choosing one or more options from the lists. If you do not want to restrict the analysis, select all options.

Vis Home Analyze Statistics Tutorial About	
Filter by antigen-producing organism 📀	
Filter by germline classification 0	
Filter by literature keywords 🥹	
Enter the expressions to search for in each field of literature information. The operators AND, OR and NOT can be used in	
any fields. Load example	
Title keywords:	
6	
Summary keywords:	
4	
Authors:	
Publication/Year:	
<i>h</i>	
Article identifier (DOL PMID or PMCID):	
Autor Remainer (SOI, I MID OF I MOID).	
Show engineered antibodies	
Analyze Show only sequences with the right amino acid in conserved positions	
Show only one VH/VL pair for each PDB file	
C ou worky mon outer. Ve Iv	
User defined sequences:	

Fig 8: Filter by literature Keywords

Select this option to show only antibody chains from PDB structures filtered based on literature information. You can specify paper title or summary, authors' names, publication year, or article identifier (DOI, PMID or PMCID). These fields accept multiple keywords and can be defined with Boolean operators (AND, OR and NOT).

2. <u>User Defined sequences:</u>

VIS Home Analyze Statistics Tutorial About	
Adjub identifier (DOL DMID or DMOD):	
Show engineered antibodies	
Analyze Show only sequences with the right amino acid in conserved positions	
User defined sequences:	
Upload a FASTA file containing the variable domain sequences. Maximum allowed file size: 2.5MB.	
Choose File No file chosen	
Extract germline information with ANARCI	
Lampene	
CDR sequences 🥹	
MGT/DomainGapAlign results file 🛿	
IMGT/HighV-QUEST results file 🚱	
User defined gapped sequences intervals 😧	

Fig 9: Variable domain sequences.

Select this option to insert a FASTA file that contains amino acid sequences of variable domains of antibody chains. The Yvis server uses ANARCI to gap sequences.

In sequence name and comments line (line starting with ">"), the user can insert the following information, separated by "|": PDB/identification source, chain identification, chain type (it is overwritten if ANARCI finds a different type), antibody-producing organism, engineered antibody information (engineered or not), antigen-producing organism, antigen molecule description, assigned germline species, V gene, percentage of V gene identity, J gene, and percentage of J gene identity. These are suggested information and could be used in analysis filters; however, only the sequence identification is mandatory (and will be used in the PDB identification field). Optionally, you can select the option "Extract germline information with ANARCI" to obtain germline information from ANARCI instead of getting them from the user's file.

As the time of execution of this analysis is in function of the number of uploaded/chosen sequences, in the case of large files this time will be long (the user's browser might present a slow script dialog). In the case of a huge number of sequences, users are invited first to submit them to IMGT/DomainGapAlign and then upload the results page into Yvis, using the "IMGT/DomainGapAligner results file" input option.

Vis Home Analyze Statistics Tutorial About	
Article identifier (DOI, PMID or PMCID).	
Analyze Show only sequences with the right amino acid in conserved positions	
Show only one VH/VL pair for each PDB file	
Use identity filter. Cutoff: 0.0 %	
Lines defined accurace:	
User delined sequences.	
Variable domain coquences	
	1
CDR sequences 🔮	
Choose a CDR: C CDR1 (Max 12 aa) C CDR2 (Max 10 aa) CDR3 (unlimited) Upload a fasta file containing the CDR sequences:	
Choose File No file chosen	
Analyze Example file	
	-
IMGT/DomainGapAlign results file 🔮	
IMGT/HighV-QUEST results file 3	
User defined gapped sequences intervals 😧	

Fig 10: CDR sequences.

Select this option to insert a FASTA file containing complementarity-determining region (CDR) amino acid sequences. Choose the type of CDR sequences (CDR1, CDR2, or CDR3; heavy and light chain are treated in the same way). The sequence length must be at most equal to the number of amino acids indicated in each CDR. The Yvis platform will gap sequences according to the chosen CDR. In sequence name and comments line (line starting with ">"), the user can insert the following information, separated by "|": PDB/identification source, chain identification, chain type (H or L, otherwise the information will be ignored), antibody-producing organism, engineered antibody information (engineered or not), antigen-producing organism, antigen molecule description, assigned germline species, V gene, percentage of V gene identity, J gene, and percentage of J gene identity. These are suggested data and could be used in analysis filters; however, only the sequence identification is mandatory (and will be used in the PDB identification field).

Filter by antigen-producing organism Filter by germline classification Filter by literature keywords Filter by literature keywords User defined sequences: Variable domain sequences CDR sequences IMGT/DomainGapAlign results file Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file User defined gapped sequences intervals
Filter by germline classification Image: Filter by literature keywords Image: User defined sequences: Variable domain sequences Image: CDR sequences Image: IMGT/DomainGapAlign results file Image: Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file Image: User defined gapped sequences intervals Image:
Filter by literature keywords User defined sequences: Variable domain sequences CDR sequences IMGT/DomainGapAlign results file Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file ? User defined gapped sequences intervals ?
User defined sequences: Variable domain sequences • CDR sequences • IMGT/DomainGapAlign results file • Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file • User defined gapped sequences intervals •
Variable domain sequences CDR sequences IMGT/DomainGapAlign results file Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file User defined gapped sequences intervals
CDR sequences IMGT/DomainGapAlign results file Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file User defined gapped sequences intervals
IMGT/DomainGapAlign results file • Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file • User defined gapped sequences intervals •
Upload an IMGT/DomainGapAlign results file: Choose File No file chosen Analyze Example file IMGT/HighV-QUEST results file ? User defined gapped sequences intervals ?
Analyze Example file IMGT/HighV-QUEST results file User defined gapped sequences intervals
IMGT/HighV-QUEST results file 2 User defined gapped sequences intervals 3
User defined gapped sequences intervals ()

Fig 11: IMGT/DomainGapAlign results file.

Select this option to insert an IMGT/DomainGapAlign results file. IMGT/Domain Gap Align allows aligning amino acid sequences, gapping uploaded sequences, and indicating the closest germline V and J genes. When uploading sequences into IMGT/DomainGapAlign, it is recommended to choose 1 as input in the "Displayed alignments" option, because all displayed alignment sequences will be analyzed by Yvis, even if there are multiple alignments of the same sequence. After submitting sequences to IMGT/DomainGapAlign, save the webpage that presents the results in your computer (HTML file: .htm or .html extension). Then submit this file to Yvis.

Yvis will process the submitted file on the user's web browser, extracting the chain identification, chain type, and antibody numbering and germline information. As IMGT/DomainGapAlign ignores the additional information passed on the sequence headers from the FASTA file, some information will be missing in the data table (e.g., engineered, antigen and antibody species, and molecule description).

Vi s	Home	Analyze	Statistics	Tutorial	About				
Filter by	antigen-pr	oducing or	ganism 😧						
Filter by	germline o	classificatio	n 😧						
Filter by	literature I	keywords 🤅	•						
User defi	ned sequer	ces:							
Variable	domain se	equences 🤅	•						
CDR see	quences 🕻								
IMGT/Do	omainGap	Align result	s file 😧						
<u>IMGT/Hi</u>	ghV-QUE	ST results f	ile 🕄						
Upload ar	n IMGT/High	NV-QUEST g	apped AA resu	ilts file:					
Choose	File No file	chosen							
Analyze]	Example file	е						
User def	ined gapp	ed sequend	ces intervals	0					

Fig 12: IMGT/HighV-QUEST results file.

Select this option to insert an IMGT/HighV-QUEST results file. IMGT/HighV-QUEST analyses next-generation sequencing (NGS) data on antigen receptors. Users must submit a FASTA file containing the nucleotide sequences to IMGT/HighV-QUEST. This tool will generate a set of files that can be downloaded as a compressed file. After decompressing the file, submit the gapped amino acid file, identified as "4_IMGT-gapped-AA-sequences.txt" to Yvis. This file has a header row followed by several antibody chain rows. Each row has the following fields, as described in IMGT/V-QUEST Documentation, separated by tabs:

Yvis will present the *Collier de Diamants* visualization of sequences that are marked as productive in "V-DOMAIN Functionality" and do not have ambiguous amino acids.

As the time of execution of this analysis is in function of the number of inputted sequences, users should be patient in the case of large files, even if their browser presents a slow script dialog.

V i s	Home	Analyze	Statistics	Tutorial	About								
Filter by	antigen-pi	oducing or	ganism 😧										
Filter by	germline o	classificatio	n 😧										
Filter by	literature l	keywords 🔇											
User defi	ned sequer	ices:											
Variable	domain se	equences 🤇	>										
CDR sec	luences 🤇												
IMGT/Do	mainGap	Align result	s file 😢										
IMGT/Hi	ghV-QUE	ST results fi	ile 😧										
User def	ined gapp	ed sequend	ces intervals	0									
Define the and last re CDR3 ins First posit Last posit Upload a Choose	e positions of epresented ertions num ion: 1 lon: 128 FASTA file of File No file	of variable do positions (1 ber: 0	main gapped 128): 	sequences nain gapped	ntervals indi sequences:	icating the	e number of	f CDR3 inse	ertions a	nd the first	:		
Analyze	1	Example fil	е										

Fig 13: User defined gapped sequences intervals.

Select this option to upload a FASTA file containing gapped amino acid sequences of variable domains of antibodies chains. As Yvis will not change the sequences, they must be aligned in the submitted file. If the uploaded sequences have CDR3 insertions, the user must indicate the number of insertions in the corresponding field. It is also possible to insert a sequence of only one part of the variable domain. In this case, the first and last positions in the corresponding fields must be changed.

In sequence name and comments line (line starting with ">"), the user can insert the following information, separated by "|": PDB/source identification, chain identification, chain type (H or L, otherwise the information will be ignored), antibody-producing organism, engineered antibody information (engineered or not), antigen-producing organism, antigen molecule description, assigned germline species, V gene, percentage of V gene identity, J gene, and percentage of J gene identity. These are suggested information and could be used in analysis filters. However, only the sequence identification is mandatory (and will be used in the PDB identification field).

REFERENCES:

- 1. Yvis: AntibodY high-density alignment visualization and analysis platform with integrated database. (n.d.). <u>http://bioinfo.icb.ufmg.br/yvis/</u>
- Carvalho, M., Molina, F., & Felicori, L. L. (2019). Yvis: antibody high-density alignment visualization and analysis platform with an integrated database. Nucleic Acids Research. <u>https://doi.org/10.1093/nar/gkz387</u>
- 3. YVIS Database Commons. (n.d.). https://ngdc.cncb.ac.cn/databasecommons/database/id/6818

DATE: 25/09/2024

WEBLEM: 6(A)

<u>Yvis: AntibodY high-density alignment visualization and analysis platform</u> <u>with integrated database</u>

(URL: http://bioinfo.icb.ufmg.br/yvis/)

AIM:

To study the variable and constant domain along with the Topology Diagram using Yvis Platform.

INTRODUCTION:

Yvis: AntibodY high-density alignment visualization and analysis platform with integrated database. Yvis is a web-based platform designed for the analysis of antibody sequences through a novel visualization method called Collier des Diamants, an adaptation of the IMGT/Collier de Perles representation. This platform enables users to examine amino acids in the variable domains of antibody chains, aligned with their structural positions in conserved beta-strands and loops. Yvis facilitates the analysis of multiple antibody chain sequences using this graphical representation, offering insights into their composition and structural arrangement. Users can upload sequences or use pre-processed data from the Yvis database, and the platform supports exportable visual and textual data for further analysis.

The users can perform the analysis in the "Analyze" tab.

The "Statistics" tab shows data from the database of pre-processed PDB structures.

The "Tutorial" tab presents a tutorial explaining how to use this tool and interpret the Collier de Diamants visualization.

The "About" tab shows information on the Yvis authors and interface versions.

Zika virus (ZIVKV):

Several emerging and re-emerging infections have taken a heavy toll on the public health around the globe. ZIKV was first identified, almost 70 years ago, in rhesus monkeys during a yellow fever surveillance in the Zika Forest in Uganda and was initially reported in humans in 1952. ZIKV is one of the re-emerging arboviruses (arthropod borne) which is transmitted by Aedes mosquito. It is a single-stranded RNA virus belonging to the genus *Flavivirus* of the *Flaviviridae* family and has been related to the other Flaviviruses including yellow fever virus, dengue virus (DENV), chikungunya virus, and West Nile virus. ZIKV virus belongs to two phylogenetic types: Asian and African. ZIKV in Africa is maintained in a life cycle (sylvatic transmission) that mainly includes monkeys and apes with humans as occasional hosts, but on the other hand, the Asian lineage of ZIKV includes humans as the main host. In most people, infection by the Zika virus is mild and self-limiting. Diseases caused by Zika virus are predominately arboviral and transmitted by the bite of female *Aedes aegypti* and *Aedes albopictus* mosquitoes. Besides a mosquito bite, the virus can also be transmitted sexually.

METHODOLOGY:

- 1. Open a web browser and navigate to the homepage of the YVis Database.
- 2. Select 'Analyze' Option from the available menu on the Homepage.
- 3. Select Input Options -Select User-defined sequences, followed by choosing the 'CDR sequences' option.
- 4. (To proceed with the analysis, download a sample FASTA file containing complementaritydetermining region (CDR) sequences.)
- 5. Click on 'Example file' and download the file containing 68 CDR3 sequences of anti-Zika virus antibody heavy chains isolated from four infected donors.
- 6. Click on the 'Choose File' button and select the downloaded FASTA file containing the CDR sequences.
- 7. Choose the 'CDR3' option to analyze the complementarity-determining region 3 (CDR3).
- 8. Click on the 'Analyze' button to initiate the analysis of the antibody variable domain sequences.

OBSERVATIONS:

Fig 1: Homepage Yvis: AntibodY high-density alignment visualization and analysis platform with integrated Databases

Vi s	Home /	Analyze	Statistics	Tutorial	About		
Choose ar	option to e	xhibit the	antibody va	riable doma	in analysis:		
Structures	from Protein	Data Bank	(PDB) that c	ontain antib	odies:		
Show all s	tored antib	ody PDB	sequences	0			
Filter by P	DB IDs 🕄						
Filter by a	ntibody-pro	ducing or	ganism 😧				
Filter by a	ntigen-prod	ucing org	anism 😧				
Filter by g	ermline clas	ssification	0				
Filter by lit	erature key	words 😯					
User define	ed sequences	S:					
Variable d	omain sequ	iences 😧					
CDR sequ	ences 🕄						
IMGT/Don	nainGapAli	gn results	file 😧				
IMGT/High	N-QUEST	results file	e 😧				
User defin	ed gapped	sequence	es intervals	0			

Fig 2: Selecting the 'Analyze' option in the YVis portal and selecting the 'CDR sequences' option

V i s	Home	Analyze	Statistics	Tutorial	About				
User defi	User defined sequences:								
Variable	Variable domain sequences 😧								
CDR sec	luences 🕃								
Choose a Upload a	CDR: ○ Cl fasta file co	DR1 (Max 12 ntaining the C	aa) ◯ CDR2 CDR sequenc	(Max 10 aa) æs:) CDR3 (unlimited)				
Choose	Choose File No file chosen Analyze Example file								
IMGT/Do	IMGT/DomainGapAlign results file 😧								
IMGT/Hi	IMGT/HighV-QUEST results file								
User def	User defined gapped sequences intervals 3								

Fig 3: Selecting the Example file

Fig 4: Click on Download Example File Option

V i s	Home	Analyze	Statistics	Tutorial	About			
User de	User defined sequences:							
Variable	Variable domain sequences 😧							
CDR se	equences 🤅)						
Choose Upload : Choose Analyz	Choose a CDR: O CDR1 (Max 12 aa) O CDR2 (Max 10 aa) O CDR3 (unlimited) Upload a fasta file containing the CDR sequences: Choose File No file chosen Analyze Example file							
IMGT/E	IMGT/DomainGapAlign results file 🕄							
IMGT/H	IMGT/HighV-QUEST results file							
User de	User defined gapped sequences intervals 😧							

Fig 5: Click on Choose File Option

🧿 Open			🗙 🕖 high-density alig 🗙 🧔 New Tab
← → ~ ↑ ↓ > Th	nis PC > Downloads V ひ		٩
Organize 👻 New fold	er		
This PC	Name	Date modified	Ту; ^
 3D Objects Desktop Desuments 	cdr3ExampleFile_Stettler.fa	25-09-2024 18:28	FA
Documents Downloads	WhatsApp Image 2024-09-25 at 13:27. Back Modern Project Proposal Cover A	.41 25-09-2024 18:18 A4 25-09-2024 02:45	JPE
Music Pictures Videos	REPORT FC	25-09-2024 02:00 25-09-2024 02:00	Mi Mi
😓 Local Disk (C:) 🥌 Local Disk (D:)	REPORT FC REPORT FC Yesterday (16)	25-09-2024 01:58 25-09-2024 01:56	Mi
🐓 Network 🗸 🗸	BasicsFlowCytometry_TCSWorkshop_Kl	hal 24-09-2024 21:47	Mi 🗸
File nar	ne: cdr3ExampleFile_Stettler.fa ~	All Files Open Can	ncel .
IMG I/DomainGap	oAlign results file 😯		
IMGT/HighV-QUE	ST results file 🕄		
User defined gapp	ped sequences intervals 🕄		

Fig 6: Select the FASTA File Downloaded and Click on Open

V i s	Home	Analyze	Statistics	Tutorial	About			
User defined sequences:								
Variable domain sequences 😧								
CDR sec	luences 🤅							
Choose a CDR: O CDR1 (Max 12 aa) O CDR2 (Max 10 aa) CDR3 (unlimited) Upload a fasta file containing the CDR sequences:								
Analyze Example file								
IMGT/DomainGapAlign results file 🕄								
IMGT/HighV-QUEST results file CDR3 - FASTA								
User defined gapped sequences intervals 🕄								

Fig 7: Choose the option 'CDR3(Unlimited)'

Fig 8: Result page Showing user-defined antibody sequences obtained from cdr3ExampleFile_Stettler (1). fa file

a. IMGT/Collier de Perles (Pearl Necklace) visualization in one layer

Squares indicate the CDR anchors, one position before the CDR start regions and one after the CDR end regions (i.e., green for CDR1, orange for CDR2, and blue for CDR3)

Fig 8(a): b. IMGT/Collier de Perles visualization in two layers

The "pie slice" (sector) represents the number of sequences with an amino acid of a specific class (defined by a color) in that position. Green represents polar amino acids (G, S, T, Y, C, Q, N), blue represents basic (K, R, H), red represents acidic (D, E), and black represents hydrophobic amino acids (A, V, L, I, P, W, F, M). In Yvis, gaps are in grey.

The strands of the variable domain are identified by letters (A-G) and arrows at the bottom of *Collier de perles* visualization. Filter option, is to analyze a subset of the initial dataset.

Copy	S Home	Analyze	Statistics	Tutorial About			Search:
PDB 🔒	Chain Id	Antibody Chain ∲ Type	Antibody Species	Engineered Antibody	Antigen Organism [∲]	Antigen Molecule 🍦 Description	Gapped Sequence CDR highlights: CDR1 CDR2 CDR3 Putative contact highlights:
ZKA10	KX496835	Heavy	Blue	No	Zika virus	NS1	
ZKA117	KX496861	Heavy	Blue	No	Zika virus	EDI/II	
ZKA134	KX496852	Heavy	Blue	No	Zika virus	EDIII	·····
ZKA160	KX496843	Heavy	Blue	No	Zika virus	NNB	·····
ZKA172	KX496833	Heavy	Blue	No	Zika virus	NNB	·····
ZKA174	KX496850	Heavy	Blue	No	Zika virus	NNB	
ZKA18	KX496830	Heavy	Blue	No	Zika virus	NS1	·····
ZKA185	KX496858	Heavy	Blue	No	Zika virus	NNB	·····
ZKA189	KX496825	Heavy	Blue	No	Zika virus	NNB	·····
ZKA190	KX496868	Heavy	Blue	No	Zika virus	EDIII	·····
Showing 1 t	o 10 of 68 entri	ÐS					Previous 1 2 3 4 5 6 7 Next

Click the PDB Id to compare with the multiple sequence alignment presented in the *Collier de perles*

A table containing the information available for all chains presented in the multiple sequence alignment. Information table contains the following fields: PDB/source identification, chain identification, chain type (heavy or light), antibody-producing organism, engineered antibody information (if the chain was marked as engineered), antigen-producing organism, antigen molecule description, gapped and ungapped chain sequences, assigned germline species, V gene, percentage of V gene identity, J gene, and percentage of J gene identity. At the gapped sequence column, the CDR positions are highlighted (green for CDR1, orange for CDR2, and blue for CDR3) as well as the putative contacts (salmon).

Fig 10: Result page for comparison the selected sequence with the multiple sequence alignment

Centre of each pie chart that represents a position, a small circle with the inputted sequence amino acid corresponding to that position.

RESULTS:

Yvis platform were explored and the *Collier de perles* visualization presents multiple sequence alignments using pie charts, where each sector represents amino acid classes by color. Conserved positions show dominant sectors, while variable ones display multiple sectors. It

highlights key structural regions like CDRs: CDR1 corresponds to positions 26-39, CDR2 corresponds to positions 55-66, and CDR3 corresponds to position 104-118, allowing visualization of residues involved in antigen binding.

The IMGT/*Collier de Perles*, presented in one or two layers were observed. The two-layers version presents the variable domain strands in a position closer to the 3D structure, while the one-layer version has a representation closer to the variable domain sequence.

The result for the comparing the multiple sequence alignment with using the sequence as it is by selecting PDB Id from the data table containing the information available for all chains presented in the multiple sequence alignment, were observed.

CONCLUSIONS:

The Yvis platform was explored and a detailed study of both the variable and constant regions, along with the topology diagram, offering a comprehensive analysis of the antibody's structure and function were studied. The Yvis platform, used for high-density antibody alignment and analysis, effectively assessed the similarity between the query and amino acid sequences, aiding in determining the relevance of associated antigens. By applying relevant filters, the platform enabled an in-depth investigation into sequence alignments.

REFERENCES:

- Wolford RW, Schaefer TJ. Zika Virus. [Updated 2023 Aug 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK430981/</u>
- 2. Rawal, G., Yadav, S., & Kumar, R. (2016). Zika virus: An overview. *Journal of family medicine and primary care*, 5(3), 523–527. <u>https://doi.org/10.4103/2249-4863.197256</u>
- Masmejan, S., Musso, D., Vouga, M., Pomar, L., Dashraath, P., Stojanov, M., Panchaud, A., & Baud, D. (2020). Zika Virus. *Pathogens (Basel, Switzerland)*, 9(11), 898. <u>https://doi.org/10.3390/pathogens9110898</u>

Date: 4/10/2024

<u>WEBLEM: 7</u> AgAbDb DATABASE

AIM:

Introduction to Ag-Ab Interaction Database (AgAbDb)

INTRODUCTION:

The function of antibodies (Abs) involves specific binding to antigens (Ags) and activation of other components of the immune system to fight pathogens. The six hypervariable loops within the variable domains of Abs, commonly termed complementarity determining regions (CDRs), are widely assumed to be responsible for Ag recognition, while the constant domains are believed to mediate effector activation. Recent studies and analyses of the growing number of available Ab structures, indicate that this clear functional separation between the two regions may be an oversimplification. Some positions within the CDRs have been shown to never participate in Ag binding and some off CDRs residues often contribute critically to the interaction with the Ag. Moreover, there is now growing evidence for non-local and even allosteric effects in Ab-Ag interaction in which Ag binding affects the constant region and vice versa. The CDRs have different approaches for their identification and their relationship to the Ag interface. We also review what is currently known about the contribution of non- CDRs regions to Ag recognition, namely the framework regions (FRs) and the constant domains. The suggested mechanisms by which these regions contribute to Ag binding are discussed. Beyond improving the understanding of immunity, characterization of the functional role of different parts of the Ab molecule may help in Ab engineering, design of CDR-derived peptides, and epitope prediction.

Antibodies are produced by vertebrates in response to antigens. Antigens are usually foreign molecules of invading pathogens. Antibodies are produced in billions of forms by B cells and are collectively referred to as immunoglobulins (abbreviated as Ig). The clonal selection theory states that all the antibodies produced by an individual B cell have the same antigen-binding site. Furthermore, every B cell produces a single species of antibody having a unique antigen-binding site.

Antigen–Antibody Interaction Database (AgAbDb) is an immunoinformatics resource developed at the Bioinformatics Centre, University of Pune, and is available online at http://bioinfo.net.in/AgAbDb.htm. Antigen–antibody interactions are a special class of protein– protein interactions that are characterized by high affinity and strict specificity of antibodies towards their antigens. Several co-crystal structures of antigen–antibody complexes have been solved and are available in the Protein Data Bank (PDB). AgAbDb is a derived knowledge base developed with an objective to compile, curate, and analyze determinants of interactions between the respective antigen– antibody molecules. AgAbDb lists not only the residues of binding sites of antigens and antibodies, but also interacting residue pairs. It also helps in the identification of interacting residues and buried residues that constitute antibody-binding sites of protein and peptide antigens. The Antigen–Antibody Interaction Finder (AAIF), a program developed in-house, is used to compile the molecular interactions, viz. van der Waals interactions, salt bridges, and hydrogen bonds.

A module for curating water- mediated interactions has also been developed. In addition, various residue level features, viz. accessible surface area, data on epitope segment, and secondary structural state of binding site residues, are also compiled. Apart from the PDB numbering, Wu–Kabat numbering and explicit definitions of complementarity- determining regions are provided for residues of antibodies. The molecular interactions can be visualized using the program Jmol. AgAbDb can be used as a benchmark dataset to validate algorithms for prediction of B-cell epitopes. It can as well be used to improve accuracy of existing algorithms and to design new algorithms. AgAbDb can also be used to design mimotopes representing antigens as well as aid in designing processes leading to humanization of antibodies.

REFERENCES:

- 1. Merck. "Blue-White Screening & Protocols for Colony Selection." Sigmaaldrich.com, 2021, <u>www.sigmaaldrich.com/MX/en/technical-documents/technical-article/genomics/cloning-and-expression/blue-white-screening</u>
- Qiu, Tianyi, et al. "Proteochemometric Modeling of the Antigen-Antibody Interaction: New Fingerprints for Antigen, Antibody and Epitope-Paratope Interaction." PLOS ONE, vol. 10, no. 4, 22 Apr. 2015, p. e0122416, <u>https://doi.org/10.1371/journal.pone.0122416</u>

NOTE: The portal is not working for AgAbDb database

DATE: 25/09/2024

<u>WEBLEM: 8</u> Immune Epitope Database (IEDB)

(URL: https://www.iedb.org/homev3.php)

AIM:

Introduction to IEDB Database for the prediction of the Cytotoxic and Helper T cell epitopes (MHC Class 1 epitopes and MHC Class 2 epitopes)

INTRODUCTION:

The Immune Epitope Database (IEDB) is a comprehensive and freely accessible resource that provides detailed information on immune epitopes, which are crucial for understanding adaptive immune responses. Established in 2003 and continually updated, the IEDB serves as a vital tool for researchers studying various aspects of immunology, including vaccine development, allergy research, and autoimmune diseases.

Key Features of IEDB

1. Extensive Data Repository:

- a. The IEDB contains information on over 2.2 million epitopes related to infectious diseases, allergies, autoimmunity, and transplantation.
- b. It includes curated data from more than 20,000 published manuscripts and covers both T cell and B cell epitopes across multiple species, including humans and non-human primates.

2. User-Friendly Interface:

- a. The database features a web portal (www.iedb.org) that allows users to easily search and access epitope data. This includes tools for predicting and analysing B cell and T cell epitopes.
- b. Users can download data in various formats, including Microsoft Excel, XML, or MySQL.

3. Curation Process:

a. Data is meticulously curated from scientific literature and submissions by researchers. The IEDB employs rigorous automated validation processes to ensure data accuracy and relevance. The curation process has evolved to reflect the increasing complexity of immune epitope data, accommodating advancements in scientific techniques and standards.

4. Analysis Resources:

a. The IEDB Analysis Resource (IEDB-AR) is a companion site offering computational tools for epitope prediction and analysis. These tools include epitope clustering, sequence conservancy analysis, and predictions of T cell receptor (TCR) and B cell receptor (BCR) structures. New tools are regularly added to enhance functionality, such as those for predicting naturally processed ligands for MHC class I and II.

Accessibility

The IEDB is funded by the National Institute of Allergy and Infectious Diseases (NIAID) and is available to the public without any cost. Its continuous updates ensure that it remains a relevant resource for ongoing research in immunology.

<u>T Cell Epitopes</u>

T cell epitopes are specific peptide fragments derived from proteins (antigens) that are recognized by T cells, a crucial component of the adaptive immune system. These epitopes are presented on the surface of antigen-presenting cells (APCs) bound to major histocompatibility complex (MHC) molecules, allowing T cells to initiate an immune response.

Types of T Cell Epitopes

1. CD8 T Cell Epitopes:

- a. Recognized by CD8+ T cells and presented by MHC class I molecules.
- b. These epitopes typically originate from intracellular proteins, including viral or mutated proteins, allowing CD8+ T cells to identify and destroy infected or cancerous cells.

2. CD4 T Cell Epitopes:

- a. Recognized by CD4+ T cells and presented by MHC class II molecules.
- b. These epitopes are usually derived from extracellular proteins and play a vital role in orchestrating the immune response by helping other immune cells.

Mechanism of Recognition

The recognition of T cell epitopes involves several key steps:

- 1. Antigen Processing: Proteins are broken down into smaller peptides within the APC.
- **2. Peptide-MHC Binding:** The processed peptides bind to MHC molecules, which then transport these complexes to the cell surface.
- **3. T** Cell Activation: The T cell receptor (TCR) on T cells recognizes the peptide-MHC complex, leading to T cell activation and proliferation.

Importance of T Cell Epitope Prediction

Identifying T cell epitopes is essential for various applications, including:

- **1. Vaccine Development:** Understanding which epitopes can elicit a strong immune response aid in designing effective vaccines.
- **2. Immunotherapy:** Predicting neoepitopes (cancer-specific peptides) can enhance personalized cancer treatment strategies.
- **3. Disease Understanding:** Epitope mapping helps in elucidating mechanisms of autoimmune diseases and allergies, where inappropriate immune responses occur.

T Cell prediction

<u>**T Cell Epitopes - MHC Binding Prediction</u>**</u>

1. Peptide binding to MHC class I molecules

This tool will take in an amino acid sequence, or set of sequences and determine each subsequence's ability to bind to a specific MHC class I molecule.

2. Peptide binding to MHC class II molecules

This tool employs different methods to predict MHC Class II epitopes, including a consensus approach which combines NN-align, SMM-align and Combinatorial library methods.

3. TepiTool

The Tepitool provides prediction of peptides binding to MHC class I and class II molecules. Tool is designed as a wizard with 6 steps.

<u>**T Cell Epitopes - Processing Prediction:**</u>

These tools predict epitope candidates based upon the processing of peptides in the cell.

1. Proteasomal cleavage/TAP transport/MHC class I combined predictor

This tool combines predictors of proteasomal processing, TAP transport, and MHC binding to produce an overall score for each peptide's intrinsic potential of being a T cell epitope.

2. Neural network-based prediction of proteasomal cleavage sites (NetChop) and T cell epitopes (NetCTL and NetCTLpan)

NetChop is a predictor of proteasomal processing based upon a neural network. NetCTL and NetCTLpan are predictors of T cell epitopes along a protein sequence. It also employs a neural network architecture.

3. MHC-NP

Prediction of peptides naturally processed by the MHC.

MHC-NP employs data obtained from MHC elution experiments to assess the probability that a given peptide is naturally processed and binds to a given MHC molecule.

4. MHCII-NP

This tool utilizes MHC II ligand elution data to predict naturally processed MHC II ligands by scanning the given peptide sequences.

<u>T Cell Epitopes - Immunogenicity Prediction</u>

These tools make predictions about the relative ability of a peptide/MHC complex to elicit an immune response.

1. T cell class I pMHC immunogenicity predictor

This tool uses amino acid properties as well as their position within the peptide to predict the immunogenicity of a class I peptide MHC (pMHC) complex.

2. Deimmunization

The deimmunization tool is attempt to identify immunodominant regions in each therapeutically important protein, and suggest amino-acid substitutions that create non-immunogenic versions of the proteins.

3. CD4 T cell immunogenicity prediction

The server is developed to predict the allele independent CD4 T cell immunogenicity at population level. User can predict the T cell immunogenicity using 7-allele method, immunogenicity method and combined method (IEDB recommended). The combined method predicts the final score that combines the predictions from 7-allele method and immunogenicity method.

4. AXEL-F (Antigen Expression based Epitope Likelihood-Function)

AXEL-F incorporates antigen abundance estimates with MHC binding predictions to enhance epitope predictions.

TCR Analysis

1. TCRMatch

TCRMatch compares input CDR3b sequences against curated CDR3b sequences in the IEDB to find matches that are predicted to share epitope specificity. Matches are determined by sequence similarity, which is scored using a comprehensive k-mer comparison.

Structure Tools

1. LYRA (Lymphocyte Receptor Automated Modelling):

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling. Framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

2. SCEptRe: Structural Complexes of Epitope Receptor

SCEptRe provides weekly updated, non-redundant, user customized benchmark datasets with information on the immune receptor features for receptor-specific epitope predictions.

3. Docktope

DockTope is a web-based tool, based on D1-EM-D2 approach, intended to allow the pMHC-I modelling. This tool has been developed by Gustavo Fioravanti Vieira's group and has been deployed to the IEDB-AR servers with minimal modification by the IEDB team.

B Cell Epitopes

B cell epitopes are the specific regions of an antigen that are recognized by B cell receptors or secreted antibodies. These epitopes can be classified into two main categories based on their structure:

1. Linear (Continuous) Epitopes

Consist of contiguous amino acid residues in the primary sequence of the antigen.

Represent about 10% of all identified epitopes.

Can be recognized by antibodies out of the remaining protein context and can replace the whole protein for antibody production.

2. Conformational (Discontinuous) Epitopes

Include amino acid residues that are not sequential in the primary structure but are close in space due to the three-dimensional folding of the antigen.

Make up the majority (about 90%) of B cell epitopes.

The minimal amino acid sequence required for proper folding may range from 20 to 400 residues.

Importance of B Cell Epitope Mapping

Identifying B cell epitopes is crucial for various applications:

- **1. Development of epitope-based vaccines:** Epitopes can be used to replace the entire antigen for antibody production.
- **2. Design of therapeutic antibodies:** Knowledge of epitopes aids in developing antibody-based therapeutics.
- **3. Improvement of immunodiagnostic tools:** Epitopes can be used in serodiagnostic assays for disease detection.

<u>B Cell Epitope Prediction</u>

1. Prediction of linear epitopes from protein sequence

A collection of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs.

2. Discotope - Prediction of epitopes from protein structure

This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope potential along the length of a protein sequence.

3. ElliPro - Epitope prediction based upon structural protrusion

This method predicts epitopes based upon solvent-accessibility and flexibility. Methods for modelling and docking of antibody and protein 3D structures

This page provides information on available methods for modelling and docking of antibody and protein 3D structures.

Structure Tools

1. LYRA (Lymphocyte Receptor Automated Modelling)

The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling.

2. SCEptRe: Structural Complexes of Epitope Receptor

SCEptRe provides weekly updated, non-redundant, user customized benchmark datasets with information on the immune receptor features for receptor-specific epitope predictions. This tool extracts weekly updated 3D complexes of antibody-antigen, TCR-pMHC and MHC-ligand from the Immune Epitope Database (IEDB) and clusters them based on antigens, receptors, and epitopes to generate benchmark datasets.

Discotope in IEDB

DiscoTope is a specialized tool within the Immune Epitope Database (IEDB) designed for the prediction of B cell epitopes based on the three-dimensional (3D) structures of proteins. This tool is crucial for researchers aiming to identify potential epitopes that can elicit an immune response, particularly in the context of vaccine development and therapeutic antibody design.

Key Features of DiscoTope

1. Structure-Based Prediction

DiscoTope employs a structure-based approach to predict discontinuous (conformational) B cell epitopes. It utilizes 3D structural data to assess surface accessibility and calculate contact numbers, which are essential for determining how well an epitope can be recognized by antibodies.

2. Improved Prediction Algorithms

The latest version, DiscoTope-3.0, features significant advancements over previous iterations. It incorporates inverse folding structure representations and utilizes a positive-unlabelled learning strategy, enabling it to predict epitopes from both solved and predicted protein structures. This enhances its applicability across various datasets and reduces dependency on experimentally solved structures.

3. High Performance

DiscoTope-3.0 has demonstrated improved predictive performance compared to earlier methods, achieving high accuracy in identifying both linear and conformational epitopes across multiple independent datasets. This is particularly beneficial for large-scale predictions involving numerous proteins.

4. Accessibility

The tool is accessible through the IEDB Analysis Resource, allowing users to input PDB (Protein Data Bank) IDs or upload their own PDB files for analysis. Users can select different versions of DiscoTope for their predictions, ensuring flexibility based on their specific research needs.

5. Integration with Other Databases

DiscoTope interfaces with databases such as RCSB PDB and AlphaFold DB, facilitating large-scale predictions across a vast catalog of proteins. This integration allows researchers to leverage structural data from multiple sources for more comprehensive epitope mapping. DiscoTope is a tool used for predicting discontinuous epitopes from protein 3D structures. The transition from version 1.1 to version 2.0 introduced several significant changes in methodology and performance.

Algorithm Enhancements

1. Proximity Scoring Function

Version 1.1 utilizes a non-weighted proximity scoring function that evaluates the fullsphere neighbour count to determine the likelihood of nearby epitopes.

Version 2.0 introduces a modified, weighted proximity scoring function that focuses on an upper half-sphere neighbour count. This adjustment improves prediction accuracy by concentrating on residues that are more likely to be exposed on the protein surface.

2. Surface Exposure Measurement

Version 1.1 measures surface exposure based on a neighbour count within a 10 Å radius. **Version 2.0** expands this radius to 14 Å and limits the measurement to the upper half-sphere, providing a more precise evaluation of residues that are accessible for antibody binding.

	DB	Home Specialized Se	earches Analysis Resource	Help More IEDB
Check out our new IEDB up	odates! (1) Learn	how to customize your database exports of START YOUR SEARCH HERE	and (2) test out the new <u>Next-generation To</u>	ols site for all your analysis and prediction needs Epitope Analysis Resource
The Immune Epitope Databas freely available resource fund It catalogs experimental data and T cell epitopes studied in other animal species in the cc infectious disease, allergy, au and transplantation. The IEDE epitope prediction and analys has a companion site, CEDA NCI), which houses cancer ef Upcoming Events & NU Virtual User Workshop * register here Festival of Biologics Ap Immunology 2025 Ma	e (IEDB) is a ed by NIAID. on antibody humans and intext of toimmunity a also hosts is tools, and R (funded by bitopes. Learn More ews w 5-7, 2024 or 23-25, 2025 or 25-30, 2025 ay 3-7, 2025	Epitope ? Any Linear peptide Exact M V EX SIINFEKL Discontinuous Non-peptidic Epitope Source ? Organism Ex: influenza, peanut E Find Antigen Ex: core, capsid, myos E Find	Assay (?) T Cell Cell HC Ligand Ex: neutralization Cutcome: Positive Negative MHC Restriction (?) Any Class I Class I Class I Non-classical Ex: HLA-A*02:01 Find Find	T Cell Epitope Prediction (*) Scan an antigen sequence for amino acid patterns indicative of: MHC I Binding MHC I Binding MHC I Processing (Proteasome,TAP) MHC I Immunogenicity B Cell Epitope Prediction (*) Predict linear B cell epitopes using: Antigen Sequence Properties Predict discontinuous B cell epitopes using antigen structure via: Discotope ElliPro
Summary Metrics Peptidic Epitopes Non-Peptidic Epitopes T Cell Assays B Cell Assays MHC Ligand Assays Epitope Source Organisms Restricting MHC Alleles References	1,620,158 3,188 539,898 1,409,409 4,881,364 4,540 1,011 25,157	Host (a)	Disease () Any Infectious Allergic Autoimmune Ex: asthma E Find Reset Search	Epitope Analysis Tools (2) Analyze epitope sets of: Population Coverage Conservation Across Antigens Clusters with Similar Sequences

Fig 1: Homepage of the IEDB database

Fig 2: Overview of the IEDB database

							Help	More IEDB
	ЭВ	Home	Specialized Se	arches	Analysis Resource			
Immune Epitope Da	atabase & Tools				Analysis Resource Overview	/		
Check out our new IEDB up	odates! (1) Learr	how to customize your o	latabase exports ar	nd (2) te	T Cell Epitope Prediction	pols :	site for all your analy	vsis and prediction needs
Welcome		START YOUR SE	ARCH HERE		B Cell Epitope Prediction Epitope Analysis Tools		Epitope Analys	is Resource
The Immune Epitope Databas freely available resource fund it catalogs experimental data and T cell epitopes studied in other animal species in the co infectious disease, allergy, au and transplantation. The IEDE epitope prediction and analysi has a companion site, CEDAI NCI), which houses cancer ep	se (IEDB) is a led by NIAID. on antibody humans and ontext of toimmunity 3 also hosts is tools, and R (funded by pitopes. Learn More	Epitope () Any Linear peptide Exact M ~ Ex: SIII Discontinuous Non-peptidic	WFEKL	Assi T B M Ex: Outc	Tool Licensing Information Cell HC Ligand neutralization Find ome: Positive Negative		T Cell Epitope F Scan an antigen s patterns indicative MHC I Binding MHC II Bindin MHC I Proces MHC I Immun	rediction (2) equence for amino acid of: g sing (Proteasome,TAP) ogenicity
Upcoming Events & N	ews	Epitope Source (? Organism		MHC	Restriction (?		B Cell Epitope F Predict linear B ce	Prediction ③
Virtual User Workshop No * register here Festival of Biologics Ap AACR 2025 Ap Immunology 2025 Ma	Intual User Workshop Nov 5-7, 2024 register here setival of Biologics Apr 23-25, 2025 ACR 2025 Apr 25-30, 2025 apr 25-30, 2025 nmunology 2025 May 3-7, 2025 apr 3-7, 2025		Ex: influenza, peanut Find O Antigen O Ex: core, capsid, myos Find O		Class I Class II Non-classical Ex: HLA-A*02:01		Antigen Seque Predict discontinu antigen structure Discotope	ence Properties ous B cell epitopes using /ia:
Summary Metrics		Host (2)		Dise			ElliPro	
Peptidic Epitopes Non-Peptidic Epitopes T Cell Assays B Cell Assays MHC Ligand Assays	1,620,158 3,188 539,898 1,409,409 4,881,364	Any Human Mouse Non-human pri	mate		ny Ifectious Ilergic utoimmune		Epitope Analysi Analyze epitope s Population Co Conservation	s Tools (?) ets of: verage Across Antigens Similar Sequences
Epitope Source Organisms Restricting MHC Alleles References	4,540 1,011 25,157	Ex: dog, cam	H Find		Ex: asthma			

Fig 3: Different resources in the IEDB Database

IEDB Analysis Resource Overview T Cell Tools B Cell Tools Analysis Tools Tools-API Usage Dewnload Datasets Contribute Tools References B Cell Epitope Prediction Tools B Cell Topice Prediction Tools References References B Cell Epitope Prediction of methods to predict linear B cell epitopes based on sequence characteristics of the antigen using amino acid scales and HMMs. Discotope. Prediction of epitopes from protein structure This method incorporates solvent-accessible surface area calculations, as well as contact distances into its prediction of B cell epitope prediction based upon structural protrusion This method predicts epitopes based upon solvent-accessibility and flexibility. Methods for modeling and docking of antibody and protein 3D structures This page provides information on available methods for modeling and docking of antibody and protein 3D structures. Structure Tools LVRA (Lymphocyte Receptor Automated Modelling): The LYRA server predicts structures for either T-Cell Receptors (TCR) or B-Cell Receptors (BCR) using homology modelling, freeded based on a canonical structure model and grafted onto the framework templates are selected based on BLOSUM score, and complementary determining regions (CDR) are then selected if needed based on a canonical structure model and grafted onto the framework templates.

Fig 5: B cell prediction tool

IEDB Analysis Resource								
Overview T Cell Tools B Cell Tools	Analysis Tools Tools-API	Usage Download	Datasets	Contribute Tools	References			
Analysis Tools								
Analysis Tools The tools below are intended for the <u>Population Coverage</u> This tool calculates the fractic calculation is made on the ba	Analysis Tools The tools below are intended for the detailed analysis of a known epitope sequence or group of sequences. Population Coverage This tool calculates the fraction of individuals predicted to respond to a given set of epitopes with known MHC restrictions. This calculates the fraction of individuals predicted to respond to a given set of epitopes with known MHC restrictions. This calculates the fraction of individuals predicted to respond to a given set of epitopes with known MHC restrictions. This							
Epitope Conservancy Analysis This tool calculates the degreidentity. The degree of conservations of the degree of conservation of the degree	ee of conservancy of an epito ervation is defined as the frac	pe within a given tion of protein se	protein se quences co	equence set at di ontaining the epi	ifferent degr itope at a giv	ees of sequence ven identity level.		
Epitope Cluster Analysis This tool groups epitopes into sequence similarity greater th	Epitope Cluster Analysis This tool groups epitopes into clusters based on sequence identity. A cluster is defined as a group of sequences which have a sequence similarity greater than the minimum sequence identity threshold specified.							
Computational Methods for Mapping Mimotopes to Protein Antigens This page provides information on available methods for mimotope mapping, how to search the IEDB for mimotopes, and an example of a mimotope dataset and the results of its mapping, using the available web servers hosted outside the IEDB.								
<u>RATE (Restrictor Analysis Tool</u> The RATE is an automated me in HLA typed subjects. The to the response of the peptides test. It also calculates a parair alleles but can also be applied	RATE (Restrictor Analysis Tool for Epitopes) The RATE is an automated method that can infer HLA restriction for a set of given epitopes from large datasets of T cell responses in HLA typed subjects. The tool takes two data files, one containing the alleles expressed by the subjects and the other containing the response of the peptides in the subjects. The tool calculates the odds ratio and estimates its significance using Fisher's exact test. It also calculates a parameter called relative frequency similar to odds ratio. The tool was developed with a focus on class II							

Fig 6: Analysis tools

IEDB Analysis Resource								
Home Heip Example Reference Download Contact								
DiscoTope: Structur	e-based Antibody Pred	iction						
Step 1: Please enter the 4-letter PDB ID Or upload a PDB file	(example: 1z40) Choose File No file chosen							
Step 2: Please enter PDB Chain ID								
Step 3: Select version	1.1 ¥							
	Submit Reset							
© 2005-2024 <u>IEDB Home</u> Help <u>Contac</u> Supported by a contract from the <u>National</u>	t Institute of Allergy and Infectious Diseases, a con	sponent of the National Institutes of Health in the Department of Health and Human Services						

Fig 7: Homepage of DiscoTope program

REFERENCES:

- Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. *Journal of immunology research*, 2017, 2680160. <u>https://doi.org/10.1155/2017/2680160</u>
- **2.** Konstantinou G. N. (2017). T-Cell Epitope Prediction. *Methods in molecular biology* (*Clifton, N.J.*), *1592*, 211–222. <u>https://doi.org/10.1007/978-1-4939-6925-8_17</u>
- Kohlgruber, A. C., Dezfulian, M. H., Sie, B. M., Wang, C. I., Kula, T., Laserson, U., Larman, H. B., & Elledge, S. J. (2024). High-throughput discovery of MHC class I- and IIrestricted T cell epitopes using synthetic cellular circuits. *Nature Biotechnology*. <u>https://doi.org/10.1038/s41587-024-02248-6</u>
- 4. *T cell tools*. (n.d.). <u>http://tools.iedb.org/main/tcell/</u>
- Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. *Journal of immunology research*, 2017, 2680160. <u>https://doi.org/10.1155/2017/2680160</u>
- 6. Høie, M. H., Gade, F. S., Johansen, J. M., Würtzen, C., Winther, O., Nielsen, M., & Marcatili, P. (2024). DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent representations. *Frontiers in immunology*, 15, 1322712. <u>https://doi.org/10.3389/fimmu.2024.1322712</u>
- Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. *Journal of immunology research*, 2017, 2680160. <u>https://doi.org/10.1155/2017/2680160</u>
- Martini, S., Nielsen, M., Peters, B., & Sette, A. (2020). The Immune Epitope Database and Analysis Resource Program 2003-2018: reflections and outlook. *Immunogenetics*, 72(1-2), 57–76. <u>https://doi.org/10.1007/s00251-019-01137-6</u>

DATE: 25/09/2024

<u>WEBLEM: 8(A)</u> <u>Immune Epitope Database (IEDB)</u> (URL: https://www.iedb.org/)

AIM:

To predict B-Cell epitope for query AMA1 (PDB ID: 1Z40) using Discotope Server 1.1 from IEDB Database.

INTRODUCTION:

The Immune Epitope Database (IEDB) is a free, publicly accessible resource established in 2004 that catalogs experimental data on antibody and T cell epitopes. It serves as a comprehensive platform for researchers to access curated epitope data from scientific literature, currently housing over 1.6 million experiments related to various fields, including infectious diseases, allergies, autoimmunity, and transplantation. The IEDB allows users to easily search for epitope information and integrates data from multiple external resources, enhancing usability and accessibility. The IEDB also hosts epitope prediction and analysis tools, and has a companion site, CEDAR (funded by NCI), which houses cancer epitopes.

IEDB Analysis Resource (IEDB-AR) and DiscoTope

Accompanying the IEDB is the IEDB Analysis Resource (IEDB-AR), which provides computational tools for predicting and analyzing B and T cell epitopes. Among its various tools is **DiscoTope**, specifically designed to predict B cell epitopes based on structural data. DiscoTope utilizes amino acid statistics, surface accessibility, and spatial information to identify potential epitopes on the surface of antigens. DiscoTope is a method for predicting discontinuous epitopes from 3D structures of proteins in PDB format. This tool has become invaluable in antibody engineering and vaccine design, allowing researchers to pinpoint B cell epitopes that can be targeted by antibodies. The IEDB-AR continues to evolve, offering enhanced features and improved performance for epitope prediction and analysis.

AMA1 (PDB ID: 1Z40)

AMA1 (Apical Membrane Antigen 1) is a critical type I transmembrane protein found on the merozoite stage of the Plasmodium parasite, which causes malaria. Its primary function is facilitating the invasion of red blood cells by interacting with host cells, making it essential for the parasite's life cycle. AMA1 is also known for its role in immune evasion due to antigenic variation. Given its prominence in the invasion process, AMA1 is a key target for malaria vaccine development. Antibodies against AMA1 can inhibit erythrocyte invasion, highlighting its importance in generating protective immunity. Consequently, AMA1 remains a significant focus in malaria research, offering valuable insights into infection dynamics and vaccine design.

METHODOLOGY:

1. Open the Protein Data Bank (PDB) website. (URL: <u>https://www.rcsb.org/</u>) to obtain the PDB ID of the structure (query).

- **2.** Open the Immune Epitope Database and Tools (IEDB) (<u>https://www.iedb.org/</u>) that contains experimental data on antibody and T-cell epitope, also host epitope prediction.
- **3.** Select the 'DiscoTope' option under B Cell Epitope prediction from Epitope Analysis Resource section.
- **4.** Enter the 4-letter PDB ID or upload a PDB file for the query (PDB ID:1BBJ), Chain ID for protein chain of interest and select the DiscoTope version 1.1.
- 5. Click on Submit.
- 6. Analyse the results in Chart view, Table view and 3D View.
- 7. The prediction can be saved in .csv extension.

OBSERVATIONS:

Fig 1: Homepage of the Protein Data Bank (PDB) database

RCSB PDB Deposit - Search - Visualize - An	alyze - Download - Learn - About -	Documentation - Careers COVID-	-19 MyPDB - Contact us
PROTEIN DATA BANK 225,881 Structures from II PROTEIN DATA BANK II 1,088,577 Computed Stru Medels (CSM)	ture ture Advance	earch term(s), Entry ID(s), or sequence I Search Browse Annotations	e Include CSM @ 💭 🔍 Help
PDB-101 CPDB LEMDerResource			EX DOin
Structure Summary Structure Annotations	Experiment Sequence Gen	me Versions	
Biological Assembly 1 O	Add 1 from Plasmodium falciparu PDB D0: https://doi.org/10.2210/pdb1244 Classification: UNKNOW PUNCTON Organism(s): Plasmodium falciparum 3D7 Expression System: Escherichia coil BL2 Mutation(s): No @ Deposited: 2005-03-14 Released: 2005-0 Deposition Author(s): Eal, T., Becker, M.,	Dicedar File	O Downkoud Files O Data API
Explore in 3D: Structure Sequence Annotations Electron Density Validation Report Ligand Interaction (CL) Global Symmetry: Asymmetric - C1 ① Global Stolchiometry: Homo 2-mer - A2 ③	Experimental Data Snapshot Method: X-RAY DIFFRACTION Resolution: 190 Å R-Value Free: 0.236 R-Value Work: 0.192 R-Value Observed: 0.195	wwPDB Validation	S D Report Full Report Percentile Ranks Value S 10% 1.0% 1.0% 1.6% daysetteme

Fig 2: Retrieving the query 'AMA1' (PDB ID: 1Z40) from the PDB database

Fig 3: Homepage of the Immune Epitope Database (IEDB)

Check out our new IEDB up	dates! (1) Learn	how to customize your database exports ar	nd (2) test out the new <u>Next-generation Too</u>	ols site for all your analysis and prediction needs.
Welcome		START YOUR SEARCH HERE		Epitope Analysis Resource
The immune Epitope Databas- freely available resource funde It catalogs experimental data and T call epitopes studied in I other animal species in the co- infectious disease, allergy aut and transplantation. The IEDB epitope prediction and analysis has a companion site, CEDAF NCI), which houses cancer ep	e (IEDB) is a ed by NIAID. on antibody humans and ntext of oimmunity also hosts s tools, and R (funded by itopes. Learn More	Epitope () () Any () Linear peptide Exact M () Ex SIMFER. () Discontinuous () Non-peptidic	Assay () T Cell T D Cell MHC Ligand Ex: neutralization End Outcome: Positive Negative	T Cell Epitope Prediction (*) Scan an antigen sequence for amino acid patterns indicative of: MH-C I Binding MH-C I Binding MH-C I Binding MH-C I Processing (Proteasome,TAP) MH-C I Immunogenicity
Upcoming Events & Ne Virtual User Workshop No register here Festival of Biologics Api AACR 2025 Api Immunology 2025 Ma	ews v 5-7, 2024 r 23-25, 2025 r 25-30, 2025 y 3-7, 2025	Epitope Source () Organism Exc Influenza, peanut E Find Antigen Exc core, capsid, myor E Find	MHC Restriction () () Any () Class I () Class II () Non-classical () Ex: HLA-A*02:01 () Find	B Cell Epitope Prediction Predict linear B cell epitopes using. Antigen Sequence Properties Predict discontinuous B cell epitopes using entidean structure via: Discotope. EIIPPO
Summary Metrics		Host 🖲	Disease 🕐	Enitone Analysis Tools
Peptidic Epitopes Non-Peptidic Epitopes T Cell Assays B Cell Assays MHC Ligand Assays Epitope Source Organisms Restricting MHC Alleles References	1,620,228 3,188 539,982 1,410,021 4,881,364 4,543 1,011 25,185	Any Human Mouse Non-human primate Ex: dog, camel Ex: dog.	Any Allergic Autoimmune Ex: asthma	Epirope Analysis loos 🔮

Fig 4: Selecting the 'Discotope' option in the Epitope Analysis Resource section

IEDB Analysis I	IEDB Analysis Resource						
Home Help Example Referen	Home Heip Example Reference Download Contact						
DiscoTope: Structu	re-based Antibody Pred	iction					
Step 1: Please enter the 4-letter PDB ID Or upload a PDB file	(example: 1z40) Choose file No file chosen						
Step 2: Please enter PDB Chain ID							
Step 3: Select version	1.1 🕶						
	Submit Reset						
© 2005-2024 <u>IEDB Home</u> <u>Help</u> <u>Contar</u> Supported by a contract from the <u>National</u>	t Institute of Allergy and Infectious Diseases, a com	ponent of the National Institutes of Health in the Department of Health and Human Services.					

Fig 5: Homepage of Discotope Program for Prediction

IEDB Analysis Resource	
Home Help Example Reference Download Contact	
DiscoTope: Structure-based Antibody Prediction	
Step 1: Please enter the 4-letter PDB ID Or upload a PDB file	1z40 (example: 1z40) Choose file No file chosen
Step 2: Please enter PDB Chain ID	A
Step 3: Select version	1.1 ~
	Submit Reset
© 2005-2024 <u>IEDB Home Help Contact</u> Supported by a contract from the <u>National Institute of Allergy and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.	

Fig 6: Searching for the PDB code: '1BBJ', Chain ID: A, select version 1.1 and click on submit

Description

To change the threshold value, enter a different threshold and click on 'Change'. The default value for version 1.1 is -7.7 and version 2.0 is -3.7, which corresponds to a specificity of 75%. Higher values correspond to higher specificity. A specificity of 0.75 means that 25% of the non-epitope residues were predicted as part of epitopes. A sensitivity of 0.47 means that 47% of the epitope residues were predicted as part of epitopes. In the chart, predictions above the threshold (red line) are positive predictions (displayed in green) and predictions below the threshold are negative prediction (displayed in orange).

Fig 8: Results obtained in Table View

Description

1. Chain ID: The chain id of the protein chain used in prediction (specified by the user)

- 2. Residue ID: PDB Residue id
- 3. Residue Name: Name of the residue
- 4. Contact Number: The residue contact number is the number of C α atoms in the antigen within 10 Å of the residue's C α atom. A low contact number correlates with localization of the residue close to the surface or in protruding regions of the antigen's structures.
- **5.** Propensity Score: This score tells you about the probability/tendency of being part of an epitope for that residue. The propensity is reflected in amino acid epitope log-odds ratios, which were calculated on a set of 75 antigens. The propensity score is calculated by sequentially averaging epitope log-odds ratios within a window of 9 residues. Then the scores are summed up based on the proximity in the 3D structure of the antigen. For any given residue, the sequentially averaged log-odds scores from all residues within 10Å are summed to give the propensity score.
- **6.** Discotope Score: This score is calculated by combining the contact numbers with propensity score. DiscoTope score above the threshold value indicates positive predictions and that below the threshold value indicates negative predictions.

Positive predictions are displayed in green. Click on header to sort column.

Fig 9: Results obtained in 3D Viewer

Fig 10: Save the prediction in .csv Extension

RESULTS:

The DiscoTope analysis of the AMA1 antibody (PDB ID: 1Z40) provided several critical insights regarding potential B cell epitopes:

- 1. **Chart View:** The predictions indicated that several residues had DiscoTope scores above the threshold value i.e., -7.7, which are considered positive predictions, displayed in green. This score suggests a high likelihood of these residues being part of an epitope, indicating their potential accessibility for antibody binding.
- 2. Table View: The detailed results included the following key metrics:
 - a. Chain ID: The chain ID for the analyzed protein, which is Chain A.
 - b. **Residue ID:** The specific identifier for the lysine residue (LYS).
 - c. **Contact Number:** The contact number for this proline residue is **11**, indicating that there are eleven C α atoms from other residues within 10 Å of this proline's C α atom. A low contact number suggests that this residue is well-exposed on the surface of the protein and accessible for antibody binding. In this context, a contact number of 11 indicates reasonable accessibility, although it may not be as optimal as residues with lower contact numbers. Generally, low contact numbers (e.g., 1 or 2) are preferred for predicting epitopes, as they correlate with increased exposure on the protein surface.
 - d. **Propensity Score:** The propensity score for this proline is **5.717**, reflecting a strong likelihood that this residue is part of an epitope based on its amino acid characteristics and statistical analysis from known antigens.
 - e. **DiscoTope Score:** The DiscoTope score for this residue is **0.217**. This positive score indicates a higher probability of this residue being involved in immune recognition, despite its contact number and favorable propensity score.
- 3. **3D View**: The spatial visualization allowed for examination of predicted epitopes on the AMA1 structure, facilitating insights into their interactions with antibodies.

CONCLUSION:

The analysis highlighted a proline residue with a contact number of 11, indicating reasonable accessibility, a high propensity score of 5.717 suggesting it has a strong likelihood of being part of an epitope, but a DiscoTope score of 0.217 indicating that it may be as strongly favored for immune recognition compared to other residues with negative scores.

Additionally, the findings underscore the importance of utilizing tools like DiscoTope within the Immune Epitope Database (IEDB) to predict B cell epitopes effectively. The IEDB serves as a comprehensive resource for researchers, offering curated data and analytical tools that enhance our understanding of immune responses and facilitate vaccine development and therapeutic design. Understanding the range of contact scores is crucial; while lower scores indicate better surface exposure and accessibility for antibody binding, higher scores can still suggest reasonable accessibility depending on the context. Overall, these insights contribute significantly to advancing research in immunology and related fields by providing a clearer picture of how structural features influence epitope prediction and antibody interactions.

REFERENCES:

- 1. Martini, S., Nielsen, M., Peters, B., & Sette, A. (2020). The Immune Epitope Database and Analysis Resource Program 2003-2018: reflections and outlook. *Immunogenetics*, 72(1-2), 57–76.<u>https://doi.org/10.1007/s00251-019-01137-6</u>
- Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The Immune Epitope Database (IEDB): 2018 update. *Nucleic acids research*, 47(D1), D339–D343. <u>https://doi.org/10.1093/nar/gky1006</u>
- 3. *IEDB.org: Free epitope database and prediction resource*. (n.d.). <u>https://www.iedb.org/</u>
- 4. Treeck, M., Zacherl, S., Herrmann, S., Cabrera, A., Kono, M., Struck, N. S., Engelberg, K., Haase, S., Frischknecht, F., Miura, K., Spielmann, T., & Gilberger, T. W. (2009b). Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathogens, 5(3), e1000322. <u>https://doi.org/10.1371/journal.ppat.1000322</u>

DATE: 01/10/2024

<u>WEBLEM: 9</u> <u>PaDELPy</u> (URL: https://github.com/ecrl/padelpy)

<u>AIM:</u>

Introduction to molecular Descriptors and PADEL Descriptor software.

INTRODUCTION:

PaDELPy is a powerful and versatile Python package that serves as a wrapper for PaDEL-Descriptor, a widely-used software in the field of cheminformatics and computational chemistry. This package bridges the gap between the Java-based PaDEL-Descriptor and the Python ecosystem, enabling researchers and data scientists to seamlessly integrate molecular descriptor calculations into their Python workflows. By providing a convenient Python interface to PaDEL-Descriptor, PaDELPy facilitates the calculation of a wide array of molecular descriptors and fingerprints, which are essential for various cheminformatics applications.

The primary purpose of PaDELPy is to simplify the process of calculating molecular descriptors and fingerprints, making these crucial tools more accessible to researchers working in Python environments. It offers a comprehensive set of features that make it an invaluable asset in computational chemistry. PaDELPy can compute a vast array of molecular descriptors, including 1D, 2D, and 3D descriptors. These encompass constitutional descriptors, which provide basic information about the molecule's composition; topological descriptors, which capture the connectivity and shape of molecules; geometrical descriptors, which relate to the distribution of charge in molecules; and hybrid descriptors, which combine multiple types of molecular information.

In addition to descriptor calculation, PaDELPy supports the generation of various types of molecular fingerprints, such as MACCS keys, PubChem fingerprints, and substructure fingerprints. These fingerprints are crucial for tasks like similarity searching and machine learning applications in drug discovery. The package accepts multiple input formats, including SMILES strings, SDF files, and MOL2 files, providing flexibility in handling different molecular representations. This input flexibility allows researchers to work with their preferred molecular formats without the need for additional conversion steps.

One of the key strengths of PaDELPy is its customization options. Users can tailor their calculations by selecting specific descriptors or fingerprints and adjusting calculation parameters to suit their research needs. This level of control allows researchers to focus on the molecular features most relevant to their studies, potentially improving the efficiency and relevance of their analyses. To use PaDELPy, researchers must have both Python and Java installed on their system. The package can be easily installed using pip, the Python package installer, with a simple command: "pip install padel-py". This straightforward installation process makes PaDELPy readily accessible to researchers and developers working in Python environments. Once installed, using PaDELPy in a Python script is straightforward. For

example, to calculate descriptors for a molecule represented as a SMILES string, one would first import the PaDELDescriptor class from padel_py, initialize it, and then use the calculate_descriptors method with the SMILES string as input.

MOLECULAR DESCRIPTORS

Molecular descriptors are numerical values that describe the chemical structure of molecules. They can represent various properties such as molecular weight, atom counts, functional groups, and 3D spatial information. These descriptors are essential for quantitative structure-activity relationship (QSAR) modeling, virtual screening, and other cheminformatics applications. Here are the main types of molecular descriptors up to 6D:

1. 0D Descriptors (Constitutional Descriptors)

These descriptors are simple counts of atoms, bonds, or molecular fragments without considering the molecule's connectivity or spatial arrangement.

Examples:

Molecular weight, number of atoms, number of bonds, and atom type counts.

2. 1D Descriptors (Structural Descriptors)

1D descriptors represent the sequence of atoms or specific chemical groups in a molecule without taking molecular topology into account.

Examples:

Molecular formulas, number of specific functional groups (e.g., hydroxyl groups, halogens).

3. 2D Descriptors (Topological Descriptors):

These descriptors represent the connectivity or topology of a molecule's structure in two dimensions. They are derived from the molecular graph, where atoms are represented as nodes and bonds as edges.

Examples:

- a. Topological indices like Wiener index, Balaban index.
- b. Atom connectivity indices (degree of atoms, valence values).
- c. Fragment-based descriptors (counts of specific substructures or functional groups).

4. 3D Descriptors (Geometric/Spatial Descriptors)

3D descriptors represent the three-dimensional arrangement of atoms in space, capturing molecular shape, size, and volume. These are crucial for understanding stereochemistry and interactions in docking studies.

Examples:

- a. Molecular surface area (van der Waals or solvent-accessible surface).
- b. Molecular volume.
- c. Dipole moment.
- d. Shape indices (e.g., radius of gyration).

5. 4D Descriptors (Molecular Dynamics Descriptors)

4D descriptors incorporate time-dependent information to represent the dynamic behavior of molecules in different environments (e.g., solution, gas phase). These descriptors are generated from molecular dynamics (MD) simulations and capture conformational changes over time.

Examples:

- a. Time-averaged molecular properties (e.g., average distances between atoms).
- b. Conformational flexibility measures.

6. 5D Descriptors (Quantum Descriptors)

5D descriptors account for quantum mechanical properties and interactions, often used in quantum chemistry. These descriptors consider the electronic structure of molecules and how they change under different conditions.

Examples:

- a. Electron density distribution.
- b. Molecular orbitals (HOMO, LUMO).
- c. Quantum mechanical energy levels.

7. 6D Descriptors (Pharmacophore Descriptors)

6D descriptors are used to represent the pharmacophoric properties of molecules. A pharmacophore is a set of features (like hydrogen bond donors, acceptors, hydrophobic regions) that are responsible for the biological activity of a molecule. These descriptors aim to capture the spatial arrangement and dynamic nature of pharmacophoric features in a molecule.

Examples:

- a. Pharmacophoric patterns based on 3D alignments of molecular features.
- b. Dynamic pharmacophore models (time-dependent movements of pharmacophoric features).

Significance of Molecular Descriptors:

- 1. Drug Design and Discovery: Aid in predicting biological activity, toxicity, and pharmacokinetic properties for identifying potential drug candidates.
- 2. Structure-Activity Relationship (SAR): Help correlate molecular structures with biological activity, enabling QSAR modeling to understand structure-function relationships.
- 3. Predictive Modeling: Serve as inputs for machine learning models to predict chemical properties like toxicity, solubility, and binding affinity.
- 4. Chemical Property Analysis: Provide insights into molecular properties like hydrophobicity, polarity, molecular weight, etc., essential for understanding molecular interactions.

|--|

Descriptor Type	Symbol	Definition
Molecular Weight	MW	The sum of the atomic weights of all atoms in a molecule, indicating its size.
Log P (Partition Coefficient)	Log P	A measure of lipophilicity, indicating how a compound partitions between water and octanol.
TopologicalPolarSurface Area (TPSA)	TPSA	The surface area of polar atoms in a molecule, affecting solubility and permeability.
Molecular Volume	Vm	The 3D space occupied by a molecule, often computed from van der Waals radii.
Molecular Surface Area	As	The total surface area of a molecule, which can impact interactions with biological targets.
Hydrogen Bond Donor Count	HBD	The number of hydrogen bond donors in a molecule, influencing solubility and interaction.
Hydrogen Bond Acceptor Count	HBA	The number of hydrogen bond acceptors in a molecule, affecting its interaction properties.
Rotatable Bonds	R _B	The number of rotatable bonds in a molecule, indicating flexibility and conformational change.
Log D (Distribution Coefficient)	Log D	A measure of the distribution of a compound between two phases, considering pH and ionization.
Molecular Shape Index	-	Describes the overall shape of a molecule, which can influence biological activity.
Dipole Moment	μ	A vector quantity that represents the polarity of a molecule, indicating charge distribution.
Polarizability	α	The ability of a molecule to have its electron cloud distorted by an external electric field.
SolventAccessibleSurface Area (SASA)	SASA	The surface area of a molecule that is accessible to solvent, relevant for solubility studies.
Constitutional Index	CI	A measure that considers the connectivity of atoms in a molecule, providing insight into stability.
3D-Radius of Gyration	R _g	A measure of the distribution of atoms around the molecule's centre of mass, indicating compactness.

PaDEL-DESCRIPTOR

PaDEL-Descriptor is a software for calculating molecular descriptors and fingerprints. The software currently calculates 797 descriptors (663 1D, 2D descriptors, and 134 3D descriptors) and 10 types of fingerprints. These descriptors and fingerprints are calculated mainly using The Chemistry Development Kit. Some additional descriptors and fingerprints were added, which include atom type electrotopological state descriptors, McGowan volume, molecular linear free energy relation descriptors, ring counts, count of chemical substructures identified by Laggner,

and binary fingerprints and count of chemical substructures identified by Klekota and Roth. Although many descriptors can be calculated using various descriptor calculation software, considering the information available in a PubChem fingerprint, only PubChem fingerprints of the compounds were used to train the model. PaDELPy, a Python wrapper for PaDEL-Descriptor software, was used for calculating the PubChem fingerprints.

INSTALLATION:

Fig 1: Open GitHub and search Padelpy

Product ~ Si	olutions 🗸 Re	sources V Open Source V Enterprise V Pricing	Q	Sign in Sign up
 Code Repositories Issues Pull requests Discussions Construction 	 4 52 19 1	ecrl/padelpy A Python wrapper for PaDEL-Descriptor software python computational-chemistry padel molecular-fingerp command-line-wrapper ● Python · ☆ 179 · Updated on Nov 11, 2023	☆ Star	Sponsor open source projects you depend on Contributors are working behind the scenes to make open source better for everyone—give them the help and recognition they deserve.
Vsers More Languages Python Jupyter Notebook More languages		 brendaferrari/AutoPaDELPy AutoPaDELPy provides an automated user interface for PaDELPy software. It was created to provide a more friendly interaction wit sof padel molecular-descriptors Python · ☆ 5 · Updated on Aug 1, 2023 	्रि Star	Explore sponsorable projects Q ProTipl Press the key to activate the search input again and adjust your query.
Advanced ① Owner	Ţ	conda-forge/padelpy-feedstock A conda-smithy repository for padelpy	Star 💙 Sponsor	

Fig 2: Open "ercl/Padelpy"

← C	ab.com/ECRL/PaDELPy/blob/master/README.md 표 역 A ☆	cD t≥ (÷ %	
Files	Preview Code Blame 194 lines (126 loc) + 6.98 KB	Raw	1 ± /	• :=
₿° master 👻	٩			
Q. Go to file	ENERGY &			
, aithub	COMBUSTION			
padelpy				
tests				
🗋 .gitignore				
LICENSE	PaDELPy: A Python wrapper for PaDEL-Descriptor software			
MANIFEST.in				
🗋 README.md	version 7.2.7 pypi package 0.1.16 Ecense MIT			
pyproject.tomi	PaDELPy provides a Python wrapper for the <u>PaDEL-Descriptor</u> molecular descriptor calculation software. It was created to allow the PaDEL-Descriptor command-line interface via Python.	direct access to		
	Installation			
	Installation via pip:			
	<pre>\$ pip install padelpy</pre>	C		
	Installation via cloned repository:			
	<pre>\$ git clome https://github.com/ecrl/padelpy \$ cd padelpy \$ pip install .</pre>	Ç		
	PaDEL-Descriptor is bundled into PaDELPy, therefore an external installation/download of PaDEL-Descriptor is not necessary. Th currently no additional Python dependencies for PaDELPy, however it requires an installation of the Java JRE version 6+.	iere are		

Fig 3.a: Python Wrapper for PaDEL-Descriptor Software

Fig 4: Installing PaDELPy via Anaconda Prompt

Fig 6: Select "System and Security"

Fig 7: Select "System"

dr						
Home		About		Environment Variables		×
		710001	_	User variables for Satyesh		ngs
d a setting	System Properties		× urity	Variable	Value	
	Computer Name Hardware Advanced	System Protection Remo	te	OneDrive	C:\Users\Satyesh\OneDrive	CI
em	You must be logged on as an Administra Performance	tor to make most of these ch	anges.	OneDriveConsumer Path	C:\Users\Satyesh\OneDrive C:\Users\Satyesh\AppData\Local\Microsoft\WindowsApps;	op
Display	Visual effects, processor scheduling, m	emory usage, and virtual me	mory	TMP	C:\Users\Satyesh\AppData\Local\Iemp C:\Users\Satyesh\AppData\Local\Temp	tion
Sound		Setting	s FLBGQH			tem settings
Notificatio	User Profiles Desktop settings related to your sign-in		(3.87 GB		New Edit Delete	E C (advanced)
		Setting	8-32DA	System variables		
Focus assi			000-000	Variable	Value	^ web
Power & s	Startup and Recovery System startup, system failure, and deb	ugging information	perating or touch	ComSpec DriverData NUMBER OF PROCESSORS	C:\WINDOWS\system32\cmd.exe C:\Windows\System32\Drivers\DriverData 4	ow many cores
Batteny		Setting	s	OS	Windows_NT	tiple Languages
Dattery				Path	C:\Program Files\Common Files\Oracle\Java\javapath;C:\Program	
Storage		Environment Varia	ables	PROCESSOR ARCHITECTURE	.COM; EXE; BAT; CMD; VBS; VBE; JS; JSE; WSF; WSF; MSC AMD64	~
Tablet	OK	Cancel	Apply		New Edit Delete	2
		Windows spe	cifications			Iback
Multitaski	ng	Edition	Windows 10 Hor		OK Cancel	
Projecting	to this PC	Version	22H2	re single cangaage		
rojecting		Installed on	07-04-2024			

Fig 8: Click on "Environment Variables" and then under "System variables" click on path

	A User variables for Satyesh	
E	dit environment variable	
rotection		
	C:\Program Files\Common Files\Oracle\Java\javapath	New
most of 1	C:\Program Files (x86)\Intel\iCLS Client\	
_	C:\Program Files\Intel\iCLS Client\	Edit
e, and vi	%SystemRoot%\system32	
	%SystemRoot%	Browse
	%SystemRoot%\System32\Wbem	
	%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\	Delete
	C:\Program Files (x86)\Intel\Intel(R) Management Engine Component	
	C:\Program Files\Intel\Intel(R) Management Engine Components\DAL	
_	C:\Program Files (x86)\Intel\Intel(R) Management Engine Component	Move Up
	C:\Program Files\Intel\Intel(R) Management Engine Components\IPT	
	%SYSTEMROOT%\System32\OpenSSH\	Move Down
mation		
-		Edit text
-		-
nvironm		
Cancel		
_	OK	Cancel
orage	- OK	Cancer

Fig 9: Add "Python" and "JDK" files path over here and click "OK"

	Manage javapath					-	×
File Home Share View App	plication Tools	New item •	Open -	Select all			~ ()
Pin to Quick Copy Paste	Move Copy Delete Rename	New Easy access •	Properties	Select none			
access Paste shortcut	to• to• •	folder	- History	Invert selection			55
	Organize	New	Open	Select			
← → * ↑ → This PC → Acer (C)	Program Files Common Files	> Oracle > Java > java	path		~ C	Search Javapath	~
Attachments ^	Name	Date modif	ied Type	Size			
Desktop	🔳 java.exe	15-02-2024	10:57 PM Applicati	on 700 KB			
付 Documents	💷 javac.exe	15-02-2024	10:57 PM Applicati	on 700 KB			- 1
E Pictures	📧 javaw.exe	15-02-2024	10:57 PM Applicati	on 700 KB			
💻 This PC	jshell.exe	15-02-2024	10:57 PM Applicati	on 700 KB			- 1
3D Objects							-
E Desktop							- 1
🔮 Documents							
🕂 Downloads							
👌 Music							
E Pictures							- 1
Videos							
L Acer (C:)							
Satyesh (F:)							-
i Network							- 1
4 items 1 item selected 699 KB							8==

Fig 10: PaDELPy installed successfully in assigned path

REFERENCES:

- 1. PaDELPy: A Python wrapper for PaDEL-Descriptor software. (2022, April 30). GitHub. <u>https://github.com/ECRL/PaDELPy</u>
- Danishuddin, & Khan, A. U. (2016). Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discovery Today, 21(8), 1291–1302. <u>https://doi.org/10.1016/j.drudis.2016.06.013</u>
- Yap, C. W. (2010). PaDEL-descriptor: An open-source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. <u>https://doi.org/10.1002/jcc.21707</u>

DATE: 01/10/2024

WEBLEM: 9(A)

<u>PaDELPy: A Python wrapper for PaDEL-Descriptor software</u> (URL: https://github.com/ecrl/padelpy)

AIM:

To study ID, 2D & 3D descriptors for "Gallic Acid" (PubChem CID: 370) using PaDELPy Software.

INTRODUCTION:

PaDELPy simplifies the process of calculating molecular descriptors and fingerprints by providing a Python interface for the PaDEL-Descriptor software. PaDEL-Descriptor, written in Java, generates molecular descriptors that are used to describe molecular properties in various computational chemistry and cheminformatics applications. It helps correlate molecular structures with biological activities, which is essential for building machine learning models in scientific research, particularly in drug discovery, toxicology, and other biological studies.

PaDELPy eliminates the need for manual handling of the Java-based PaDEL-Descriptor. This means users no longer must install and execute the Java `.jar` file separately. Instead, the library automates the process, allowing users to calculate molecular fingerprints directly in Python. This reduces the complexity of installation and streamlines the workflow for researchers and data scientists working on chemical data and machine learning model creation.

Gallic Acid:

Gallic acid (3,4,5-trihydroxybenzoic acid) is a naturally occurring polyphenolic compound found in various fruits, vegetables, and herbs. It exhibits strong antioxidant, anti-inflammatory, antimicrobial, and anticancer properties, making it beneficial for health and industrial applications. Gallic acid helps in scavenging free radicals, reducing oxidative stress, and modulating inflammatory responses, with promising effects on gut health, cancer prevention, and managing infections. It is also used in food preservation for its antioxidant activity, as well as in cosmetics and pharmaceuticals for its skin-protective and therapeutic benefits. Ongoing research continues to explore its broader therapeutic potential.

METHODOLOGY:

- 1. Search for your query in the PubChem database.
- 2. Retrieve canonical SMILES of the best match.
- 3. Open PaDELPy in GitHub and copy the code for "SMILES to Descriptors/Fingerprints".
- 4. Using Python IDLE:
 - a. Install PaDELPy via pip: pip install padelpy
 - b. Paste the code copied and change the name of the query and input the SMILES.
 - c. Run the code and interpret the results in an excel file containing the data for the descriptor.
- 5. Using Google Colab:

- a. Install PaDELPy via pip: pip install padelpy
- b. Paste the code copied and change the name of the query and input the SMILES.
- c. Run the code and interpret the results in table containing the data for the descriptor.

CODE:

from padelpy import from_smiles

Calculate molecular descriptors for propane descriptors = from_smiles('C1=C(C=C(C(=C1O)O)O)C(=O)O')

In addition to descriptors, calculate PubChem fingerprints desc_fp = from_smiles('C1=C(C=C(C(=C1O)O)O)C(=O)O', fingerprints=True)

Only calculate fingerprints

fingerprints = from_smiles('C1=C(C=C(C(=C1O)O)O)C(=O)O', fingerprints=True, descriptors=False)

Setting the number of threads, this uses one CPU thread to compute descriptors descriptors = from_smiles(['C1=C(C=C(C(=C10)O)O)C(=O)O'], threads = 1)

Save descriptors to a CSV file _ = from_smiles('C1=C(C=C(C(=C10)O)O)C(=O)O', output_csv='descriptors.csv')

OBSERVATIONS:

Fig 14: Homepage for PubChem

Example Device Devi	An official websi	ite of the United States government Here is how you know 🗸	
Year Dec Submit 2 Dec Submit 2 December 2 Deceember 2 December 2 December 2 December 2 December 2 Dec	NIH Natio	nal Library of Medicine Center for Biotechnology Information	
SEARCH FOR X Callic Acid X Treating this as a test search. X BEST MATCH Sallic acid; 149-91-7; 3,4,5-Trihydroxybenzoic acid; gallate; Benzoic acid, 3,4,5-trihydroxy-; Gallic acid, tech.; Kyselina gallova; Pyrogallol-5-carboxylle acid; Compound CID: 370 M: C;ti40; MW: 170.12g/mol UMAC Name: 3.45-trihydroxybenzoic acid Biomeric SMLES: C1=C(C=C(C1=C10)0)C(C=0)C Incht: Incht=15/C7H605/c8-41-37(11)7122-599/6(4)10/h1-28-10H,(H,11.12) Create Date: :2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)	PubC	hem About Docs Submit Contact	
Gallic Acid X X Treating this as a text search. BEST MATCH Image: Search and a	SEARCH FOR		_
Treating this as a text search. BEST MATCH	Gallic Aci	id × 🔍	
BEST MATCH	Treating this as a te	xt search.	
Gallic acid; 149-91-7; 3,4,5-Trihydroxybenzoic acid; gallate; Benzoic acid, 3,4,5-trihydroxy-; Gallic acid, tech.; Kyselina gallova; Pyrogallol-5-carboxylic acid; Compound CID: 370 MF: C+H_QS MF: C+H_QS UNPAC Name: 3A,5-trihydroxybenzoic acid Isomeric SMIES: C1=CIC=CIC(=C10)0)0(C(=0)0 InChI: InChI=15/C7H605/c8-41-37(11)12)2-5996(4)10/h1-28-10H(H;11,12) Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)	BEST MATCH		
Compound (CI): 370 MF: CyH ₄ O ₅ MW: 170.12g/mol IUPAC Name: 3.45-trillydroxybenzolic <u>add</u> Isomeric SMILES: C1=C(C=C(C(=C10)O)O)C(=O)O InChIKley: LNTHITC/WFMADLM-UHFFFAOYSA-N InCh: InChi: InChi: 15/C7H605/c8-4-1-37(11)12)2-5(9)6(4)10/h1-2.8-10H,(H.11.12) Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)	-\$-	Gallic acid; 149-91-7; 3,4,5-Trihydroxybenzoic acid; gallate; Benzoic acid, 3,4,5-trihydroxy-; Gallic acid, tech.; Kyselina gallova; Pyrogallol-5- carboxylic acid;	
IUPAC Nume: 3.5.5-thildy observatio: add Isomeric SMILES: C1=C(C=C)C(C=C10)O)O)C(=O)O InChIKey: LNTHITCWFMADLM-UHFFA0YSA:N InCh: InChi =15/C7H605/c8-4-1-37(11)12)2-5(9)6(4)10/h1-2,8-10H,(H,11,12) Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)	1.4	Compound CID: 370 ME C-H O. MMI 170 13a/mal	
Isomeric SMILES: C1=C(C=C(C(=C10)O)O)C(=O)O InChIKey: LNTHITC/WFMADLM-UHFFAOYSA-N InChI: InChI=15/C7H6056/c8-4-1-37(11)12)2-5(9)6(4)10/h1-2,8-10H,(H,11,12) Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)		ITTLe Cyntese ITTL i Conceptino	
InChI Key: LNTHITQWFMADLM-UHFFA0YSA-N InChI: InChI: InChI: 15/C7H6O/5/e8-4-1-37(11)12J2-5(9)6(4)10/h1-2.8-10H,(H, 11, 12) Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)		Isomeric SMILES: C1=C(C=C(C(=C10)0)0)C(=0)0	
InChI: InChI: 15/C7H6O5/c8-4-1-3/(11)12]2-5(9)6(4)10/h1-28-10H(H.11.12) Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)		InChIKey: LNTHITQWFMADLM-UHFFFAOYSA-N	
Create Date: 2004-09-16 Summary Similar Structures Search Related Records PubMed (MeSH Keyword)		InChi: InChi=15/C7H6O5/c8-4-1-3(7(11)12)2-5(9)6(4)10/h1-2,8-10H,(H,11,12)	
Summary Similar Structures Search Related Records PubMed (MeSH Keyword)		Create Date: 2004-09-16	
	Summary Si	milar Structures Search Related Records PubMed (MeSH Keyword)	
Companyed Cubatanana Diadaman Ditanatana Datanata	6	Coloren Distance Distance Detector	

Fig 15: Best Match for the Query- Phencyclidine (CID:6468)

Pub Chem Gallic Acid (Compound)			тор
PubChem			
		🎀 Cite 💆 Do	wnload
2.1.3 InChlKey	0 Z	CONTENTS	
LNTHITQWFMADLM-UHFFFAOYSA-N		Title and Summary	
Computed by InChI 1.0.6 (PubChem release 2021.10.14)		1 Structures	~
▶ PubChem		2 Names and Identifiers	~
		3 Chemical and Physical Properties	~
		4 Spectral Information	~
2.1.4 SMILES	2 (2	5 Related Records	~
C1=C(C=C(C(=C10)0)0)C(=0)0		6 Chemical Vendors	
Computed by OEChem 2.3.0 (PubChem release 2021.10.14)		7 Drug and Medication Information	×
Pub/Chom		8 Food Additives and Ingredients	~
/ Fuccient		9 Pharmacology and Biochemistry	~
		10 Use and Manufacturing	~
2.2 Molecular Formula	2 (2	11 Identification	~
		12 Safety and Hazards	~
		13 Toxicity	~
Computed by PubChem 2.2 (PubChem release 2021.10.14)		14 Associated Disorders and Diseases	
 Australian Industrial Chemicals Introduction Scheme (AICIS); CAMEO Chemicals; PubChem 		15 Literature	~
		16 Patents	~
2.3 Other Identifiers	2 (2	17 Interactions and Pathways	~
		18 Biological Test Results	~
2.3.1 CAS	2 (0	19 Taxonomy	_
		20 Classification	· · ·

Fig 3: SMILES format of the query

Fig 4: SMILES to Descriptors code on PaDELPy GitHub

✓ 10s	[1]	!pip install padelpy	
	[†]	Collecting padelpy Downloading padelpy-0.1.14-py2.py3-none-ar Downloading padelpy-0.1.14-py2.py3-none-any	wy.whl.metadata (7.7 kB) whl (20.9 MB)
		Installing collected packages: padelpy Successfully installed padelpy-0.1.14	20.9/20.9 Pib 10.3 Pib/S ELa 0.00.00

Fig 5: Installing padelpy using pip in Google Colab

Fig 6: Code for SMILES to Descriptor/Fingerprints

Nama	استحصا	AL D									- 0	-0	- 84				
Name	nAcia	ALOGP	ALogp2	AMR	ароі	naAromAtom	nAromBond	nAtom	nHeavyAtom	nH	nв	nc	nN	nu	ns	n۳	mF
GEN_20241004144917322715181604859		-0.7213	0.5202736900000001	41.7715	20.330757999999999												
10 v per page																	

Fig 7: Output in csv format

RESULTS:

Using PaDELPy, a Python wrapper for the PaDEL-Descriptor, molecular descriptors for the compound "Gallic Acid" were calculated. These descriptors provide key numerical values representing the chemical and structural properties of the molecule. For example:

- 1. AlogP: Represents the lipophilicity (hydrophobicity) of the molecule.
- 2. nAtom: The total number of atoms in the molecule.
- 3. nHeavyAtom: The number of non-hydrogen atoms (heavy atoms) in the molecule.
- **4. nH:** The number of hydrogen atoms.
- **5. nC:** The number of carbon atoms.

These descriptors, along with many others, help quantify the chemical characteristics of molecules, which is crucial for predicting molecular behaviour in biological systems. This information is particularly useful in computational tasks such as molecular docking simulations, where the binding affinities and interactions between ligands (such as drugs) and biological targets (like proteins) are predicted.

CONCLUSION:

PaDEL-Descriptor, an open-source and multithreaded molecular descriptor calculation software, provides a powerful and efficient tool for extracting molecular descriptors. Its ability to handle large datasets and compute a wide range of molecular descriptors quickly makes it a valuable tool in cheminformatics, drug discovery, and computational biology. With its cross-platform compatibility and ease of use, PaDELPy enhances productivity in scientific research by facilitating the integration of molecular descriptor calculations into machine learning models and other data analysis workflows.

REFERENCES:

- 1. Dey, V. (2021). Hands-On Guide to PaDELPy for ML Model
- 2. Building. Analytics India Magazine. <u>https://analyticsindiamag.com/hands-on-guide-to-padelpy-for-ml-model-building/</u>
- Kolmar, S. S., & Grulke, C. M. (2021). The effect of noise on the predictive limit of QSAR
 models. Journal of Cheminformatics, 13(1). <u>https://doi.org/10.1186/s13321-021-00571-</u>
- 4. Su, A., & Rajan, K. (2021). A database framework for rapid screening of structure-function relationships in PFAS chemistry. Scientific Data, 8(1). <u>https://doi.org/10.1038/s41597-</u>
- 5. 021-00798-x 5. Ecrl. (n.d.). GitHub ecrl/padelpy: A Python wrapper for PaDEL-Descriptor software. GitHub. <u>https://github.com/ecrl/padelpy</u>

DATE: 4/10/2024

<u>WEBLEM:10</u> WEB-BASED TOOLS FOR VACCINE DESIGNING

AIM:

To understand various web-based tools for vaccine designing.

INTRODUCTION:

Immunization is a cornerstone of public health policy and is demonstrably highly cost effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, there are major challenges ahead to develop new vaccines for difficult-to target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts.

Define Vaccines: A vaccine is a biological product that can be used to safely induce an immune response that confers protection against infection and/or disease on subsequent exposure to a pathogen. To achieve this, the vaccine must contain antigens that are either derived from the pathogen or produced synthetically to represent components of the pathogen. The essential component of most vaccines is one or more protein antigens that induce immune responses that provide protection. However, polysaccharide antigens can also induce protective immune responses and are the basis of vaccines that have been developed to prevent several bacterial infections, such as pneumonia and meningitis caused by Streptococcus pneumoniae, since the late 1980s. Protection conferred by a vaccine is measured in clinical trials that relate immune responses to the vaccine antigen to clinical end points Vaccines are generally classified as live or non-live (sometimes loosely referred to as 'inactivated') to distinguish those vaccines that contain attenuated replicating strains of the relevant pathogenic organism from those that contain only components of a pathogen or killed whole organisms. In addition to the 'traditional' live and non-live vaccines, several other platforms have been developed over the past few decades, including viral vectors, nucleic acid-based RNA and DNA vaccines, and virus like particles.

HISTORY:

Epidemics of smallpox swept across Europe in the seventeenth and eighteenth centuries, accounting for as much as 29% of the death rate of children in London137. Initial efforts to control the disease led to the practice of variolation, which was introduced to England by Lady Mary Wortley Montagu in 1722, having been used in the Far East since the mid-1500s. In variolation, material from the scabs of smallpox lesions was scratched into the skin to provide protection against the disease. Variolation did seem to induce protection, reducing the attack rate during epidemics, but sadly some of those who were variolated developed the disease and

sometimes even died. It was in this context that Edward Jenner wrote an Inquiry into the Causes and Effects of the Variole Vaccine in 1798. His demonstration, undertaken by scratching material from cowpox lesions taken from the hands of a milkmaid, Sarah Nelms, into the skin of an 8-year-old boy, James Phipps, who he subsequently challenged with smallpox, provided early evidence that vaccination could work.

Jenner's contribution to medicine was thus not the technique of inoculation but his startling observation that milkmaids who had had mild cowpox infections did not contract smallpox, and the serendipitous assumption that material from cowpox lesions might immunize against smallpox. Furthermore, Jenner brilliantly predicted that vaccination could lead to the eradication of smallpox; in 1980, the World Health Assembly declared the world free of naturally occurring smallpox. Almost 100 years after Jenner, the work of Louis Pasteur on rabies vaccine in the 1880s heralded the beginning of a frenetic period of development of new vaccines, so that by the middle of the twentieth century, vaccines for many different diseases (such as diphtheria, pertussis, and typhoid) had been developed as inactivated pathogen products or toxoid vaccines. However, it was the coordination of immunization as a major public health tool from the 1950s onwards that led to the introduction of comprehensive vaccine programs and their remarkable impact on child health that we enjoy today. In 1974, the World Health Organization launched the Expanded Program on Immunization and a goal was set in 1977 to reach every child in the world with vaccines for diphtheria, pertussis, tetanus, poliomyelitis, measles, and tuberculosis by 1990. Unfortunately, that goal has still not been reached; although global coverage of 3 doses of the diphtheria-tetanus-pertussis vaccine has risen to more than 85%, there are still more than 19 million children who did not receive basic vaccinations in 2019.

MATERIALS AND METHODS:

Vaccines induce antibodies: The adaptive immune response is mediated by B cells that produce antibodies (humoral immunity) and by T cells (cellular immunity). All vaccines in routine use, except BCG which is believed to induce T cell responses that prevent severe disease and innate immune responses and are thought to mainly confer protection through the induction of antibodies. There is considerable supportive evidence that various types of functional antibody are important in vaccine induced protection, and this evidence comes from three main sources: immunodeficiency states, studies of passive protection and immunological data.

Vaccines need T cell help: The role of T cells in protection is poorly characterized, except for their role in providing help for B cell development and antibody production in lymph nodes. From studies of individuals with inherited or acquired immunodeficiency, it is clear that whereas antibody deficiency increases susceptibility to acquisition of infection, T cell deficiency results in failure to control a pathogen after infection. For example, T cell deficiency results in uncontrolled and fatal varicella zoster virus infection, whereas individuals with antibody deficiency readily develop infection but recover in the same way as immunocompetent individuals. The relative suppression of T cell responses that occurs at the end of pregnancy increases the severity of infection with influenza and varicella zoster viruses. Studies show that sterilizing immunity against carriage of *S. pneumoniae* in mice can be achieved by the transfer of T cells from donor mice exposed to *S. pneumoniae*, which indicates that further investigation of T cell-mediated immunity is warranted to better understand the nature of T cell responses that could be harnessed to improve protective immunity.

Although somewhat simplistic, the evidence therefore indicates that antibodies have the major role in prevention of infection (supported by TH cells), whereas cytotoxic T cells are required to control and clear established infection.

Epitope-based vaccines: Epitopes are of particular interest to both clinical and basic biomedical researchers as they hold huge potential for vaccine design, disease prevention, diagnosis, and treatment. Using rDNA technologies, we can isolate specific epitopes which can replace the whole pathogen in a vaccine. However, within the diversity of epitopes in a pathogen, it is important to notice that not all the epitopes, even those that seem to be dominant, are equal in their ability to elicit antibody production. The proteins that contain many epitopes recognized by the common MHC alleles are known as promiscuous binders. The human leukocyte antigen (HLA) supertype refers to a set of HLA alleles with overlapping peptide binding specificities. The alleles in the given HLA supertype often represent the same epitope, which refers to the region on the surface of an antigen capable of eliciting an immune response for T cell recognition. On the other hand, elicitation of humoral responses relies on the recognition of linear epitopes and conformational epitopes. The latter constitute a challenge for chimeric vaccine design as they must retain their native conformation to be functional. Therefore, knowledge on the whole antigen structure is necessary to aid in the rational design of vaccines targeting conformational B cell epitopes.

3. Bioinformatics tools to prediction of potential T cell binding-epitopes: The first step on applying bioinformatics to vaccine development consists of discriminating epitopes that are potentially immune-protective from epitopes that are not. Since T-cell epitopes are bound in a linear form to MHCs, the interface between ligands and T-cells can be modeled with accuracy. It is currently well known that epitopes link together into the binding groove of MHC Class I and Class II molecules through interactions between their R group side chains and pockets located on the floor of the MHC. Based on this knowledge, many T-cell epitope- mapping algorithms have been established and used to develop tools to rapidly identify putative T-cell epitopes. MHC-I binding predictors are currently very efficient and have wide allelic coverage, a prediction accuracy in the range of 90–95% positive predictive value has been estimated.

Among the numerous servers for MHC-I alleles is RANKPEP, which predicts peptide binders to MHC-I and MHC-II molecules from protein sequences or sequence alignments using Position Specific Scoring Matrices (PSSMs). In addition, it predicts those MHC-I ligands whose C-terminal end is likely to be the result of proteasomal cleavage. This is a friendly platform which offers the widest allelic coverage to MHC-I and MHC-II alleles for humans and mice. To search epitopes sequences for MHC-I ligands using PSSMs, a dynamic algorithm written in Python is used; which scores all protein segments with the length of the PSSM width and sorts them accordingly. Scoring starts at the beginning of each sequence and the PSSM is slid over the sequence one residue at a time until reaching the end of the sequence. Furthermore, to narrow down the potential binders from the list of ranked peptides, a binding threshold is defined as the score value that includes 90% of the peptides within the PSSM. This binding threshold is built into each matrix, delineating the range of putative binders among the top scoring peptides.

Bioinformatics tools for predicting potential B cell binding epitopes: B cell epitopes are recognized by B cell receptors or antibodies in their native structure. Continuous B cell epitope prediction is very similar to T cell epitope prediction, which has mainly been based on the

amino acid properties such as hydrophilicity, charge, exposed surface area and secondary structure. Discontinuous B cell epitope prediction requires 3D structure of the antigen. Some specific resources to predict continuous or discontinuous B-cell epitopes are available on the Web. To predict linear B-cell epitopes, the Bcepred tool is based on physicochemical properties such as hydrophilicity, flexibility, polarity, and exposed surface on a non-redundant dataset. The dataset consists of 1029 B-cell epitopes obtained from the Bcipep database and an equal number of non-epitopes obtained randomly from the Swiss-Prot database. The prediction accuracy for models based on these properties varies from 52.92% to 57.53%.

The ABCpred server, which is based on neural networks, has an estimated accuracy of 65.93%. Another server called BepiPred predicts the location of linear B-cell epitopes using a combination of a hidden Markov model and a propensity scale method. The servers mentioned above are easy to use and properly organized. Among the tools used to predict discontinuous B cell epitopes we can mention DiscoTope, which uses the three-dimensional structure of proteins to determine the surface accessibility and a novel epitope propensity amino acid score. The final scores are calculated by combining the propensity scores of residues in spatial proximity and the contact numbers. This server also predicts epitopes in complexes of multiple chains. This tool along with BEpro (formerly known as PEPITO) and SEPPA (Spatial Epitope Prediction of Protein Antigens) requires a 3-D structure as input, specifically, in PDB format. Using SEPPA, each residue in the query protein will be given a score according to information from its neighborhood residues. The higher score corresponds to the higher probability of the residue to be involved in an epitope. One of the most complete tools in this field is ElliPro. This server predicts linear and discontinuous epitopes based on a protein antigen's 3D structure. ElliPro associates each predicted epitope with a score, defined as a PI (Protrusion Index) value. Compared with databases mentioned earlier, in ElliPro the input is a protein sequence. A 3-D structure will be predicted for the input protein sequence by homology modeling based on user selected structural template. Afterwards, linear, and discontinuous epitopes will be computed based on the predicted protein structure. All these integrative tools represent an opportunity for the development of new vaccines, in special those that aim at the elicitation of humoral responses.

Bioinformatics strategies for emergent peptide-based vaccines against hypervariable viruses. Historically, most of the known successful vaccines have been developed empirically. However, the emergence of highly sophisticated viruses, such as HIV and influenza characterized by having a high degree of genetic and antigenic diversity, has impeded the development of effective, broad-coverage vaccines using traditional methods. The rapid emergence of these viral pathogens underscores the need for improved and accelerated processes to develop and produce vaccines, a need that can be addressed by the methods described above allowing a rapid, in silico-based approach to formulate vaccine candidates. This section briefly discusses some approaches developed for the case of the human immunodeficiency (HIV) and influenza viruses as examples on how successful candidate vaccine design can be achieved in the case of hypervariable viruses using bioinformatic tools.

PERSPECTIVES:

Bioinformatics tools have enabled the capability of selecting potential epitopes without running the risks involved in cultivating the pathogen of interest. This kind of methodology represents a huge advantage over conventional vaccinology techniques, including faster outputs and lower costs. The application of omics technologies to this field has also revolutionized the way in which potential vaccine candidates can be identified. Proteomics and transcriptomics have been used as complementary approaches to genomics and are often more useful in identifying surface proteins during host pathogen interaction. Despite that numerous epitope prediction methods are available, developing a systematic assessment of different methods on standard benchmark datasets is still a need.

Launching a Critical Assessment of Techniques for Epitope Prediction will indeed benefit the field. It has been proposed that computational methods will be used to perform blinded de novo epitope prediction from query proteins previously screened experimentally. Comparison of different methods is yet a complex task due to many aspects including the following:

- 1. inadequate documentation of datasets and prediction methods
- 2. unavailability of the benchmark dataset used to evaluate the methods
- 3. unavailability of the code that implements the method
- 4. the lack of a unified output format, which complicates the process of combining the results of several servers to obtain consensus predictions.

Therefore, it is necessary to develop standardized data representations; this will enable the evaluation of different prediction methods on a standardized benchmark datasets to compare the methods and develop meta-servers combining the predictions of multiple prediction tools.

CONCLUSIONS AND FUTURE DIRECTIONS:

Immunization protects populations from diseases that previously claimed the lives of millions of individuals each year, mostly children. Under the United Nations Convention on the Rights of the Child, every child has the right to the best possible health, and by extrapolation a right to be vaccinated. Despite the outstanding success of vaccination in protecting the health of our children, there are important knowledge gaps and challenges to be addressed. An incomplete understanding of immune mechanisms of protection and the lack of solutions to overcome antigenic variability have hampered the design of effective vaccines against major diseases such as HIV/AIDS and TB. Huge efforts have resulted in the licensing of a partially effective vaccine against malaria, but more effective vaccines will be needed to defeat this disease. Moreover, it is becoming clear that variation in host response is an important factor to consider.

New technologies and analytical methods will aid the delineation of the complex immune mechanisms involved, and this knowledge will be important to design effective vaccines for the future. Apart from the scientific challenges, sociopolitical barriers stand in the way of safe and effective vaccination for all. Access to vaccines is one of the greatest obstacles, and improving infrastructure, continuing education, and enhancing community engagement will be essential to improve this, and novel delivery platforms that eliminate the need for a cold chain could have great implications. There is a growing subset of the population who are skeptical about vaccination and this requires a response from the scientific community to provide transparency about the existing knowledge gaps and strategies to overcome these.

Constructive collaboration between scientists and between scientific institutions, governments and industry will be imperative to move forwards. The COVID-19 pandemic has indeed shown that, in the case of an emergency, many parties with different incentives can come together to ensure that vaccines are being developed at unprecedented speed but has also highlighted some of the challenges of national and commercial interests. As immunologists, we have a responsibility to create an environment where immunization is

normal, the science is accessible and robust, and access to vaccination is a right and expectation.

REFERENCES:

- Pollard, Andrew J., and Else M. Bijker. "Publisher Correction: A Guide to Vaccinology: From Basic Principles to New Developments." Nature Reviews Immunology, vol. 21, no. 2, 5 Jan. 2021, pp. 129–129, <u>https://doi.org/10.1038/s41577-020-00497-5</u>
- 2. Soria-Guerra, Ruth E., et al. "An Overview of Bioinformatics Tools for Epitope
- Prediction: Implications on Vaccine Development." Journal of Biomedical Informatics, vol. 53, Feb. 2015, pp. 405–414, <u>https://doi.org/10.1016/j.jbi.2014.11.003</u>

DATE: 28/09/2024

<u>WEBLEM: 11</u> <u>INTRODUCTION TO TEPITOOL</u> (URL: http://tools.iedb.org/tepitool/)

AIM:

Introduction to IEDB Database for prediction of cytotoxic and helper T cell epitopes (MHC Class I epitopes and MHC Class II epitopes).

INTRODUCTION:

TepiTool is a powerful online platform developed as part of the Immune Epitope Database (IEDB) to facilitate the prediction of T-cell epitope candidates through the analysis of peptide binding to Major Histocompatibility Complex (MHC) class I and class II molecules. Accurate prediction of peptide-MHC binding is critical for understanding T-cell responses, which play a central role in the immune system's ability to recognize and respond to pathogens, cancer cells, and other antigens. This capability is particularly relevant for applications in vaccine design, immunotherapy, and diagnostics. TepiTool was created to address the growing need for accessible, accurate, and easy-to-use tools in epitope prediction, helping immunologists and researchers identify peptides that can potentially elicit immune responses. MHC molecules present peptides to T cells, activating an immune response when the peptide fits well in the MHC molecule's binding groove. MHC class I molecules bind shorter peptides (8-11 amino acids) and are recognized by CD8+ T cells, while MHC class II molecules bind longer peptides (12-20 amino acids) and are recognized by CD4+ T cells. Predicting which peptides will successfully bind to these MHC molecules is a vital step in identifying epitopes-regions of antigens that are recognized by T cells. This information is crucial in designing vaccines and therapies that target specific immune responses.

TepiTool simplifies this complex task by integrating state-of-the-art computational algorithms for MHC binding prediction, ensuring that researchers can efficiently identify candidate epitopes for further experimental validation. A key advantage of TepiTool is its user-friendly, step-by-step interface, which allows users to easily input amino acid sequences and specify parameters such as the species of interest, MHC class, and peptide length. This is particularly helpful for researchers unfamiliar with computational prediction tools, as it guides them through the entire process, ensuring accurate results without requiring extensive technical expertise. Furthermore, TepiTool supports predictions for hundreds of MHC alleles across multiple species, including humans and common model organisms like mice and pigs, making it highly versatile for a wide range of immunological studies. In addition to its simplicity and accessibility, TepiTool is equipped with some of the most advanced MHC binding prediction algorithms, including artificial neural networks and machine learning techniques. These algorithms have been refined to provide accurate and reliable predictions of peptide-MHC interactions, ensuring that researchers can quickly and effectively identify the most promising epitopes for further investigation. TepiTool also allows users to customize input parameters, such as MHC allele selection and peptide binding thresholds, offering flexibility to meet the specific needs of various research projects. TepiTool has become an essential resource for immunology research, offering applications in vaccine development, cancer immunotherapy, autoimmune disease studies, and diagnostics. By facilitating the prediction of T-cell epitopes, TepiTool enables researchers to accelerate the discovery of novel immunotherapies and vaccines that can precisely target disease mechanisms. Its combination of cutting-edge algorithms and an intuitive interface ensures that it remains a key tool for both experienced researchers and those new to the field of epitope prediction.

Fig 1: Homepage of IEDB and Select Epitope analysis resource

Fig 2: Selection of Tepi Tool from T cell Epitope of IEDB analysis resource

IEDB Analysis Resource	
Home Help Reference Download Contact	
ТеріТооІ	
Steps 1 2 3 4 5 6	
SEQUENCE - Provide sequence data:	
Enter sequence(s) in FASTA or PLAIN format.	
Or upload file containing sequence(s) Choose File No file chosen	
Next	

Fig 3: Homepage of TEPI TOOL

Basic Protocol:

Computational Prediction of Peptides Binding to MHC Class I AND Class II Molecules.

This protocol explains prediction of T cell epitope candidates from a given set of amino acid sequences, based on predicted peptide binding to MHC class I and class II molecules, using the online computational MHC binding prediction tool called TepiTool. The tool is designed as a wizard where the user is led through a series of well-defined steps to complete the task. Each step is a client-side web form that takes user input data that is in turn processed at the server-

side when the user submits the entire form. All fields except sequences and alleles are filled with default recommended settings for prediction and selection of optimum peptides. The input parameters can be adjusted as per the user's specific needs, and the user can go back to previous steps to change the selection before final submission of the job. The TepiTool has six steps as described below.

Protocol steps to be followed:

- 1. Provide sequence data
- 2. Select the host species and MHC allele class
- 3. Select the alleles for binding prediction
- 4. Select peptides to be included in prediction
- 5. Select preferred methods for binding prediction and peptide selection and cutoff values
- 6. Review selections, enter job details and submit data

Step 1: Provide sequence data

Users input protein sequences in single-letter amino acid code, either by direct entry or by uploading a FASTA file. This step is foundational as it determines the specific proteins to be analyzed for potential T cell epitopes, setting the stage for all subsequent predictions.

Step 2: Select Host Species and MHC Allele Class

Users choose the species (e.g., human, mouse) and MHC class (I or II) relevant to their research. This selection is crucial because it dictates which MHC alleles will be considered in binding predictions, impacting the relevance of the results to the specific biological context.

Step 3: Select Alleles for Binding Prediction

Users specify which MHC alleles from the chosen species will be analyzed. Tailoring the analysis to specific alleles allows for more precise predictions that are relevant to the target population or experimental model.

Step 4: Select Peptides to Include in Prediction

Users can define peptide lengths and whether to include duplicates in their analysis. This step enables users to control the dataset's size and composition, which can significantly influence the quality and interpretability of the prediction results.

Step 5: Select Preferred Methods for Binding Prediction

Users choose algorithms for predicting binding affinities and set parameters like cutoff values for peptide selection. Customizing prediction methods allows users to optimize results based on their specific research needs or hypotheses, enhancing the accuracy of epitope identification.

Step 6: Review Selections and Submit Data

Users review all inputs, enter job details, and submit data for processing. This final step confirms that all parameters are correct before running predictions, ensuring that users have control over their analysis and can avoid errors before submission.

REFERENCE:

- Paul, S., Sidney, J., Sette, A., & Peters, B. (2016). TEPiTool: A pipeline for Computational Prediction of T cell epitope Candidates. Current Protocols in Immunology, 114(1). <u>https://doi.org/10.1002/cpim.12</u>
- Lefranc, M., Giudicelli, V., Ginestoux, C., Jabado-Michaloud, J., Folch, G., Bellahcene, F., Wu, Y., Gemrot, E., Brochet, X., Lane, J., Regnier, L., Ehrenmann, F., Lefranc, G., & Duroux, P. (2008). IMGT(R), the international ImMunoGeneTics information system(R). Nucleic Acids Research, 37(Database), D1006–D1012. <u>https://doi.org/10.1093/nar/gkn838</u>

DATE: 28/9/2024

<u>WEBLEM: 11(A)</u> <u>TEPITOOL</u> (URL:http://tools.iedb.org/tepitool/)

·-----

<u>AIM :</u>

To Predict MHC Class I and Class II Molecules for Query Dopamine (accession no: P09172) using TepiTool.

INTRODUCTION:

T-cell epitope prediction plays a crucial role in a variety of applications, including vaccine discovery, diagnostic development, and mitigating immune responses against therapeutic proteins. Despite ongoing advancements in MHC binding prediction tools, their widespread adoption among immunologists has been slow. This is primarily due to the lack of intuitive interfaces and clear guidance regarding key aspects such as allele selection, peptide lengths, and appropriate cutoff values. Current tools often provide minimal advice on these important factors, leaving users without the necessary insights to optimize their predictions.

To address these challenges, TepiTool—a newly developed online resource available through the Immune Epitope Database (IEDB)—offers a user-friendly interface and integrates topperforming MHC binding prediction algorithms. Designed to simplify the prediction process, TepiTool supports multiple species, including humans, chimpanzees, bovines, gorillas, macaques, mice, and pigs, making it a versatile tool for researchers. With step-by-step instructions and built-in recommendations, TepiTool streamlines the identification of optimal T-cell epitope candidates. Freely accessible at TepiTool, this tool enables immunologists and researchers to efficiently predict and analyze T-cell epitopes, enhancing applications in immunotherapy, vaccine development, and immune response modulation.

<u>Dopamine</u>

Dopamine is a key neurotransmitter derived from the amino acid tyrosine, playing a critical role in mood regulation, motivation, motor control, and cognitive functions. It transmits signals in the brain, particularly in pathways associated with reward and pleasure, influencing behaviors related to reinforcement and decision-making. Dopamine is essential for smooth motor control, and its deficiency is linked to movement disorders such as Parkinson's disease, while its dysregulation contributes to mental health conditions like depression, ADHD, and schizophrenia. Additionally, dopamine is central to addiction mechanisms, where its elevated levels reinforce drug-seeking behavior. Understanding dopamine's functions and imbalances is crucial for addressing various neurological and psychological disorders.

METHODOLOGY:

- 1. Access the UniProt database and search for the Dopamine.
- 2. Locate the epitope of interest and copy its FASTA sequence.
- 3. Navigate to the TepiTool server and paste the copied FASTA sequence of the Dopamine Provide the sequence data.
- 4. Select the host species and MHC allele class.

- 5. Choose the alleles for prediction.
- 6. Select the peptides to be included in the prediction.
- 7. Select for preferred methods for binding prediction, peptide selection strategy, and cutoff values.
- 8. Review your selections, enter job details, and submit the data.

OBSERVATIONS:

UniProte BLAST Align Peptide search ID mapping SPARQL	Release 2024_05 Statistics 🏦 🎰 🖾 Help
Find your p	protein
UniProtKB • Dopamine	X Advanced List Search
Examples: Insulin, APP, Human, P05067, organism_id:9606	X
	Feedba
UniProt is the world's leading high-quality, comprehensive and freely accessible res	source of protein sequence and functional information. <u>Cite UniProt</u> **
	Statute and state and
Proteins Species Proteomes Proteomes	otein Clusters Sequence UniRef archive
	UniParc
We'd like to inform you that we have updated our Privacy Notice to comply with Europe's new General Data Protection Regulation (GDPR) that	t applies since 25 May 2018. Accept

Fig 1: Homepage of UniProt Database with entered query Dopamine

JniProt BLAST Align	n Peptide search ID	mapp	oing SPARQL	UniProtKB • Dopamine			Advanced List Search	📤 🛍 🖸 н
Status Reviewed (Swiss-Prot) (1,246)	UniPr	ot	KB 80,44	18 results or search "Dopamine" as a G dd View: Cards O Table * (ustomia	ene Ontology, Protein Name, Ca e columns 🧠 Share 🔻	stalytic Activity, Gene Name, or Disease		
Unreviewed (TrEMBL) (79.202)	Entry 🔺		Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺		Length 🔺
	D P09172	а	DOPO_HUMAN	Dopamine beta-hydroxylase[]	DBH	Homo sapiens (Human)		617 AA
Human (552)	D P21917	а	DRD4_HUMAN	D(4) dopamine receptor[]	DRD4	Homo sapiens (Human)		419 AA
Rat (439)	P21918	a	DRD5_HUMAN	D(1B) dopamine receptor[]	DRD5, DRD1B, DRD1L2	Homo sapiens (Human)		477 AA
lovine (206)	D P14416	а	DRD2_HUMAN	D(2) dopamine receptor[]	DRD2	Homo sapiens (Human)		443 AA
ebrafish (134)	D P21728	a	DRD1_HUMAN	D(1A) dopamine receptor[]	DRD1	Homo sapiens (Human)		446 AA
axonomy	D P35462	а	DRD3_HUMAN	D(3) dopamine receptor[]	DRD3	Homo sapiens (Human)		400 AA
iter by taxonomy	P15101	а	DOPO_BOVIN	Dopamine beta-hydroxylase[]	DBH	Bos taurus (Bovine)		610 AA
roup by	Q64237	а	DOPO_MOUSE	Dopamine beta-hydroxylase[]	Dbh	Mus musculus (Mouse)		622 AA
ixonomy	Q05754	а	DOPO_RAT	Dopamine beta-hydroxylase[]	Dbh	Rattus norvegicus (Rat)		620 AA
eywords	D P30729	a	DRD4_RAT	D(4) dopamine receptor[]	Drd4	Rattus norvegicus (Rat)		387 AA
ene Ontology	P25115	a	DRD5_RAT	D(1B) dopamine receptor[]	Drd5	Rattus norvegicus (Rat)		475 AA
nzyme Class	Q8BLD9	a	DRD5_MOUSE	D(1B) dopamine receptor[]	Drd5	Mus musculus (Mouse)		478 AA
oteins with	P51436	a	DRD4_MOUSE	D(4) dopamine receptor[]	Drd4	Mus musculus (Mouse)		387 AA
021)			0000 00100					

Fig 2: Selected the entry of Accession ID: P09172

>sp|P09172|DOPO_HUMAN Dopamine beta-hydroxylase OS=Homo sapiens OX=9606 GN=DBH PE=1 SV=3
MPALSRWASLPGPSMREAAFMYSTAVAIFLVILVAALQGSAPRESPLPYHIPLDPEGSLE
LSWNVSYTQEAIHFQLLVRRLKAGVLFGMSDRGELENADLVVLWTDGDTAYFADAWSDQK
GQIHLDPQQDYQLLQVQRTPEGLTLLFKRPFGTCDPKDYLIEDGTVHLVYGILEEPFRSL
EAINGSGLQMGLQRVQLLKPNIPEPELPSDACTMEVQAPNIQIPSQETTYWCYIKELPKG
FSRHHIIKYEPIVTKGNEALVHHMEVFQCAPEMDSVPHFSGPCDSKMKPDRLNYCRHVLA
AWALGAKAFYYPEEAGLAFGGPGSSRYLRLEVHYHNPLVIEGRNDSSGIRLYYTAKLRRF
NAGIMELGLVYTPVMAIPPRETAFILTGYCTDKCTQLALPPSGIHIFASQLHTHLTGRKV
VTVLVRDGREWEIVNQDNHYSPHFQEIRMLKKVVSVHPGDVLITSCTYNTEDRELATVGG
FGILEEMCVNYVHYYPQTQLELCKSAVDAGFLQKYFHLINRFNNEDVCTCPQASVSQQFT
SVPMNSFNRDVLKALYSFAPISMHCNKSSAVRFQGEWNLQPLPKVISTLEEPTPQCPTSQ
GRSPAGPTVVSIGGGKG

Fig 3: Copy the FASTA sequence

IEDB Analysis Res	source	
Home Help Reference Download	Contact	
ТеріТооІ		
Steps 1 2 3 4 5 6		
SEQUENCE - Provide sequence data:		
Enter sequence(s) in FASTA or PLAIN format.	No format detected.	
Or upload file containing sequence(s)	Choose File No file chosen	
Next		

Fig 4: Homepage of TepiTool Database

139 | Page

EDB Analysis Res	source	
Iome Help Reference Download	Contact	
Tepi Tool		
Steps 1 2 3 4 5 6		
EQUENCE - Provide sequence data:		
Enter sequence(s) in FASTA or PLAIN format.	Stap 19912210000, MEMIL Dopamine beta-hydroxylase 05-Homo sapiens 0K-9606 Shidhi Pet 12: NS-3 HPAL SINAS: DPS/HERAARYSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFICAENERSTAVATFIVITUALLAENER SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/PHPIDDEFSSLE SUMSYTGEATHERAENERSTAVATFIVITUALQSSAPESPU/P	
Or upload file containing sequence(s)	Choose file No file chosen	
Next		

Fig 5: Enter the FASTA sequence

MHC CLASS I

IEDB Analysis Resource	
Home Help Reference Download Contact	
ТеріТооІ	
Steps 1 2 3 4 5 6	
SPECIES & ALLELE CLASS - Select the host species and MHC allele class:	
Host species Human	Current selections:
Allele class Class I 🗸	No. of sequences 1
Start Over Back Next	

Fig 6: Select the Host species and MHC allele class I

IEDB Analysis Resource					
Home Help	Reference Download Contact				
TepiTool					
Steps 1 2 3	4 5 6				
Alieles	Human - Class I Select from list of frequently occuring alleles (Frequency > 1%) Select from list of all available alleles Select from list of representative alleles from different HLA supertypes Use panel of 27 most frequent A & B alleles Upload allele file A*00:01 A*02:01 A*02:06 A*03:01 A*11:01 A*22:01 A*26:01 A*26:01 A*26:01 A*30:02	Current selection No. of sequences Host species Allele class Selected alleles <u>Reset alleles</u>	s: 1 Human Class I 1.A*02:01 3.A*02:06		
Start Over E	Back Next				

Fig 7: Select the 3 alleles for prediction

IEDB Analysis I	Resource		
Home Help Reference Dow	nload Contact		
ТеріТооі			
Steps 1 2 3 4 5 6			
PEPTIDES - Select peptides to be in	cluded in prediction:		
	 Apply default settings for low number of peptides Apply default settings for moderate number of peptides Apply default settings for high number of peptides Custom selection - Select your own settings 	Current selection	s:
Peptides to be included in prediction	Handling of duplicate peptides:	No. of sequences	1
	- Duplicate peptides will be removed.	Host species	Human
	Peptide lengths to be considered in prediction: - Only peptide length 9 will be included 9mers = 609	Allele class Selected alleles	Class I 1.A*01:01 2.A*02:01 3.A*02:06
Conservancy analysis (Uses only peptides conserved in specified % of sequences)	N/A (You have only 1 sequence)		
Start Over Back Next			

Fig 8: Choose peptides to be included in prediction

IEDB Analysis	s Resource		
Home Help Reference I	Download Contact		
TepiTool			
Steps 1 2 3 4 5 6 METHOD - Select prediction & p	eptide selection methods and cutoff values:	Current selections:	
Prediction method to use	IEDB recommended	Host species Allele class	Human Class I
	Select peptides based on predicted percentile rank	Selected alleles	1.A*01:01 2.A*02:01 3.A*02:06
Selection of predicted peptides	Select peptides with predicted consensus percentile rank ≤ 1	Duplicate peptides	Removed
		Peptide lengths selected	9mers
		No of pentides included	
Start Over Back Next		(Not considering conservancy analysis)	609

Fig 9: Select prediction method, peptide selection strategy & cutoff values
OTHE Help Refe	rence Download Contact
TeniTool	
repriedi	
Steps 1 2 3 4 5	6
REVIEW: Review selec	ctions, enter job details & submit data:
Summary:	
No. of sequences	1
Host species	Human
Allele class	Class I
Alleles	1.A*01:01 2.A*02:01 3.A*02:06
Duplicate peptides	Removed
Peptide lengths selected	9mers
Approx no. of peptides included	609
Peptide overlap	N/A (all possible nmers are included in class I)
Conservancy analysis	Peptides conserved in at least % sequences
Prediction method	IEDB recommended
Peptide selection criterion	Based on predicted consensus percentile rank (Cutoff selected = 1)
Job details:	
Job name (optional)	
Email (optional - will notify when job is finished)	
Start Over Back	Submit

Fig 10: Review summary, enter job details & submit data

IED	B Analys	sis Res	sourc	е	
		Dented	0		
Home	Help Reference	Download	Contact		
TopiTr					
repric					
Prodictio	n roculto ponoi	ico (Dourploo	d table 🔊		
Teuletio	111630113 - 00110		iu table 🖽).		
Seq # 🔺 🔻	Peptide start 🔺 🕈	Peptide end 🔺 🔹	Peptide 🔺 🔹	Percentile rank 🔺 🔹	Allele 🔺 🕶
1	448	456	RMLKKVVSV	0.02	HLA-A*02:01
1	448	456	RMLKKVVSV	0.04	HLA-A*02:06
1	345	353	DSSGIRLYY	0.06	HLA-A*01:01
1	104	112	WTDGDTAYF	0.07	HLA-A*01:01
1	534	542	SVSQQFTSV	0.07	HLA-A*02.06
1	511	519	FLORIFHLI	0.1	HLA-A*02.01
1	120	126	GSLELSWNV	0.11	HLA-A*02.06
1	381	389	PENPILEGY	0.14	HLA-A*01:01
1	187	195	GLONGLORY	0.17	HLA-A*02:01
1	172	180	ILEEPFRSL	0.18	HLA-A*02:01
1	511	519	FLQKYFHLI	0.19	HLA-A*02:06
1	483	491	ILEEMCVNY	0.21	HLA-A*01:01
1	172	180	ILEEPFRSL	0.21	HLA-A*02:06
1	398	406	ALPPSGIHI	0.23	HLA-A*02:06
1	398	406	ALPPSGIHI	0.25	HLA-A*02:01
1	241	249	FSRHHIIKY	0.26	HLA-A*01:01
1	225	233	SQETTYWCY	0.26	HLA-A*01:01
1	138	146	RTPEGLTLL	0.26	HLA-A*02:06
1	319	327	FGGPGSSRY	0.29	HLA-A*01:01
1	20	28	FMYSTAVAI	0.3	HLA-A*02:01
1	160	168	LIEDGTVHL	0.33	HLA-A*02:06
1	534	542	SVSCOFTSV	0.36	HLA-A*02-01

Fig 11: predicted result for MHC Class I

- 1. Number (Seq #): Indicates the order of the predicted peptides Sequence.
- 2. Peptide Start: The position in the P53 sequence where the predicted peptide begins.
- **3. Peptide End:** The position in the P53 sequence where the predicted peptide ends.
- 4. Peptide: The amino acid sequence of the predicted peptide.
- **5. Percentile Rank:** Represents the predicted binding affinity of the peptide to a specific MHC Class I allele. A lower percentile rank indicates a stronger binding affinity and therefore a higher likelihood of the peptide functioning as a T-cell epitope.
- **6.** Allele: Refers to the specific MHC Class I molecules (HLA alleles) that the peptide is predicted to bind.

Download results details:			
Complete results Prediction re	sults of all peptides		
Citation information:			
Citation mormation.			
If you use these predictions in a man	nuscript, please include the	owing in the method section:	
For complete list of references pleas	e click here: References		
Input sequences:			
Seq ≢ Seq title		Sequence	
1 spjP09172jDOPO_HUMAN	Dopamine beta-hydroxylase	S=Homo sapiens OX=9606 GN=DBH PE=1 SV=3 MPALSRWASLPGPSMREAAFMYSTAVAIFLVILVAALQGSAPRESPLPYHIP	LDPEGSLELSWNVSYTQEAIHFQLLVRRLKAGVLFGMSDRGELENADLVVLWT
Other input parameters:			
1			
Input summary:			
No. or sequences	1 Human		
Allele class	Class I		
Alleles	A*01:01 A*02:01 A*02:06		
Duplicate peptides	Removed		
Peptide lengths selected	9mers		
Peptide overlap	N/A		
Conservancy analysis	No		
Prediction method	IEDB recommended		
Peptide selection criterion	Predicted percentile rank		
Cutoff for peptide selection criterion	1		
Job name			
Email			
© 2005-2024 IEDB	nal Institute of Allerov and In	tive Diseases a commonent of the National Institutes of Health in the Denastment of Health and Human Services	
Supponed by a contract from the wate	nan manuale or Allergy and In	accus usseases, a component or one reasonal insulutes or nearor of the Department of Health and Human Services.	

Fig 12: Input Sequences and Other parameters

MHC CLASS II

IEDB Analysis Resource	
Home Help Reference Download Contact	
TepiTool	
Steps 1 2 3 4 5 6	
SPECIES & ALLELE CLASS - Select the host species and MHC allele class:	
Host species Human 🗸	Current selections:
Allele class	No. of sequences 1
Start Over Back Next	

Fig 13: Select the Host species and MHC allele class II

Fig 14: Select the alleles for prediction

Help Reference Dov	vnload Contact				
lepiTool					
Steps 1 2 3 4 5 6					
PEPTIDES - Select peptides to be in	cluded in prediction:				
Peplides to be included in prediction	Apply default settings for low number of peptides Apply default settings for moderate number of peptides Apply default settings for high number of peptides Custom selection - Select your own settings Handling of duplicate peptides Duplicate peptides will be removed. Desired no. of overlapping residues for 55mers No. of overlapping residues for dat 10. Approximate no. of peptides to be considered for prediction = 122	Current selection No. of sequences Host species Allele class Selected alleles	5: 1 Human Class II 1.DRB1*01.02 2.DRB1*01.02 3.DRB1*01.03		
Conservancy analysis Uses only peptides conserved in pecified % of sequences)	N/A (You have only 1 sequence)				
Uses only peptides conserved in specified % of sequences) Start Over Back Next	N/A (You have only 1 sequence)				

Fig 15: Choose peptides to be included in prediction

• • • • • • • • • • • • • • • • • • •		• 1 2 0 0 0 0 • 1 Current selections: No. of sequences 1 FROD - Select prediction & peptide selection methods and cutoff values: No. of sequences 1 No. of sequences 1 action method to use IEDB recommended • • • • No. of sequences 1 No. of sequences 1 ction of predicted peptides Select peptides based on predicted percentile rank • • • Alleles selected 2.088111.03 Duplate peptides 0 0 Duplate peptides Removed Peptide overlag No. of sequences 0 0 Duplate peptides 0	Help Reference Down	load Contact		
ETINDD - Select prediction & paptide selection methods and cutoff values: No. of sequences 1 ediction method to use IEDB recommended Human ideloc class IEDB recommended IEDB recommended Select peptides based on predicted percentile rank IDR 8110 01 Select peptides with predicted percentile rank < 10 IDR 8110 02 Select peptides with predicted percentile rank < 10 Duplicate peptides Rant Over Back Next	EDIDO - Salect prediction & peptide statection methods and cutoff values: No. of sequences 1 edidon method to use IEDB recommended v Hora sequences Hora n lection of predicted peptides Select peptides based on predicted percentile rank v Vector is an isotropy of peptides based on predicted percentile rank v No. of sequences 1 select peptides Select peptides based on predicted percentile rank v Vector is an isotropy of peptide vector is an is an isotropy of peptide vector is an is an isotropy of peptide vector isotropy of the vector isotropy of th	THDB - Select prediction & peptide selection methods and cutoff values: No. of sequences 1 addition method to use IEDB recommended Horan addition method to use IEDB recommended IEDB recommended select peptides Select peptides based on predicted percentile rank IEDB recommended select peptides Select peptides with predicted percentile rank IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides with predicted percentile rank IEDB recommended IEDB recommended Select peptides methods IEDB recommended IEDB recommended IEDB recommended	ps 1 2 3 4 5 6		Current selections:	
Decision method to use IEDB recommended IEDB recommended Item in the distance is in the di	ediction method to use LEDB recommended LEDB re	Under the state of the sta	THOD - Select prediction & peptid	e selection methods and cutoff values:	No. of sequences	1
bection method to use LEDB recommended v Intermediation (Intermediation (Intermedia	Description IEED® recommended Class II atection of predicted peptides Select peptides based on predicted percentile rank IDRB 110101 Select peptides with predicted percentile rank si 10 Alleles selected 1DRB 110101 Back Next Deptides Removed Attract with peptides Alleles selected 1DRB 110101 Duplicate peptides Removed Duplicate peptides Appen no. of prediction of predicted percentile rank si 10 Duplicate peptides 122 Observing Conservancy analysis 122 Deptides conserved in at least % sequences Select peptides on percentile rank si to the partment of Health in the Department of Health and Human Services. Select Peptide conserved in at least % sequences	skiction method to use EDB recommended EDB recommended Select peptides based on predicted percentile rank Select peptides based on predicted percentile rank Select peptides usin predicted percentile rank Select peptides conservation peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Duplicate peptides Removed Peptide version Peptide version			Host species	Human
Aldes select dependes Select pepides based on predicted percentile rank Select pepides based on predicted percentile rank Select pepides based on predicted percentile rank Aldes select de Depidet pepides Aldes select de Depidet percentile Depidet percentile Aldes select de Depidet percentile Depidet percentile Aldes select de Depidet percentile Depi	Alectical sectors and a sector	Access data in the state of head in the deflery and infection Diseases, a component of the National Institutes of Headth in the Department of Headth and Human Services.	diction method to use	IEDB recommended V	Allele class	Class II
Select peptides Removed Start Over Back Next	Backon of predicted peptides Removed Back Next Duplicate peptides Removed Rard Over Back Next Approx no. of peptides instands Approx no. of peptides instands Ob-2024 IEDB Observancy analysis Peptides conserved in at least % sequences	Select peptides with predicted percentile rank s 10 Duplicate peptides Removed Peptide overlap 10 AA residues Approx no. d peptides included (bbt considering conservary, analysis) 12 25-2024 IEDB refer by a contract from the <u>hatonal institute of Alleryu and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services. Peptides		Select peptides based on predicted percentile rank	Alleles selected	1.DRB1*01:01 2.DRB1*01:02 3.DRB1*01:02
Operation Peptide vorsing 10 AA residues Start Over Back Next Aprix no. of peptide instantiation (Not considering conservancy analysis) 122 Conservancy analysis Peptide conserved in at least % sequences	Of the second seco	Statute Peptide contact from the <u>Material Material M</u>	ection of predicted peptides	Select pentides with predicted percentile rank < 10	Duplicate peptides	Removed
Rart Over Back Next Approx no. of peptides included (Not considering conservancy analysis) 12. 05-2024 IEDB Conservancy analysis Peptides conserved in at least % sequences	Rart Over Back Approx no. of peptides included (information) (infor	tart Over Back Apprex no. 2 pepples included; (Not considering constrainty analysis) 12 Conservancy analysis Peptides conserved in at least % sequences D5-2024 IEDB Test by a contract from the balancet institute of Alleryu and infectious Diseases, a component of the National Institutes of Health in the Department of Health and Human Services. 12			Peptide overlap	10 AA residues
Conservancy analysis Peptides conserved in at least % sequences.	Conservancy analysis Peptides conserved in at least % sequences. 05-2024 IEDB Inter by a contract from the <u>National Institute of Alterny and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.	Conservancy analysis Peptides conserved in at least % sequences 25-2024 JEDB red by a contract from the <u>National Institute of Allergy and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.	tart Over Back Next		Approx no. of peptides included (Not considering conservancy analysis)	122
05-2024 IEDB one by a contract from the <u>National Institute of Alterpy and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.	05-2024 IEDB ated by a contract from the <u>National Institute of Alterpy and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.	35-2024 IEDB red by a contract from the <u>National Institute of Allergy and Infectious Diseases</u> , a component of the National Institutes of Health in the Department of Health and Human Services.			Conservancy analysis	Peptides conserved in at least % sequences
			05-2024 IEDB rted by a contract from the <u>National Ir</u>	stitute of Allergy and Infectious Diseases, a component of the National Institutes of Health in the Depa	rtment of Health and Human Services.	

Fig 16: Select prediction method, peptide selection strategy & cutoff values

ome Help Refe	rence Download Contact	
lepiTool		
None 1 2 2 4 5	8	
REVIEW: Review color	ntione opter job details & submit data:	
Summan:	auris, enter jub details à subrint data.	
No. of sequences	1	
eo. or sequences	1 Human	
Viele class	Class II	
Uleles	1.DR81*01.01 2.DR81*01.02 3.DR81*01.03	
uplicate peptides	Removed	
eptide lengths elected	15mers (Only one length for class II)	
pprox no. of eptides included	122	
eptide overlap	10 AA residues	
onservancy analysis	Peptides conserved in at least % sequences	
rediction method	IEDB recommended	
eptide selection riterion	Based on predicted consensus percentile rank (Cutoff selected = 10)	
lob details:		
ob name (optional)		
mail (optional - will otify when job is inished)		
Start Over Back Please note that you t start again if you want	Submit will not be able to make any more changes once submitted. You will have to to do so.)	

Fig 17: Review summary, enter job details & submit data

IEDB A	Analys	is Res	source		
Home Help	Reference	Download	Contact		
Prediction res	ults - concis	e (Downloa	d table 🗷):		
Seq # • • Peptic	ie start 🔺 🔻 Pe	ptide end 🔺 🔻	Peptide sequence • •	Percentile rank • •	Allele • •
1	174	188	EEPFRSLEAINGSGL	0.01	HLA-DRB1*01:01
1	128	142	QQDYQLLQVQRTPEG	0.2	HLA-DRB1*01:01
1	307	321	RAFYYPEEAGLAFGG	0.56	HLA-DRB1*01:01
1	4	18	LSRWASLPGPSMREA	0.56	HLA-DRB1*01:01
1	512	526	LOKYFHLINRFNNED	4.7	HLA-DRB1*01:01
1	156	170	PKDYLIEDGTVHLVY	4.8	HLA-DRB1*01:01
1	368	382	GLVYTPVMAIPPRET	4.8	HLA-DRB1*01:01
1	75	89	QLLVRRLKAGVLFGM	5.2	HLA-DRB1*01:01
1	192	206	LORVOLLKPNIPEPE	5.7	HLA-DRB1*01:01
1	15	29	MREAAFMYSTAVAIF	5.7	HLA-DRB1*01:01
1	245	259	HIIKYEPIVTKGNEA	8.4	HLA-DRB1*01:01
1	472	486	DRELATVGGFGILEE	8.8	HLA-DRB1*01:01
1	258	272	EALVHHMEVFQCAPE	9.1	HLA-DRB1*01:01
1	323	337	GSSRYLRLEVHYHNP	9.7	HLA-DRB1*01:01
1	430	444	EWEIVNQDNHYSPHF	9.8	HLA-DRB1*01:01
1	174	188	EEPFRSLEAINGSGL	0.81	HLA-DRB1*01:02
1	192	206	LORVOLLKPNIPEPE	2.3	HLA-DRB1*01:02
1	128	142	CODYCLLOVORTPEG	2.5	HLA-DRB1*01:02
1	75	89	QLLVRRLKAGVLFGM	2.8	HLA-DRB1*01:02
1	450	464	LKKVVSVHPGDVLIT	4.8	HLA-DRB1*01:02
1	430	444	EWEIVNQDNHYSPHF	4.9	HLA-DRB1*01:02
1	472	486	DRELATVGGFGILEE	4.9	HLA-DRB1*01:02
		40		6.0	

Fig 18: Predicted result for MHC Class II

Non-redundant results Pre	fiction results with redundant peptides with	in each sequence removed - Includes positives and negatives
Complete results Prei	fiction results of all peptides	
Oitatian information:		
sitation miormation:		
If you use these predictions in a	manuscript, please include the following in	the method section:
For complete list of references pl	ease click here: References	
nput sequences:		
P		former.
Seq = Seq utte		Sequence
1 spiP09172[DOPO_HUM	AN Dopamine beta-hydroxylase OS=Homo	b sapiens OX=9606 GN=DBH PE=1 SV=3 IMPALSRWASLPGPSMREAAFMYSTAVAIFLVILVAALQGSAPRESPLPYHIPLDPEGSLELSWNVSYTQEAIHFQLLVRRLKAGVLFGMSDRGELENADLVVLW
Other input parameters:		
outor input paramotoro.		
Input summary:		
Input summary: No. of sequences	1	
Input summary: No. of sequences Host species	1 Human	
Input summary: No. of sequences Host species Allele class	1 Human Class II	
Input summary: No. of sequences Host species Allele class Alleles	1 Human Class II DRB101.01 DRB101.02 DRB101.03	
Input summary: No. of sequences Host species Allele class Alleles Duplicate peptides	1 Human Class II DRB1'01:01 DRB1'01:02 DRB1'01:03 Removed	
Input summary: No. of sequences Host species Allele class Alleles Duplicate peptides Peptide lengths selected	1 Human Class II DRB1'01.01 DRB1'01.02 DRB1'01.03 Removed TSmers (Coly one length for class II)	
Input summary: No. of sequences Host species Allele class Alleles Duplicate peptides Peptide lengths selected Peptide overlap	1 Human Class II DRB110101 DRB110102 DRB110103 Removed 15mers (Only one length for class II) 10 AA residues	
Input summary: No. di sequences Hoti species Allele class Alleles Duplicate peptides Peptide lengths selected Peptide overlap Conservany analysis	1 Human Class II DRB1/01.01 DRB1/01.02 DRB1/01.03 Removed TSmers (Cinly one length for class II) 10 AA residues No	
Input summary: No. of sequences Host species Allele class Alleles Duplicate peptides Peptide lengths selected Peptide overlap Conservancy analysis Prediction method	1 Human Class II DRH 110102 DRH 110102 DRH 110102 Removed Simers (Only one length for class II) 10 AA residues No IEOB recommended	
Input summary: No. of sequences Host species Atele class Ateles Duplicate peptides Peptide kerghis selected Peptide werep Conservanç analysis Prediction method Peptide selection citerion	1 Hamn Class II DBB 110 10 DBB 110 10 DBB 10103 BBB 10103 ISBN 00 ISBN 00 ISBN 00 No IEOB recommended Predicels percentile rank	
hipdi Summany: No: of sequences Host species Allele class Alleles Duplicate peptides Peptide lengths selected Peptide versitip Conservance analysis Prediction method Peptide selection criterion	1 Human Class II DBR119101 DBR119102 DBR19102 DBR19103 IShers (Only one length for class II) 10 AA residues No II 0A residues No IEOB recommended Predicted percentier rank on 10	
hepds summary: No. of sequences Host specces Akele class Akeles Duplicate peptides Peptide kength selected Peptide werden Conservancy analysis Prediction method Peptide selection criterio Cubit for peptide selection criterio	1 Haman Class II DBR 1910 01 DBR 1910 02 DBR 1910 22 DBR 1910 22 How and the second	

Fig 19: Input Sequences and Other parameter

RESULTS:

The prediction results for MHC Class I and II molecules for the Dopamine (Accession No: P09172) were obtained using IEDB's TepiTool. The predicted result in concise table shows the percentile rank. The low percentile ranks (less than 1) indicate these peptides are strong candidates for further experimental validation as potential MHC Class I and II epitopes for Dopamine. Best percentile ranks 0.02 for the allele peptides are predicted to bind well to the corresponding MHC Class I molecules and for MHC Class II the percentile rank is 1.01.

CONCLUSION:

TepiTooL was used to perform T cell epitope predictions on the IEDB database. It identified potential epitopes for both Class I and Class II MHC molecules. TepiTooL is a tool designed to predict peptide sequences that can bind to MHC molecules, aiding in the identification of T cell epitopes crucial for immune responses. It provides a ranking based on binding affinity, helping prioritize peptides for further research.

REFERENCES:

- Paul, S., Sidney, J., Sette, A., & Peters, B. (2016). TEPiTool: A pipeline for Computational Prediction of T cell epitope Candidates. Current Protocols in Immunology, 114(1). <u>https://doi.org/10.1002/cpim.12</u>
- Kim, Y., Ponomarenko, J., Zhu, Z., Tamang, D., Wang, P., Greenbaum, J., Lundegaard, C., Sette, A., Lund, O., Bourne, P. E., Nielsen, M., & Peters, B. (2012). Immune epitope database analysis resource. Nucleic acids research, 40(Web Server issue), W525– W530. <u>https://doi.org/10.1093/nar/gks438</u>
- Wang, H., Guo, M., Wei, H., & Chen, Y. (2023). Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduction and Targeted Therapy, 8(1). <u>https://doi.org/10.1038/s41392-023-01347-1</u>