Next Generation Sequencing An Overview

What is sequencing?

DEFINITION

• "In <u>genetics</u> and <u>biochemistry</u>, **sequencing** means to determine the <u>primary structure</u> (or primary sequence) of an unbranched <u>biopolymer</u>."

Principle

SYNTHESIS of DNA is randomly **TERMINATED** at different points

Separation of fragments that are 1 nucleotide different in size

Sanger's sequencing

P³² labelled ddNTPs

Lack of OH-group at 3' position of deoxyribose

Fluorescent dye terminators

Max fragment length – 750 bp

Maxam & Gilbert Sequencing

Sequencing genomes using **Sanger**'s method

- Extract & purify genomic DNA
- Fragmentation
- Make a clone library
- Sequence clones
- Align sequencies (-> contigs -> scaffolds)
- Close the gaps
- Cost/Mb=1000 \$, and it takes TIME

Major NGS technologies

NGS technologies

Company	Platform	Amplification	Sequencing method
Roche	454**	emPCR	Pyrosequencing
Illumina	HiSeq MiSeq	Bridge PCR	Synthesis
LifeTech	SOLiD**	emPCR/ Wildfire	Ligation
LifeTech	Ion Torrent Ion Proton	emPCR	Synthesis (pH)
Pacific Bioscience	RSII	None	Synthesis
Complete genomics	Nanoballs	None	Ligation
Oxford Nanopore*	GridION	None	Flow

Making a NGS library

DNA QC – paramount importance

Sharing & size selection

Ligation of sequencing adaptors, technology specific

Roche

Instrument	Yield and run time	Read Length	Error rate	Error type
454 FLX+	0.9 GB, 20 hrs	700	1%	Indels
454 FLX Titanium	0.5 GB, 10 hrs	450	1%	Indels
454 FLX Jr	0.050 GB, 10 hrs	400	1%	Indels

Main applications:

- Microbial genomics and metagenomics
- Targeted resequencing

454 Titanium GS FLX

Illumina

Instrument	Yield and run time	Read Length	Error rate	Error type
Upgrade HiSeq2500	120 GB in 27h or standard run	100x100	0.1%	Subst
MiSeq	540 Mb – 15 Gb (4 – 48 hours)	Upp to 350x350	0.1%	Subst

Main applications

- Whole genome, exome and targeted reseq
- Transcriptome analyses
- Methylome and ChiPSeq
- Rapid targeted resequencing (MiSeq)

Illumina

1. PREPARE GENOMIC DNA SAMPLE

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

4. FRAGMENTS BECOME DOUBLE STRANDED

The enzyme incorporates nudeotides to build double-stranded bridges on the solid-phase substrate.

2. ATTACH DNA TO SURFACE

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

5. DENATURE THE DOUBLE-STRANDED MOLECULES

Attached

Denaturation leaves single-stranded templates androred to the substrate.

3. BRIDGE AMPLIFICATION

Add unlabeled nudeotides and enzyme to initiate solid-phase bridge amplification.

6. COMPLETE AMPLIFICATION

Several million dense dusters of doublestranded DNA are generated in each channel of the flow cell.

7. DETERMINE FIRST BASE

First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.

10. IMAGE SECOND CHEMISTRY CYCLE

After laser excitation, collect the image data as before. Record the identity of the second base for each duster.

8. IMAGE FIRST BASE

After laser excitation, capture the image of emitted fluorescence from each duster on the flow cell. Record the identity of the first base for each duster.

9. DETERMINE SECOND BASE

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

11. SEQUENCE READS OVER MULTIPLE

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

12. ALIGN DATA

Align data, compare to a reference, and identify sequence differences.

Life Technologies SOLiD

Instrument	Yield and run time	Read Length	Error rate	Error type
SOLiD 5500 wildfire	600 GB, 8 days	75x35 PE 60x60 MP	0.01%	A-T Bias

Features

- High accuracy due to two-base encoding
- True paired-end chemistry ligation from either end
- Mate-pair libraries

Main applications (currently)

•ChiPSeq

SOLiD - ligation

Life Technologies - Ion Torrent & Ion Proton

Chip	Yield - run time	Read
		Length
PGM 314	0.1 GB, 3 hrs	200 - 400
PGM 316	0.5GB, 3 hrs	200 - 400
PGM 318	1 GB, 3 hrs	200 - 400
P-I	10 GB	200

Main applications

- Microbial and metagenomic sequencing
- Targeted resequencing
- Clinical sequencing

Ion Torrent - H⁺ ion-sensitive field effect transistors

Pacific Bioscience

Instrument	Yield and run time	Read Length	Error rate	Error type
RS II	500 MB/180 min SMRTCell	250 bp – 20 000 bp (35 000 bp)	15% (on a single passage!)	Insertions, random

Single-Molecule, Real-Time DNA sequencing

NGS technologies - SUMMARY

Platform	Read length	Accuracy	Projects / applications
454	Medium	Homo-	Microbial + targeted reseq
		polymer runs	
HiSeq	Short	High	Whole genome +
MiSeq	Medium		transcriptome seq, exome
SOLiD	Short	High	Whole genome +
			transcriptome seq, exome
Ion Torrent	Medium	High	Microbial + targeted reseq
Ion Proton	Short/Medium	High	Exome, transcriptome, genome
PacBio	Long	Low – ultra high*	Microbial + targeted reseq
			Gap closure & scaffolding

	Illumina HiSeq	Illumina MiSeq	SOLiD Wildfire	Ion Torrent	Ion Proton	PacBio
Read length	100 + 100 bp (150+150 bp)	250 + 250 bp (350+350 bp)	75 bp	200 bp 400 bp (500 bp)	150 bp 200 bp	1 – 20 Kbp
WGS: - human - small	++++	+++	(+) (+)	++++	+ +++	(+) +++++
De novo	+++	++		+++	++	++++
RNA-seq miRNA	+++		+++		+++	+++*
ChIP	+++		++++			
Amplicon	++	+++		+++	+++	+++
Metylation	+++					++++*
Target re-seq	++	+++	(+)		+++	+++
Exome	+++		(+)		++++	(+)