Chapter 5. Genomics, Proteomics and Bioinformatics

5.1 Genomics:

Genomics is a relatively new discipline. Although, the DNA was first isolated as early
as 1869, it took more than one Century for the first genomes to be sequenced. The term
genomics was introduced recently by Thomas Roderick in 1986. Genomics describe the
detailed study of genome; it is structural organisation and function using various modern
methods including computational biology. It involves the genome sequencing and computer
aided analysis to understand its structural organisation and functions, genome mapping and
related studies. The term genome represents the complete genetic material including both
nuclear and cytoplasmic genes present m a cell. The Human Genome Project (HGP), sponsored
in the United States by the Department of Energy and the National Institutes of Health, has
created the field of genomics understanding genetic material on a large scale. The field of
molecular life science is changing rapidly, because of the genomic revolution. Revolutionary
improvements in the DNA sequencing techniques have given rise to a large amount of DNA
sequences, which is difficult to manage, particularly for future references and analysis.
Technological developments in computer and information technology have helped a lot in
managing the huge data of DNA sequences in the form of computerised databases and it is
access through internet.

5.1.1 Concept of genomics:

Thormas Roderich introduced the term genomics in 1986. It is scientific method of
mapping, sequencing and analysing and making the use of genetic information for further use
in multifarious area. Genomics can be defined as the study of molecular organisation of
genomes, their information contents and the gene products they encode.

“Genomics is the study of structure and functions of a genome of an organism. It
concerns with the sequencing and analysis of an organism’s genome. The genome is nothing
but the total DNA content that present within one cell of an organism”.

5.1.2 Types of genomics:

In the last few years, some interesting findings have been recorded and several new
branches have emerged. Consequently, the area of genomics has quietly widened. However,
the genomics is broadly categorised into three types namely, structural genomics, functional

genomics and comparative genomics.



1) Structural Genomics:) The process of finding out the sequences of genome is called as

structural genomics. The structural genomics deals with DNA sequencing,

sequence assembly,
Sequence organisation and management. Structural genomics attempts to determine the

structure of every protein encoded by the genome, rather than focusing on one particular

protein. Basically, it is the starting stage of genome analysis i.e. construction of genetic map or

sequence maps of high resolution of the organism. The complete DNA sequence of an organism
is its ultimate physical map. Due to rapid advancement in DNA technology and completion of
several genome sequencing projects for the last few years, the concept of structural genomics
has come to a stage of transition. Now structural genomics also includes systematic and
determination of 3D structure of proteins found in living cells, because proteins in every group

of individuals vary and so there would also be variations in genome sequences.

2) Functional Genomics) To study and understand the function of gene is the basis of

functional genomics. Based on the structural genomics the reconstruction of genome sequences
is useful to find out the function that the genes do. It gives an idea of function of all gene
sequence and their expression in organism. The different tools useful for structural genomics
are bioinformatics sequences, DNA chips, 2D gels etc. This information lends support to design
experiment to find out the functions that specific genome does. The strategy of functional
genomics has widened the scope of biological investigations. This strategy is based on
systematic study of single gene or protein to all genes. Therefore, the large-scale experimental
methodologies characterise the functional genomics. Hence, the functional genomics provide
the novel information about the genome. This eases the understanding of genes and function
of proteins and protein interactions. The development of microarray technology and proteomics
helped to explore the instantaneous events of all the genes expressed in a cell or tissue present

at varying environmental conditions like temperature, pH, etc.

3) Comparative Genomics:)The complete genome sequences of cellular organisms become

available, the notable finding was recorded. It was found that one third of the genes encoded

on each genome had no predictable or known function. e.g. in E.coli Ki> about 40 % genes
have unknown function. The level of evolutionary conservation of microbial proteins is rather
uniform with about 70 % of gene products from each of sequenced genomes having
homologous in distinct genomes. The function of these gene can be predicted by comparing
different genomes and by transferring functional annotations of protein for better studies
organisms to their orthologs (the same gene in different species that connect) as opposed to

paralogs i.e., genes related by duplication within the genome from less studied organism. For



better understanding of genomes, this makes comparative genomics as a powerful abproach.
Comparative genomics includes several aspects such as analysis of protein sets from
completely sequenced genomes. General purpose databases and organisms specific databases
used for comparative genomics.
5.1.3 Methods used for whole genome sequencing

The genome, of an organism (bacteria, virus, potato, human) is made up of DNA. Each
organism has a unique DNA sequence which is composed of bases (A, T, C, and G). If the

sequence of the bases in an organism are known, then we can identify its unique DNA

fingerprint, or pattern. Determining the order of bases is called sequencing.
is a laboratory procedure that determines the order of bases in the genome of an

organism in one process.
There are several methods used for whole genome sequencing. Sequencing of genome
chiefly comprises three stepE:)')'the cloning of the DNA to be sequenced,_)'ja’ the sequencing

S M 2 reactions and electrophoretic separations amé/m)’ the analysis of ensuing data. Following are
” important methods of whole genome sequencing:

1) Chemical Methom

This method was developed by Maxam and Gilbert (1977). A restriction fragment of

\‘/\N o v DNA is labelled with 32p at either its 5° or 3” using either of the enzymes polynucleotide kinase

0\\ \b A tj‘ or terminal transferase. From a restriction map, an enzyme is selected to remove a small piece
n

Ay from one end of the molecule leaving just one end labelled. The DNA is then chemically

cleaved at specific residues in five different reactions. These reactions are partially completed
and partial digestion products are separated on a polyacrylamide gel and autoradiographed. The

fragments having the labelled terminus are seen.

2) Whole Genome Shotgu@

J. Craig Venter and H. Smith developed whole Genome shotgun sequencing and the

two genome of bacteria Haemophilus influenzae and Mycoplasma genitalium. This method

consists of four steps:
L/?@rary Construction;) The chromosome is isolated from the desired cells following the
methods of molecular biology. The isolated DNA is randomly fragmented into small pieces

using ultrasonic waves. Then fragments are purified and attached to plasmid vectors. Plasmid

with single insert is isolated. A library of plasmid clones are prepared by transforming E. coli

strains with plasmid that lacked restriction enzymes.



i Random Sequencing:)The DNA is purified from plasmid. Thousands of DNA fragments are
sequenced using automated sequencer by using primers labelled with special dyes. Normally

with universal primers, thousands of templates were used. These recognise the plasmid DNA

sequences next to bacterial DNA insert. The whole genome is sequenced several times.

.\/iﬁf)@;gr;ent - alignments and G@ By using special computer programme, the

sequenced DNA fragments are clustered and assembled into longer stretches of sequence by

comparing nucleotide sequence overlaps between fragments. Two fragments are joined to form
a large stretch of DNA if the sequences at their ends overlapped and matched. This overlap

comparison method resulted in a set of larger contiguous nucleotide sequence calle
The contigs are aligned in a proper order to form the completed genome sequence.

ivXProof Reading:)Then the proof reading of sequences is done carefully so that any

ambiguities in the sequence could be resolved. The sequence is also checked for the presence

of any frame shift mutation; if so, the mutation is corrected.

\_/Pé.l : Whole Genome shotgun sequencing

5.2 Proteomics:

Proteomics is the study of all the proteins produced by a cell. Proteomics is the

identification, analysis and large scale characterisation of proteome expressed by any cells,

tissues and organs under the defined conditions. The/major objectives)of proteomics a\re/'/)’fo
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characterise post-transcriptional modifications in protein al\lyj)’lo prepare 3D map of a cell
indicating the exact location of protein.

S.2.1Concept of proteomics:

The total protein component in a cell or organism is referred as the proteome.
Proteomics deals with the study of proteomes. In broader term, proteomics is defined as the
total protein content of a cell or that of an organism. The terms ‘proteome’ and ‘proteomics’
were coined in the early 1990 by Marc Wilkins. Proteomics helps in understanding of alteration
in protein expression during different stages of life cycle or under stress condition. Likewise,
Proteomics helps in understanding the structure and function of different prdteins as well as
protein - protein interactions of an organism. A minor defect in protein structure, it is function
or alternation in expression pattern can be easily detected using proteomics studies. This is
important with regards to drug development and understanding various biological processes,
as proteins are the most favourable targets for various drugs. The first protein studies that can
be called proteomics began in 1975 with the introduction of the two dimensional gel and
mapping of the proteins from the bacterium Escherichia coli, guinea pig and mouse. Proteins
are macromolecules; long chains of amino acids. This amino acid chain is constructed when
the cellular machinery of the ribosome translates RNA transcripts from DNA in the cell’s

nucleus. The transfer of information within cells commonly follows this path from DNA to
RNA to protein.

DNA ——» RNA —P» Proteins

Transcription  Translation

Replication
5.2.2 Types of proteomics:
The types of proteomics are as follows:

1) Structural Proteomics:

Structural proteomics deals with the study of structure and nature of protein complexes
present in a particular cell organelle. It is mapping out the 3-D structure and nature of protein
complexes present specifically in a particular cell organelle. The ultimate aim of structural
proteomics is to build a body of structural information that will help predict the probable
structure and potential function for almost any protein from knowledge of its coding sequence.
Structural proteomics can also help assembling information about protein - protein interactions

and about architecture of cells to explain how the expression of certain proteins contributes in
cell’s unique characteristics.



( 72) Functional Proteomics:

Functional proteomics refers to the use of proteomics techniques to analyse the

characteristics of molecular protein-networks involved in a living cell. One of the recent
successes of functional proteomics is the identification and analysis of molecular protein
networks involved in the nuclear pore complex (NPC) in yeast. This success helps understand

the translocation of molecules from nucleus to the cytoplasm and vice versa.

(_ 3) Expression Proteomics:

Expression proteomics concerned with to the quantitative study of protein expression

between samples differing by some variable. The pattern of expression of the complete

proteome or of its part (sub-proteome) between samples can be compared with the help of

expression proteomics. The expression proteomics is quite useful in identifying disease

specific proteins. For example, over expression or under-expression of proteins in cancerous
cells and normal cells taken from a cancer patient and a normal individual, respectively, can be
analysed using various techniques, such as two dimensional gel elec trophoresis, mass spectrometry,
microarray, etc. This can help understand the development of cancer and facilitate development of

drugs to treat cancer.
5.2.3 Methods used in proteome analysis:

Although new methods in proteomics are being developed, the traditional methods are;
two-dimensional electrophoresis, and mass spectrometry. The first dimension uses iso-electric
focusing and second dimension is SDS-PAGE. Some of the methods used in proteome (protein)
analysis are as follow:

a) Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE):

Separation of some of the proteins dose not occur due to similar charge: mass ratio.
Therefore, such proteins are treated first with an ionic detergent called sodium dodecyl sulphate
(SDS) before to electrophoresis (PAGE). Therefore, such electrophoresis is called SDS-PAGE
electrophoresis.

SDS-PAGE is a high resolution method used universally for analysing the mixture of
proteins according to their respective size. SDS solubilised in soluble protein makes possible
the analysis of the other insoluble mixture. Separation of the proteins doses not occur due to
similar charge: mass ratio (z/m). Therefore, such proteins are treated first with an ionic

detergents SDS before the start and during the course of electrophoresis.



Identical proteins are denatured by SDS resulting in their sub-units. The polypeptide
chains get opened and extended. On the basis of their mass but not the charge, the molecules B
are separated. Electrophoretic separation is normally used for these reasons 1. e\/(j)/gel acts as fsveh
molecular sieves hence separates the molecules the molecules on the basis of their size, anw WW
gel suppresses conventional currents produced by small temperature gradient which improve @
the resolution. Polyacrylamide gel is used for this purpose due to its good nature (chemically 5&

mert, stable over a wide range of pH, temperature and trangparent) Polyacrylamide gel is better

for size fraction of proteins. MDL\O is Fobj Mya)(om, de
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Fig. 5.2 SDS-PAGE analysis of proteins

The proteins are denatured and have negative charge with a uniform charge to mass
ratio(z/m) when treated with SDS. Proteins migrates towards anode at alkaline pH through
PAGE gel during electrophoresis. The smaller polypeptides moves faster followed by the larger
polypeptides. Therefore, intrinsic charge on proteins is masked in SDS-PAGE. Hence
separation is based on size. Molecular weight of the separated protein can be analysed by
comparing the molecular weight of the standard protein and its mobility. In analysis of a
complex a complex mixture of proteins the resolution is improved by the initial movement
through a stacking gel. The final bands in the separating gel are sharper and focused in better
way.

Two dimensional electrophoresis is very useful and effective method as it separating

proteins and can resolve thousands of proteins in a mixture.

e e
@-electric Focusing (IEF):

The biomolecule like proteins have electric charge which depends on molecule to

molecule and conditions of medium (pH of buffer in which dissolved). Charged molecules can



be separated by electrophoresis in gels. Due to the differences in amino acid composition

proteins have net charge or iso-electric points (no charge) as a given pH of buffer.

The atmospheric substances such as proteins which differ in their isoelectric points can
be separated by IEF. Isoelectric point is a pH value at which the net charges on molecules are
zero. Ampholytes (i. e. complex mixture of synthetic polyamino-polycarboxylic acids) are
introduced into gel to create the PH gradient (wide range from 3 to 10, or narrow range of 7 to
8). Then potential difference is applied across the gel. The molecule having difference in
isoelectric points by a little as 0.01 PH unit can be separated. Proteins migrate depending on

their charge until they reach a region which pH corresponds to respective iso-electric points at
which pH proteins possess no net charge and hence got focused.

¢) Mass spectrometry:

Mass spectrometer which employed fixed magnetic and electric field to separate ions
of different mass and energy. Two-dimensional electrophoresis is more powerful when coupled
with mass spectrometry. The unknown protein spot is cut from gel and cleaved by trypsin
digestion into fragments which are then analysed by mass spectrometer and mass of fragments
is plotted. This mass finger print can be used to estimate the probable amino acid composition
of each fragment and tentatively identify the protein. The proteome and its charges can be
studied very effectively by employing the two techniques together.

Mass spectrometry can also provide valuable information about covalent modification
of proteins which can affect their activity. Mass spectrometry is very useful technique. It is
used in identification of unknown compounds and determination of structural and chemical

properties of compounds when present in small amount (10 -10% g)- This technique involves:

\__iy the production of ions of the material in sample, (1) their separation on the basis of their

mass change (m:e), aWetermination of relative abundance of each ion.

Therefore, mass spectrometer consists of three components: the source of ion, an
analyser, and a detector. It dose not directly measure the molecular mass but detects m:e ratio.

Mass is measured in terms of Dalton (Da). One Dalton = 1/12 mass of a single atom of isotonic
carbon (* C).

In recent days, mass spectrometry has become an essential tool for analysis of genome

and proteome in its many forms. It is capable of identifying and characterising proteins present

even in picomoles (107'2),
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GENE PREDICTION

which s statistical description of coding regions. It has been observed that nucleotide
composition and statistical patterns of the coding regions tend to vary significantly
from those of the noncoding regions. The unique features can be detected by employ-
ing probabilistic models such as Markov models or hidden Markov models (HMMs;

see Chapter 6 h coding from noncoding regions.
Th§ homology-based method makes based on matches of

the query sequence with sequences of known genes. For instance, if a translated DNA
sequence is found to be similar to a known protein or protein family from a database
search, this can be strong evidence that the region codes for a protein. Alternatively,
when possible exons of a genomic DNA region match a sequenced cDNA, this also

provides exp 1 evid for the of a coding region.
Some algorithms make use of both gene-finding strategies. There are also a num-
ber of that actually bis d results from multiple individual

programs to derive a consensus prediction. This type of algorithms can therefore be

considered agconsensus based”

significantly reduce the amount of experimental verification work required.
However, this may still be a distant goal, particularly for eukaryotes, because many
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This is because coding regions normally do not have conserved motifs. Detecting YO M
coding potential of a genomic region has to rely on subtle features associated with ntva N‘w
genes that may be very difficult to detect. w Ml —

Through decades of research and development, much pmyess has been made in
ofp Anumber of gene predicti for prokary-

otic genomes have been developed with varying degrees of success. Algorithms for |
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eukarytotic gene prediction, however, are still yet to reach satisfactory results. This P)’V Lo
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stop codons, intron splice signals, transcription factor binding sites, ribosomal bind-
ing sites, and polyadenylation (poly-A) sites. In addition, the triplet codon structure
limits th frame length to f three, which can be used as a condition
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@hlch includ€bacteria and Archaea have relatively small genomes with

GENE PREDICTION IN PROKARYOTES

sizes ranging from 0.5 to 10 Mbp (1 Mbp = 10° bp). The gene density in the genomes is
high, with more than 90% of a genome coding There
are very few repetitive sequences. Each prokaryotic gene is composed of a single
contiguous stretch of ORF coding for a single protein or RNA with no interruptions
within a gene.
More detailed knowledge of the bacterial gene structure can be very useful in gene P

prediction. In bacteria, the mnjomyafgenes haveas_gm;mm (orAUGin mRNA;
S us hich codes for

methionine. Occasionall
—
methionine is still the actual a

mayhe multiple ATG, GTG, or TGT codons in a frame, the tesence of these od ans at
fthelrame doggnDnecessarlygive
initiation site, Instead, to help identify this initiation codon, other features associated

calledthe

with translation are used. One such h
Shine-Delgarno sequence,which is a stretch of purine-rich sequence complementary

0 165 RNA in the ribosome (Fig. 8.1). It is located immediately downstream of the
transcription initiation site and slightly upstream of the translation start codon. In
'many bacterla, it has a consensus motif of AGGAGGT. Identification of the ribosome
binding site can help locate the start codon.

At the end of the protein coding region is a stop codon that causes translation to
stop. There are three possible stop codons, id of which is
ward. Many prokaryotic genes are transcribed together as one operon. The end of the
rized by a signal called p-independent
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Flgure 8.1: Structure of a typical prokaryotic gene structure. Abbreviation: RBS, ribosome binding site.
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followed by a string of T5. Identification of the terminator site, in conjunction with fal ' ' ' i
promoler sile identification (see Chapter 9), can help in gene . , \ o 15 TESTCODE

Conventional Determination of Open Reading Frames 2 ¥.Q Lo db prt it o v m M P W’
Without the use of specialized programs, prokaryolic gene identification can rely ] ,ﬁ

on manual determination of ORFs and major signals related to prokaryotic genes. ¢ ! T r M )
Prokaryotic DNA is first subject tdConceptual translation in all six possible frames, ! r M \w T
three frames forward and three frames reverse. Because astop codon occurs in about -3 ' \;\A) 9 7 o

every twenty codons by chance in a noncoding region, a frame longer than thi i R A 0 1000 2000 3000 4000
codons without interruption by stop codons is suggestive of a/§ene coding region, 'ﬂ «M» 0*;0 M ' 5 ey Nt
1 i

T
hthe canORElS set even higher at fifty o sixty codons. ()Lp 0 ' v+ Figure 8.2: Coding frame detection of a bacterial gene using either the GC bias or the TESTCODE

The putative frame is further manually confirmed by the presence of other signals (r ) method. Both result in similar Identification of a reading frame (dashed arrows).

such as a start codon and Shinc-Delgarno sequence. Furthermore, the putative ORE Y7 go L ' WAYE

can be translated into a protein sequence, which is then used to search against a Gene Prediction Using Markov Models and Hidden Markov Models

protein database(Detection of homologs from this sea s probably the strongest . = 2 Markovmodels and HMMs can be ve; helpfulinproviding finerstatistical description
indicator of a protcin-coding frame. > Maﬂwv 1 &J‘d ofagenc (scc Chapter 6). A\Markovmodcld cscnhts the probability of the distribution
eot] - :

In the early stages of development of gene prediction algorithms, genes were pre- p i of nu des in a DNA sequence, in whi di probability ofap
dicted by examining the nonrandomness of nucleotide distribution. One method is ~ *~ k = DTM & MAH‘”V mu[»' sequence positio{depends on & previous positionsNn this the oxder ofa
based on the(hucleotide composition of the third position of a codon.)n a coding 0 ) _,) W bode b itud Markov model. A zero-order Markov model h base occurs ind
sequence, it has been observed that this position has a preference to use G or C gver lf\ d ‘ wn Hﬁ w HZN with a given | given probability. This is often the case for nnncodmgd:equ:cebs . A first- crder
AorT. lotting the GC composition at this position, regions with values signifi- Markov model assumes that the occurrence of a base depends on the base Ppreceding
cantly ;le; the rgandnm 1cvclmcl:n beid pwhich arc 'gl" ive of the b i ! a" e W'o skl h it. A second-order model looks at the preceding two bases (o determine which base
of ORFs (Fig. 8.2). In practice, because genes can be in any of the six frames, the g m A pL rg j%i follows, which is more characteristic of codons in a coding sequence.

statistical patterns are computed for all possible frames. In addition to codon bias, S The use of Markov models in gene finding exploits the fact that oligonucleotide
there Js a simllar method “uelmp].emenled {n the commerclal GCG {7 7L A o —> gcemryentt ) & distibulionsin he codingregionsare diferent from those for the noncoding regions.
package) that exploits the fact that the third codon nucleotides in a coding region L!N& ). JoY s These can be represented with various orders of Markov models. Since a fixed-order

tend to repeat themselves. By plotting the repeating patterns of the nucleotides at ¢ Markov chain describes the probability of a particular nucleotide that depends on
'h\‘ ML } [ 'j previous k nucleotides, the longer the oligomer unil, the more nonrandomness can

this position, coding and noncoding regions can be dilferentiated (see Fig. 8.2), The
results of the two methods are often The two methods are often used in t 4 i t be described for the coding region. Therefore, the higher the order ofa Markov model,
conjunction to confirm the results of each other. m,\ . ak the wn can predict a gene.

These slalistical methods, which are based on empirical rules, examine (he siatis- =~ ._) ‘UU“ L ding gene is of ides in riplels as codons, A

asec on emplrical rules MM d’E P

tics of a single nucleotide (either G or C), They identify onl: ical genes and tend rmM 2 basea moreﬁve Markov models areb_uil_tmw; describing non-
to miss atypical genes in which the rule of codon bxas is not smctly followed To ) AW IN(,“ random distributions of trimers or h and so on. The pmmetefs of a Markov 9 @
improve the prediction ies, the new of use + ‘4'"\' model have to be trained usingaset :--‘ ! withknown 2 Oncethe
more sophisticated statistical models. oade M\J—i parameters of the model are established, it can be usw_ﬂmﬂmh

Oy wore M‘*‘M"‘“ l_ﬂ\ﬁv\ fhe dgvmmc =Y A Nen —randomnes
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The following describes a number of IIMM/IMM-bascd genc finding programs for
prokaryotic organisms.

GeneMark (http:/opal.biol h.edu/G /) is a suite of gene predic-
tion programs based on the fifth-order [IMMs. The main program — GeneMark.-hmm —
is trained on anumber of comp i If q tobe predicted
is from a nonlisted organism, the most closely related organism can be chosen as the
basis for computation. Another option for predicling genes [rom a new organism
is to use a self-trained program GeneMarkS as long as the user can provide at least
100kbp of which to train th del. If the query seq is shorter than
100 kbp, a GeneMark heuristic program can be used with some loss of accuracy. In
addition to predicting prokaryotic genes, GeneMark also has a variant for eukaryotic
gene prediction using HMM.

Coding region Glimmer (Gene Locator and Inlerpolaled Markov Modeler, www.ligr.org/sofllab/
Figure 8.3: A simplified second-order HMM for prokaryotic gene prediction that Includes a statistical glimmer/glimmer.html) is a UNTX program from TIGR that uses the IMM algorithm
model for start codons, stop codons, and the rest of the codons in a genc sequence represented by a to predict potential coding regions. ‘The computation consists of two steps, namely
typical model and an atypical model model bullding and gene prediction. The model building involves training by the
d of trimers orh in a new to find regions that are com- input which optimizes the of the model. In an actual gene
patible with the statistical profiles in the learning set. prediction, the overlapping frames are “flagged” toalertthe user for furtherinspection.
Statistical analyses have shown that pairs of codons (or amino acids at the protein Glimmer also has a variant, GlimmerM, for eukaryotic gene prediction.
level) tend to correlate, The frequency of sixunique nucleotides appearing togethe FGENESB (www.softberry.com/berry.p ic=gfindb) is a web-based pro-
acodingregionismuchhigherthan by random chance. Therefore, gram thatis also bascd on fifth-order 1IMMs for detccti ingregions. Thep
‘ which calculates the probability of hexamer bases, can detect nucleotide cor- is speci trained for bacterial It uses the Vertibi algorithm (see Chap-
Telations found in coding regions more accurately and is in fact most often used. P L N d‘, % ter 6) to find an optimal match for the query sequence with the intrinsic model. A
A potential problem of using a fifth-order Markov chain is that if there are not v M MV lincar discriminant analysis (LDA) is uscd to further distinguish coding signals from
enough hexamers, which happens in short gene sequences, the method's efficacy 3”1‘ ML” Al Q noncoding signals.
may be limited. To cope with this limitation, alled '“‘QM These programs have been shown to be reasonably successful in finding genesina
a h has been developed. The IMM method samples / genome. The problem is i i diction of Tati itiation sites
the largest number of sequence patterns with k ranging from 1 to 8 (dimers to nine- “ ‘, 1 M M ﬂ(f;WJLO F d because of inefficient identification of ril 1 binding sites. This problem can be
mers) and uses a weighting scheme, placing less weight on rare k-mers and more /r . died by identifying the ri I binding site d with a start codon. A
weight on more frequent k-mers. The probability of the final model is (he sum of number of algorithms have been developed solely for this purposc. RBSfinder is one
probabilities of all weighted k-mers. In other words, this method h AA\( th (5 such algorithm.
der (ftp:/ftp.ti pub )isaUNIX| use:

models are used when there is a sullicient amount of dala and lower-order models

are used when the amount of data is smaller.
It has been shown that the gene content and length distribution of prokaryotic
genes can be either Lypical or atypical. Typical genes are in (he range of 100 lo
v\ (.’1 500 amino acids with a nucleotid ion typical of the Atypical genes
kj w.) are shorter or longer with different nucleotide statistics. These genes tend to escape
Sd\‘u s delection using the typical gene model. This means tha(, to make (he algorithm capa-

Q}M ble of fully describing all genes in a g than one Markov model is needed.)

(\Q ‘k{m To combine different Markov models that md atypical nucleotide
distributions creates an HMM prediction algorithm. A simplified HMM for gene find-

@ i in using Markov models depending on the amount of data available. Higher-order

VA‘,M ing is shown in Fig. 8.3.
o p)

(he prediction outpul rom Glimmer and searches for the Shine-Delgarno sequences
in the vicinity of predicted start sites. If a high-scoring site is found by the intrinsic
probabilistic model, astart codonis confirmed; otherwise the program moves to other
pulalive ranslation start sites and repeals the process.

Performance Evaluation

Thy ﬂccu’W lion program can be evaluated using parameters such a
sitivit city)lo describe th P itivity and sp

four features are used: true Eosiu‘ve (I'P), which is a correctly predicted feature; fal__ig
positive (FP), which s an i i\ dicted feature; false negative (EN), which is

a missed feature; and true negative (TN‘). which is the correctly predicted absence of
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TP (True tve) = (orreutty predicked feature
EP (Pakee +ve) — \'\w""'(d"‘:l predicked
TN (Tru —we) = levreetly

EN (Paloe ~Ve) —> Midled fesdvre.
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Uure

FN ™ FP I ™

Real Gene

Predicted Gene
d

Figure 8.4: Definition of four basic measures of gene prediction accuracy at the nucleotide level. Abbre-
viations: FN, false negative; TP, true positive; FP, false positive; TN, true negative.

afeature (Fig, 8.4). Using these fvur terms(sensitivity (SE)an

fescribed by the
Sn = TP(TP + FN) (©q.8.1)
Sp = TPI(TP + FP) (Eq.8.2)

According to these fnrmulass the proportion of true signals predicted
among all possible true signals. It can be considered as the ability to include correct

predictions, In contrasl, s the proportion of (rue signals among all signals
thatare predicted. It representsThie abil H!zw excludeincorrect predictions. A program
is d accurate if both and I ly high and
approach a value of 1. In a case in which sensitivity is hlgh but specificity is low, the
program is said to have a tendency to overpredict. On the other hand, if the sensitivity
islow but specificity high, the program s too conservative and lacks predictive power.

Because neither sensitivity nor specificity alone can fully describe accuracy, it is
desirable to usc a single value to summarize both of them. In the ficld of gene finding,
a single parameter known as the correlation coefficient (CC) is often used, which is
defined by the following formula:

TPeTN—FPeFN

VTP+FP)TN + FN)(FP + TN)
The value of the CC provides an overall measure of accuracy, which ranges from —1
to +1, with +1 meaning always correct prediction and —1 meaning always incorrect
prediction, Table 8.1 shows a performance analysis using the Glimmer program as an
example.

cc= (Eq.8.3)

GENE PREDICTION IN EUKARYOTES

Eukar much larger than prokaryoticones, with sizes ranging
from 10 Mbp to 670 Gbp (1 Gbp = 10° bp). They tend to have a very low gene density.

In humans, for only3%olthe forgenes, withabout 1 gene per
100 kbp on average. The space between genes is often very large and rich in repetitive
uen d transposable elements.
Most ly, eukaryotic re ch d by a mosaic

in which a gene is splitinto pieces (callzc byinter
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TABLE 8.1. Performance Analysis of the Glimmer Program for Gene Prediction
of Three Genomes

Species GC (%) FN FP Sensitivity  Specificity ]
Campylobacter jejuni 30.5 10 19 99.3 98.7
TIlaemophilus influenzae 38.2 3 54 99.8 96.1
Helicobacter pylori 38.9 6 39 99.5 97.2

Note: The data sets were from three bacterial genomes (Aggarwal and Ramaswamy, 2002).
Abbreviations: TN, false negative; FP, false positive.

called imromD(Fxg 85) The nascent transcript from a eukaryotic gene id
. ng

@‘ three differen a mature mRNA for protein translation.

The [irst is(capping at Lhe 5’ end ol lhe transcript)which involves methylation at
the initial residue of the RNA. The second event lwhich is the process of

removing introns and joining exons. The molecular basis of splicing is still not com-
pletely understood. What is known currendly is that the splicing process involves a
large RNA-protein complex called spliceosome. The reaction requires intermolecu-

—3 dpv (ohderyeln Tar interactions between a pair of nucleotides at each end of an intron and the RNA

componen( ol the spliceosome. To make the mal ter even more complex, some eukary-

otic genes can have their transcripts spliced and joined in different ways to generate
TS e et s gt THR e phenomenon AT splm:
to be discussed in more detaﬂ l.n Chapter 16, alternative splicing is a major mecha-
ity in eukaryotic cells. The third modification is

) hich is the addition ofastretch of As (~250) atthe 3’ end ofthe RNA.
o &7 rrdabion w&(biuu‘}- Start Stop
C C L ) codon codon
< Transcription gu ag s 21 lsd =
= (’W-‘TN) - (#F-1N) at T mron 1 e nton 2 e Inwons s Pob-A
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Mature RNA
Figure 8.5: Structure of a typical cukaryotic RNA as primary mnscnpt from genomic DNA and as
malure RNA afler region; poly-A,
polyadenylation.
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This process is controlled by 4 alda conscrved motif slightly downstream

of a coding region with a consensu§

. The main j in prediction of eukaryotic ge
/7 trons, and splicing sites) From a computational point of view, it is a very complex
and c;;;;en:g pro::em. Because of the presence of split gene structures, alternative

splicing, and very low gene densities, the difficulty of finding genes in such an envi-
ronment s likened (o finding a needle in a haystack. The needle to be [ound actually
is broken into pieces and scattered in many different places. The job is to gather the
pieces in the haystack and reproduce the needle in the correct order.

The good news is (hal there are sull some conserved sequence [ea(ures In eukary-

otic genes that allow comp d For ple, the splice junctions of
introns and axohich an intron at the 5’ splice junction
has a consensus molif of GTAAGT; and al Lhe 3’ splice junclion {s a consensus motifof
(Py)h12NCAG (see Fig. 8.5). patterns useful for prokaryotic geneﬁndI ng
¢an be applied to eukaryotic systems as well. For le

and codon bias in coding regions of eukaryotes are different from those of the non-

coding regions. Hexamer frequencies in coding regions are also higher than in the

noncoding regions. Most vertebrate genes use ATG as the translation start codon and

transcription start sitc. This region is referred to as, (p refers to the phos-
d bond the two nucleotides), which Belps to identify the tran-
site of a gene. The poly-A signal can also help locate

the ﬂnal coding sequence.

Gene Prediction Programs

cukary-

To date, have been d d for i
otic genes. They fall into all three categories of algorithms: ab mmo based, homa]ugy
based, and consensus based. Most of these programs are(@rganism specifichecause
training data sets for obtaining statistical parameters have to be derived from indi-
vidual Some of the ithms are able to predict the most probable exons
as well as subop I exons p for possible alternative spliced
transcription products.

af —
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mes is th identification of exons,
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Ab Initio-Based g
The [ the ab initio gene prediction programs is lo discriminale exons from non- a M
coding sequences and sub join the exons together in the correct order. The.

maj @ js correct identification of exons. To predict exons, the algorithms rely
m gene signals and gene conlem Signals include gene star( and stop

sites and putative splice sxtes. suchas poly A Slt,es

Gene to co E istics, which includes

bution, amino acid di don usage, andhexamer frequencies, )

Among these features, the hexamer frequencies appear to be most discriminative for

wed disoringinabive
for w,ouvg fW“J“
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Hexamer frequency —» .
GC blas —» .
Splice sites —» . /

Hidden  Ouput

Input
layer layer layer

Figure 8.6: Architccturc of a neural network for cukaryotic genc prediction.

‘ Predmcn

coding potenlials. To derive an assessmenL for (his feature, HMMs can be used, which
require proper training, In addition to HMMs, neural network-based algorithms are
also common in the gene prediction field. This begs the question of what is a neural
network algorithm. A brief introduction is given next.

k Clml network (or arhﬁr:lal neural MES a
1 model with a special i and classilf i
Itis poscd of a network of matk ical vari that blc the biological
nervous system, with variables or nodes d by weighted functions that are
analogous to synapses (Fig. 8.6). Another aspect of the model that makes it look like
a biological ncural network is its ability to “lcarn” and then make predictions after
being trained. The network is able to process information and modify parameters of

diction Using Neural

" the weight functions between variables during the training stage. Once it is trained, it

is able to make & p about the unk

In gene prediction, aneural network is constructed with multiple layers; the input,
output, and hidden layers. T“s the gene sequence with intron and exon
signals. Ths the probability of an exon structure. Between input and oul-
Mere may be one or several hidden layers where the machine learning takes
place. The machine learning process starts by f the model with a sequence
of known gene structure. The gene structure information Is sepmled into several
classes of features such as hexamer frequencies, splice sites, and GC composition
durmg training. The weight functions in the idden layers are adjusted during this
process (o recognize the nucleolide pallerns and their relationship with known struc-

the same rules learned in training to look for patterns associated with the gene

it

}@

4®

tures. When the algorithm predicts an unknown sequence after training, it applies j O

structures.
The frequently used ab initio programs make use of neural networks, HMMs, and

discriminant analysis, which are described next.
(GRAIL (Gene Recognition and Assembly Internet Link; )ttp:// ‘compbio.ornl.gov/
public/tools/) is a web-based program that is based on a neural network algorithm.

‘The program is trained on several statistical features such as splice junctions, start




GENE PREDICTION IN EUKARYOTES 107 108 GENE PREDICTION

Arabide

for seq from ver is, and maize. It has been used extensively
in annotating the human genome (see Chapter 17).

HMMgene (www.cbs.dtu.dk/services/ HMMgene) is also an HMM-based web pro-
gram. The uniqucfeaturcof the program s that it uses a critcrion called the conditional
maximum likelihood to discriminate coding from ding features, If a
already has a subregion identified as coding region, which may be based on similarity
with cDNAs or proleins in a dalabase, (hese regions are locked as coding regions. An
HMM prediction is subsequently made with a bias toward the locked region and is
extended from the locked region to predict the rest of the gene coding regions and
even nelghboring genes. The program fs in a way a hybrid algorithm (hat uses both
ab initio-based and homology-based criteria.

@ 3" splice site
\/2:4 8.7: Comparison of two discriminant analysis, LDA and QDA. A coding features;  noncoding

Homology-Based Programs
s Homology-based programs are based on the fact that exon structures and exon
frelated species are highly conserved. When poteming framesina
and stop codons, poly-A sites, promoters, and CpG islands. The program scans the s%dmdﬂ;j&;d—md e
query sequence with windows of variable lengths and scores for coding potentials 9“:“; bq = neare - 3 = o nsi@ = D:;smp o eg: °“':l
and finally produces an outpul thal is the resull of exon candidales. The program m~ li:::e ,u:ar T;isec m: as! ur:i - vh:tmt‘h E:d“stzal-:as Iweaen e Adsemp b
Is currently trained for human, mouse, Arabidopsis, Drosophila, and Escherichia coli aes guery-Lhis appro Bes € database sequences are correct, }’
sequences. Itis a reasonable assumption in light of the fact that many homologous sequences

to be compared with are derived from cDNA or expressed sequence tags (ESTs) of
Prediction Using Discriminant Analysis. Some gene prediction algorithms rely on the same specics. With the support of i id this method by

discriminant analysis, either LDA or quadratic discriminant analysis (QDA), to 4 rather efficient in finding genes i.nlu?unanWn genomic DNA.
improve accuracy LDA)works by plotting a two-dimensional graph of coding sig- . ,&}ML», (b The(drawbackbf this approach is its reliance on the presence of homologs in
LD Pg nals versus all potential 3' splice site posi ?

DS p positions and drawing a diagonal linc that best U\ databascs. If the homologs arc not availablc in the datak the method cannot
separates coding signals from noncoding signals based on knowledge learned from \/{,oyv\ - loos be used. Novel genes in a new species cannot be discovered without matches in the
training data sets of known gene structures (Fig. 8.7) @ fraws a curved line based

database. A number of publicly available programs that use this approach are dis-
on a quadratic function instead of drawing a straight Tinc to scparate coding and & D A PW@ cussed next.

noncoding features. This strategy is designed to be more flexible and provide a more
optimal separation between the data points.

FGENES (Find Genes; www.softberry.com/) is a web-based program that uses LDA

G (http:// mit.edu/, html) is a web-based server that
combines GENSCAN prediction results with BLASTX similarity searches. The user
provides genomic DNA and protein sequences [rom related species. The genomic
to determinc whether a signal is an cxon. In addition to FGENES, there arc many DNA is translated in all six frames to cover all possible exons. The translated exons
variants of the program. Some programs, such as FGENESH, make use of HMMs. are then used to pare with the plied protein
 There are others, such as FGENESH.C, that are similarily based. Some programs, genomlc reglons having high similarily at the protein level receive higher scores.

such as FGENESII+, combine both ab initio and similarity-based approaches. The same sequence is also predicted with a GENSCAN algorithm, which gives exons
MZEF (Michael Zhangs Exon Finder; http://argon.cshl.org/genefinder/) is a web- probability scores. Final exons are assigned based on combined score information
based program that uses QDA for exon prediction. Despite the more complex math-

Irom both analyses.
matical [ the increase in perfc has not been obvious in EST2Genome (htrp:/lhioweb.pusteur.fr/seqanalllmerfaceslestzgennme.hrm]) isa
actual gene prediction. web-based program purely based on the sequence alignment approach to define
intron-exon boundaries. The program compares an EST (or cDNA) sequence with a
Prediction Using HMMs. GENSCAN (http://genes.mit.edu/ GENSCAN. html) is a web- DNA seq the sponding gene, The alij is done
based program that makes predictions based on fifth-order HMMs, It combines i (D
h with coding signals (initiati ATA

theability to find very small exons and alternatively spliced exons that are ve difficult 7
v I’ ] to predict by any ab initio-type algorithms. Another. advantage is that there is no nced
s g A

using a d ing-based algori On®fthe his
codons, box, cap site, poly- A’A\(MW ?}
A, etc.) in prediction. Putative exons are assigned o probability score (P d
true exon. Only predictions wi

s program is trained H

pro

E ;.

M ned ‘b MMM,M»V:‘
5 e .f{,_wu()b
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for model training Which provides much fpore flexibility)for gene prediction. The
M(L s that EST or cDNA sequences often contain errors or even introns if the
vw&)')/ transcripts letely spliced before reverse transcription.

SGP-1(Syntcnic Gene Prediction; http://195.37.47.237/sgp-1/) is asimilarity-based
web program that aligns two genomic DNA sequences from closely related organ-
isms. The progr: all p exons in each seq and does pair-
wise for the laled protein using ad,
approach. The near-perfect matches at the protein level define coding regions. Simi-
lar to EST2Genome, there is no training needed. The limitation is the need for two
homologous sequences having similar genes with similar exon structures; if this con-
dition s not met, a gene escapes detection from one sequence when there is no

( counterpart in another sequence.

TwinScan (hup:/genes.cs.wustledu/) is also a similarily-based gene-finding
server, It is similar to G in that it uses GenS to predict all possible
exons from the genomic sequence. The putative exons are used for BLAST searching
to find closest homologs. The putati and homologs from BLAST h
aligned to identify the best match, Only the closest match from a genome database is
used as a template for refining the previous exon selection and exon boundaries.

Consensus-Based Programs
Because different have different levels of sc: ity and speci-
ficity, it makes sense to combine results of multiple programs based on consensus.
0 . ThIS idea has prompted 1 of based algorith These pro-
\‘_\U{\b\"’a grams work by retaining d d by most programs and removing
/ di Suchun ‘h mayimprove the by
dicti since this

correcting th‘e false positives and the problem of
n <h 1 pred

p novel p (| it may lcad to lowered sensitivity and missed
predictions. Two les of based are given next.

GeneComber (www.b ube. ! dexphp) is a web
server that combines HMMgenc and GenScan predi results. The

of both predicti hods is d. If the two predictions match, the exon score

is reinforced. If not, exons are proposed based on separate threshold scores.

DIGIT (hutp://digit.gsc.riken.go.p/cgi-bin/index.cgi) is another consensus-based
web server. It uses prediction from three ab initio programs - FGENESH, GENSCAN,
and HMMgene. It first compiles all putative exons from the three gene-finders and
assigns ORFs with assoclated scores. It then searches a sel of exons with the highest
additive score under the reading frame constraints. During this process, a Bayesian
procedure and HMMs are used to infer scores and search the optimal exon set which
gives Lhe (inal designation of gene structure.

Performance Evaluation
Because of extra layers of complexity for eukaryotic gene prediction, the sensitivity
and specificity have to be defined on the levels of nucleotides, exons, and entire genes.

}V
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TABLE 8.2. Accuracy Comparisons for a Number of Ab Initio Gene
Prediction Programs at Nucleotide and Exon Levels

Nucleotide level Exon level

Sn S CC Sn  Sp (Sn+Sp)/2 ME WE
FGENES 086 088 083 067 067 067 012 0.09
GeneMark 087 089 083 053 054 0.54 013 0.11
Genle 091 09 o088 071 070 0.71 0.19 0.1
GenScun 095 090 091 070 070 0.70 0.08  0.09
1IMMgene 093 093 091 076 077 0.76 012 007
Morgan 075 074 074 046 041 043 020 0.28
MZEF 070 073 066 058 058 059 032 023

Note: The data sets used were single mammalian gene sequences (performed by Sanja
Rogic, rom www.cs.ubc.ca/~rogic/evalualion/(ablesgen.himl,
cc, ME, missed

8n, Sp,
exons; WE, wrongly predicled exons.

Thdsensitivity at the exon and gene level Js the proportion of correctly predicted exons

tion

or genesamong. actual exons or genes. Lt ificityatthe
d exons or genes among all predicions made. For exons, instead

of correctl:

of using CC, anéverage of sensitivity and speciﬁc‘?at the exon level is used instead.
In addition, the proportion of misscd cxons and missed genes as well as wrongly
predicted exons and wrong genes, which have no overlaps with true exons or genes,
often have to be indicated.

By introducing these measures, the criteria for prediction accuracy evaluation

(Table8.2). For le, acorrect exonrequires all nucleotides

belonging to the exon to be predicted correctly. For a correctly predicted gene, all

nucleotides and all exons have to be predicted correctly. One single crror at the

niicleotide level can negate the entire gene prediction. Consequently, the accuracy

values reported on the levels of exons and genes are much lower than those for
nucleotides.

When a new gene prediction program is published, the accuracy level is usually
reported. However, the reported performance should be reated with caution because
(he accuracy ls usually estimated based on parlicular dalasets, which may have been
optimized for the program. The datasets used are also mainly composed of short
genomic sequences with simple gene structures. When the programs are used in

gene prediction for truly unk eukaryolic g I the y can
become much lower. Because of the lack of unbiased and realistic datasets and objec-
i ison for eukaryotic gene prediction, itis difficult to know the true accuracy

of Lhe current prediction tools.

At present; no single software program is able to produce consistent superior
results. Some programs may perform well on certain types of exons (e.g. internal
or single exons) but not others (e.g., initial and terminal exons). Some are sensitive to
the G-C content of the input sequences or to the lengths of introns and exons. Most




FURTHER READING

programs make overpredictions when genes contain long introns. In sum, they all

" suffer from the problem of generating a high number of false positives and false nega-
tives. This is especially true for ab initio-based algorithms. For complex genomes such
as the human genome, most popular programs can predict no more than 40% of the
genes exactly right. Drawing consensus from results by multiple prediction programs
may enhance performance to some extent.

SUMMARY

Computational prediction of genes is one of the most important steps of genome
sequence analysis. For prokaryotic genomes, which are characterized by high gene
density and noninterrupted genes, prediction of genes is easier than for eukaryotic
genomes. Current prokaryotic gene prediction algorithms, which are based on HMMs,
have achieved reasonably good accuracy. Many difficulties still persist for eukaryotic
gene prediction. The difficully mainly results [rom the low gene density and split
gene structure of eukaryotic genomes, Current algorithms are either ab initio based,
homology based, or a combination of both. For ab initio-based eukaryotic gene pre-
diction, the HMM (ype of algorithm has overall belter performance in dilferenliating
intron—exon boundaries. The major limitation is the dependency on training of the
statistical models, which renders the method to be organism specific. The homology-
based algorithms in combination with HMMs may yield improved accuracy. The
method is limited by the availability of identifiable sequence homologs in databases.
The combined approach that integrates statistical and homology information may
generate further improved performance by detecting more genes and more exons
correctly. With rapid advances in computational techniques and understanding of the
splicing mechanism, it is hoped that reliable eukaryotic gene prediction can become
more feasible in the near future.
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Promoter and Regulatory Element Prediction k

@9 CeE)

An issue related to gene prediction is P @m DNA ele-

ments located in the vicinity of gene start sites (which should not be confused with the

Promot

®mnslaﬂun start sites) crve as bindingsites for the gene transcription machinery,

‘consisting of RNA p and transcription factors. Therefore, these DNA ele-
ments directly regi g and lalory are (radi-
tionally d dby analysis. The process i ex 1 c

and
to replace a great deal of extensive

(g and laborious) Computationsl preciction of
is

because it has the p

,g experimental analysis.

'Z However, p 1 id ion of p and reg y is

5. g also a very difficult task, for several reasons. First, and yel

T @ Enchgeneseems (0 have a unique com-
S bination of sets of y motifs that ine its unique and spatial

T There is ly a lack of ding of all the

N

v

latory sites to be predicted are normally short (six to
@ eight nucleotides) and can be found in essentially any sequence by random chance,

thus resulting in(high rates of false positi iated with th I predictions:

ese elements are to

kvt L

regulatory elements for iption. Second, the and regulatory elements
@ cannot be translated into protein sequences to increase the sensitivity for their detec-
(tionJ Third, and

Current solutions for providing prelimi identification of

\
P

urlfea
taho
g P

,S.;E combine a multitude of features and use sophisticated algorithms that give either ab
S initio-bascd predicti dictions based on y information or experi-
3 mental data. These comp I app are described in detail in this chapter
foll g a brief i to the of p and latory el
in both prokaryotes and cukaryotes.

PROMOTER AND REGULATORY ELEMENTS IN PROKARYOTES

In bacteria, transcription is initiated by RNA polymerase, which is 2 multi-subunit
enzyme. Th{o subunit (e.g., 6 ™) of the RNA polyme: the protein that recognizes
F specific sequel tream of a gene and allows the rest of the e e complex

(o bind. The upstream scquence where the o protein binds constitutes the promoler
sequence. This includes the sequence segments located 35 and 10 base pairs

upstream from the transcription start site. They are also referred to_as the
r {he o™ subunit in Escherichia coli, for example, u-.
Eool = =35 box toruensin —> TTGALA
—lo box lowaenua —Y TATAAT

<ot
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PROMOTER AND REGULATORY ELEMENT PREDICTION

TF site

-35 box -10 box TSS
—

ORF

Promoter
Figure 9.1: Schematic representation of elements involved in bacterial transcription initiation. RNA
polymerase binds to the promoter region, which initiates transcription through interaction with tran-
scription factors binding at different sites. Abbreviations: TSS, transcription start site; ORF, reading
frame; pol, polymerase; TF, transcription factor (see color plate section).

has a consensus sequence a Ths a consensus o
The may d ine the i

of one gene or a number f,
of linked genes downstream. In the latter case, the linked genes form a
which is controlled by the promoter.
In addition to the RNA polymerase, there are also a number of DNA-binding pro-
% - =

teins that facilitate the process of iption. These p alle i
) They bind to specific DNA to either enhance or inhibit the func- ig

tion of the RNA polymerase. The specific DNA seqy to which the iptil
factors bind are referred to a he regulatory elements may bind
in the vicinity of the promoter OF bInd to a site several hundred bases away from the
promoter. The reason that the regulatory proteins binding at long distance can still
exert their effect is because of the flexible structure of DNA, which is able to bend and
and cxert its cffect by bringing the transcription factors in closc contact with the RNA
polymerase complex (Fig. 9.1).

PROMOTER AND REGULATORY ELEMENTS IN EUKARYOTES

In eukaryotes, g isalso lated by a protein complex formed between

transcription factors and RNA polymerasc. However, eukaryotic transcription has an

added layer of complexity in that there are three different types of RNA polymerase

complexes, namely RNA polvmerases I, I, and III. Bach polymerase transcribes dif-
R

Unlike in pr otes, where genes often form an operon with a shared promoter,
cach cukaryotic genc has its own promoter. The cukaryotic transcription machinery

also requires many m Iption factors than its prokary tto help
initiate iption. Furth eukaryotic RNA 11 does not directly

bind to the promoter, but relics on a dozen or more transcription factors to recog-
nize and bind to the promoter in a specific order before its own binding around the
promoter.
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TF site

A s i
TFsite  TATAbox Inr ORF
Flgure 9.2: Schematic diagram of an eukaryotic promoter with transcription factors and RNA poly-
merase bound to the promoter. Abbreviations: Inr, initiator sequence; ORF, reading frame; pol, poly-
merase; TF, transcription factor (see color plate section).

The core of many eukaryotic Eroxm‘ners is a so-calleloc ated 30 bps
psiream from the (ranscription slar( sile, having a consensus molif(TATA(A/T)A
@) Fig. 9.2.). ver. not all eukaryotic promoters contain the TATA box. Many

l'ﬂ

e s
W St le
SR

0 not have the TATA box in their promoters. ¥ ) ()(

addition, many genes have {unique initiator sequence (Inx)) which is a pyrimidine- @ d
rich sequence with a consensus (C/T) (C/T)CA(C/T)(C/T). This sitc coincides with the L}'
transcription start site. Mostof the iption : ding si 1 d within

500 bp upstream of the transcription start site. Some regulatory sites can be found

tens of thousands basc pairs away from the gene start sitc. Occasionally, regulatory

are

are located d instead of of the transcription start site.
Often, a cluster of transcription factor binding sites spread within a wide e to
work to enhance transcription initiation. |

=) Similariky bowed
PREDICTION ALGORITHMS

Currenl algorithms for predicling
rized as eithe

.’ [~ Ot inikio Locd
/4

and latory

8 profile based Jising profiles conslructed from En Yed Ay
a number of coexpressed gene sequences from the same organism., The similarity
type of prediction is also called/phyl i inting) A d, because

RNA polymerase 1 transcribes the & Tc

A genes, most algorithms are thus

focused on prediction of the RNA pot: 11 promoter and associated regulalory
1 Each of the iesis di d in detail next.
————

Ab Initio-Based Algorithms

This type of algorithm predicts prokaryotic and eukaryotic promoters and regulatory
clements based on characteristic sequences patterns for promoters and regulatory
e L

elements, Some ab initio programs ar¢signal based Yelying on characteristic promoter
sequences such as the TATA box, whereas others rely o content informationjuch as
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PROMOTER AND REGULATORY ELEMENT PREDICTION
the ab initio method is that the sequgnce ca

lw;s-
be applied as suchwithout having to obtain experimental information. 1@

is the need for training, which makes the prediction programs species specific. In

addition, this type of method has a difficulty in discovering new, motifs.
The to a or y site is through
matching a consensus sequence pattern represented by regular (see

Chapler 7) or matching a posilion-specific scoring matrix (PSSM; see Chapler 6)

from well-ch rized binding sites. In either case, the consensus
sequences or the matrices are relatively short, covering 6 to 10 bases. As described
in Chapler 7, lo determine whether a query sequence matches a weight matrix, the
sequence is scanned through the matrix. Scores of matches and mismatches at all
matrix positions are summed up to give a log odds score, which is then evaluated for

slalistical This simple however, oflen has dilliculty differen-
tiating true from random seq matches and high rates of
false positives as a result.

To better discriminate true motifs from d noise, a new of

algorithms has been developed that take into account the higher order correlation of

multiple subtle features by using d ions, neural or hidden
Markovmodels (HMMs) that: pable ofi i ighb
information. To further improve the ity of liction, some selec-

tively exclude coding regions and focus on the upstream regions (0.5 to 2.0 kb) only,
which are most likely to contain promoters. In that sense, promoter prediction and
gene prediction are coupled. -

Prediction for Prokaryotes
One of the unique aspects in prokary diction is the di

< of operon structures, because genes within an operon share a common promoter

located of the first gene of the operon. Thus,{gp diction}s th@
in prokaryotic iction. On¢ isknown, only the first
gene is predi for the ofa and a whereas
other genes in the operon do not possess such DNA elements.

There are a number of method ilable for operon iction. The

s a set of simple rules developed by Wang el al. (2004). This method

relies on two kinds of info! ort gene orientationknd intergenic distancesh. apair
of genes of interestandgonserved fthe genesbased on ive g i

analysis. More about g e pallerns across genomes is introduced in Chaplers
16and 18. As developed to assign operons with different levels of

confidence (Fig. 9.3). This method is claimed to produce accurate identification of an
. CiTte dieti

>

operon structure, which in turn facili the
This ly developed is, however, notyet
program. The prediction can be done ly using the rules, however. The few

dedicated programs for prokaryotic promoter prediction do not apply the Wang et al.
rule for historical reasons. The most [requently used program is BPROM.
—

edfes thu{-.?,
+ Jenwmste T /‘:':‘ b
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sCoring criteria fO" operon predicn‘on 200 bp of upstream sequence of the first gene of an operon is supplicd as input to
increase specificity.
d FindTerm (http://sunl.softberry.com/berr findi
-"- gfindb) is a for g bacterial p-mdcpcndcnt
termination signals located at the end of operons. It is ava:lable from the same site
N/ as FGENES and BPROM. The predictions are made based on matching of known
>gﬁ profiles of (he Ler signals bined with energy for the derived
RNA secondary structures for the putative hairpin-loop structure (see Chapter 16).
score =0 { :; e ‘The sequence region that scores best in features and energy terms is chosen as the
d> 100 bp, # of genomes = 0 e prediction. The information can sometimes be useful in defining an operon.
Prediction for Eukaryotes
score =1 d>60bp, #of genomes <5 The ab initio method for predicting eukaryotic p and reg y el

PSR, e e e SR L Sk e et e e e e ST ez ML also relies on searching the input for ing of patterns
@ V‘\S}A\ of known promoters and regulatory elements The consensus patterns are Henved

Threshold
from exgerlmemallz determmed DNA bmdmg sites whxch are compiled into pro-

30 bp =d <60 bp, # of genomes < 5
score =2 { oR \-p* files and stored in a datab q To find simi-
50 bp < d =300 bp, 5 < # of genomes < 10 kw C\M\Vj w “Jar conserved patterns. Hawever. thxs appmaz:h tends to generate very high rate —> D '-"-'{V“Jy
| = | 4’ of false positives owing to nonspecific matches with the short sequence patterns. e
d<30bp @ Furthermore, because of the high variability of transcription factor binding sites, »
OR the simple sequence matching often misses true promoter sites, creating false
score=3 #of genomes > 10 negatives.
OR o Py . E
To increase the specificity of prediction, a unique feature of eukaryotic promoter
d <50 bp, 55 #of genomes < 10
A L S ] r is employed, which is thqpresence of CpG island3) It is known that many vertebrate
Figure 9.3: Prediction of operons in prokaryotes based on a scoring scheme developed by Wang et al. genes are ch ized by a high density o des near the p

(2004). This method states that, for two adjacent genes transcribed in the same orientation and without
a p-Independent transcription termination signal in between, the score Is assigned 0 If the intergenic dis- region overlapping the transcription start site (see Chapter 8). By iden gthc CpG

tance Is larger than 300 bp regardless of the gene linkage pattern or if the distance Is larger than 100 bp . g = % o .
with the linkage not obscrved In other genomes. The score is assigned 1 if the intergenic distance is islands, ;?n?mnter s can be traced on the lmmedn:lte upstream region from ﬂ?e l.slands.
i i By combining CpG islands and other promoter signals, the accuracy of prediction can

larger than 60 bp with the linkage shared In less than five genomes. The score is assigned 2 if the
distance of the two genes Is between 30 and 60 bp with the linkage shared In less than five genomes beimproved. Scveral ptogramshavcbcm dcvc]opcd based on the combined features

or f the distance is between 50 and 300 bp with the linkage shared in between five to ten genomes.
The score Is assigned 3 if the intergenic distance is less than 30 bp regardless of the conserved linkage to predlct the transcription start sites in pamcular
pattern or If the linkage Is conserved in more than ten genomes regardless of the intergenic distance or , the eukaryotic tr i) P ofalarge
If the distance Is less than 50 bp with the linkage shared in between five to ten genomes, A minimum -
score of 2 Is considered the threshold for assigning the two genes In one operon. number of ranscription faclol neans (hat the promoter regions lend
M N1 b to contain a high density of protein-binding sites. Thus, finding a cluster of transcrip-
BPROM (s t t 12 p=prog &sub- tion factor binding sites often enhances the probability of individual binding site
is aweb-| based program for predxcnon of baclerlal promoters. It uses prediction,
alinear discriminant functionXsee Chapler 8) d with signal and content . Anumberofrep predi algorithms thatincor-
information such as and olig d posi porate the unique properties of eukaryotic promoters are introduced next.
ofthe promotersites. ’l'hispmgmm first predictsagi forbacterial CpGProD (ht(p://pbil.univ-lyon1.[r/ /cpgprod.himl) is a web-based pro-
structures by using an inlergenic distance of 100 bp as basis for distinguishing genes gram that predicts promoters containing a high density of CpG islands in mam-
to be in an operon. This rule is more arbitrary than the Wang etal. rule, leading to high malian genomic sequences. It calculates moving averages of GC% and CpG ratios
rates of false positives. Once the op are assigned, the is able to predict (observed/expected) over a window of a certain size (usually 200 bp). When the val-

putative promoter sequences. Because most bacterial promoters are located within ues are above a certain threshold, the region is identified as a CpG island.

200 bp of the protein coding region, the program is most effectively used when about
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Lponine (http://servict.sanger.ac.uk:8080/cponine/) is aweb-based program that
predicts transcription start sites based on a series of preconstructed PSSMs of several
regulatory sites, such as the TATA box, the CCAAT box, and CpG islands. The query
scquence from a mammalian source is scanncd through the PSSMs. The sequence

high toall the PSSMs, as well spacing

between the el aredeclared ipti sites. A Bayesian method is also
used in declsion making.

Cluster-Buster (http://zlab.bu.edu/cl b 1 html) is an HMM-based,

web-based program designed to find clusters of regulatory binding sites. It works by
delecling a region of high concentration of known (ranscription factor binding sites
and regulatory motifs. A query sequence is scanned with a window size of 1 kb for
putative regulatory motifs using motif HMMs. If multiple motifs are detected within a
window, a positive score is assigned (o each molif found. The Lotal score of the window
is the sum of each motif score subtracting a gap penalty, which is Pproportional to the
distances between motifs. If the score of a certain region is above a certain threshold,
it is predicted to contain a regulatory cluster.

FirstEF (First Exon Finder; http://rulai.cshl.org/tools/FirstEF/) is aweb-based pro-
gram that predicts promoters for human DNA. It integrates gene prediction with pro-

moter Ituses 1 (see Chapter 8) to calculate
the probabilities of the first cxon of a gene and its boundary sites. A segment of DNA
(15 kb) upstream of the first exon is sub d for p dicti
on the basis of scores for CpG islands.

McPromoter (http://genes.mit.edu/M chtml) is a web-based program

that uscs a neural network to make promoter predictions. It has a unique promoter
model containing six scoring segments. The program scans a window of 300 bases for
the likelihoods of being in each of the coding, noncoding, and promoter regions. The
input for the neural network includes parameters for sequence physical propertics,
such as DNA bendability, plus signals such as the TATA box, initiator box, and CpG
islands. The hidden layer combines all the features to derive an overall likelihood for
asite being a promoter. Another unique feature is that McPromoter docs not require
that certain patterns must be present, but instead the combination of all features is
important. For instance, even if the TATA box score is very low, a promoter prediction
can still be made if the other features score highly. The program is currently trained

for Drosophila and human sequences.

y.com/berr p ) is a web program that
distinguishes from non- basedona cﬂlﬂ-
nation of unique content such as h trimer fre and sig-

nal information such the TATA box in the promoter region. The values are fed to a
linear discriminant function (see Chapler 8) Lo separale true molifs [rom background
noise.

CONPRO (http:/. Istl.bioinformatics.med.umich.edu/conpro) is a web-based pro-
gram that uses a consensus method to identify promoter elements for human DNA.
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PROMOTER AND REGULATORY ELEMENT PREDICTION

To use the program, a uscr supplics the transcript sequence of a gene (cDNA). The
program uses the information to search the human genome database for the position
of the gene. It then uses the GENSCAN p to predict 5’ lated exons in the
upstream region. Once the 5'-most cxon is located, a further upstream region (1.5 kb)
is used for promoter prediction, which relies on a combination of five promoter pre-
diction programs, TSSG, TSSW, NNPE, PROSCAN, and PromFD, For each program, the
highes( score prediction is (aken as the promoler In the region. If (hree predictions

fall within a 100-bp region, this is a p Ifno th Ly
consensus is achieved, TSSG and PromFD predictions are taken. Because no cod-
ing isused In i{ is imp relalive lo each individual
program,

Phylogenetic Footprinting-Based Method [ Simila l»j ~bosed
It has been observed that p and ! from closely related
organisms such as human and mouse are highly conserved. The conservation is both
at the sequence level and at the level of organization of the elements. Therefore, it is
possible to obtain such fora gene through p:

ative analysis. The identification of conserved noncodi INA elements that serve

crucial fi roles is referred to a e elements are
calledphylogenetic footprintsyThis type of met can apply to both prokaryotic and
e LR A

cukaryotic scquences.
The(sel of isms for comparisondis an i ideration in this
type of analysis. e pair of organisms selected are too closely related, such as

human and chi th diffe: b them may not be sufficient
10 filter out functional clements. On the other hand, if the organisms’ cyolution
distances are too long, such as between human and fish, long evolutionary divergence
may render promoter and other elements undetectable. One example of appropTTate
selection of species is the use of human and mouse sequences, which often yiclds.
informative results.

Another caveat of phyl is to extract
upslream o[ corresponding genes and focus the comparison (o this region only, which
helps to prevent false positives. Tl of this method also depends on
the quality of the subsequent sequence ents. The advanced alignment pro-
grammm’_ﬂmu;;;\m\ more sophisticated expectation
maximization (EM) and Gibbs sampling algorithms can be used in detecting weakly
conserved motifs.

There are sollware ly
sence of p footp! to make

Lo take ad ge of the pre-
among a number of related

species to identify putative transcription factor binding ites. Th& advantage)n imple- (D

menting the algorithms is that no training of the models is
hence, itis broad icable. There isalso altodi newregi y

value ot ety §
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®

s the constraint on the cvo-
b o

.se/cgi-bin/ CONSITE/consite) is a web server that
finds putative prommcr clements by comparing two orthologous scquences, The
user provides two i idual seq which are aligned by ConSite usmg a global
alignment algorithm. Alter » the progi accepts p
Conserved regions are identified by calculaung idenlity scores, which are then used
to compare against a motif database of regulatory sites (TRANSFAC). High-scoring
sequence segments upstream of genes are returned as putative regulatory elements.
IVISTA (hp://rvisia.dcode.org/) is a similar cross-species comparison ool for
promoter recognition. The program uses two orthologous sequences as input and first
identifies all putative regulatory motifs based on TRANSFAC matches. It then aligns
the (wo sequences using a local alignmen stralegy. The molils thal have the highest
percent identity in the pairwise comparison are p d graphically as regulatory
elements.
PromH(W) (www. Ty.com/berr
&subgroup=promoter) is a web-based program that predicts regulatory sites by pair-
wise sequence comparison. The user supplies two orthol ‘which are
aligned by the program to identify conserved regions. These regions are subsequently
predicted for RNA pol Iip motifs in both sequences using the TSSW
program. Only the conserved regions having high scored promoter motifs are returned
as results,
Bayes aligner (www.bioinfo.rpi.edu/applications/bayesian/bayes/bayes.align12.
pl) is a web-based footprinting pmgram. It aligns two sequences using a Bayesian
algorithm whichis auniq method. Instead of returning a single
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best ali the method ad of alarge number of alignments
using a full range of acorlng matrices and gap penaltics. Posterior probability values,
which are i of the true alj are 1 for each align-

ment. By he distributi i thathas the highestlikelihood score,

which is in the exucmc margin of the distribution, is chosen. Based on this unique
alignment searching algorithm, weakly conserved motifs can be identified with high

probability scores.
FootPrinter (h cs. hi du/- i tPrinter
PrinterInput2.pl)isaweb-based p for phyls printingusingmultiple

input szquences The user also need.s to pmvlde a phylogenenc tree that defines the

1 of the input . (One may obtain the tree informa-

tion from the “Tree of Life” web site [http://tolweb.org/tree/phylogeny.html], which

archives known phylogenem: trees using ribosomal RNAs as gene markers.) The

perlorms ! of the inpul to identily conserved

motifs. The motifs from organisms spanning over the widest evolutionary distances

are identified as promoter or regulatory motifs. In other words, it identifies unusually
well-conserved motifs across a set of orthologous sequences.
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Expression Profiling-Based Method

Recen es In high throughput transcription profiling analysis, such a
see Chapter 18) have allowed sii monitoring of ex-

presswn of undred.s or thousands of genes(( Genes with similar expression profiles )

are d)which can be id d through a c] lustering approac approach

(sce Chapter 18). Thobasis for p

and y If this iy is valid, the upstream sequences of the
coexpressed genes can be aligned together to reveal the common regulatory elements

recognizable by specific transcrlpuon factors
This h is essenti based hind appears to be robust for
finding transcription factor bmdmgsnes k that the regulatory elements

of coexpressed gcncs arc usuall shon and weak. Their patterns are difficult to dis-
1 L

ng simple Therefore, a

ahgnment independent prof -1 construction method}uch aEM and Gibbs motil
It apter 7) is often used in finding the subtlc sequence motifs. As a

reminder, EM is a motif extraction algorithm that finds motifs by repeatedly opti-
mizing a PSSM through comparison with single sequences. Gibbs sampling uses a @

isthought:

similar matrix optimization approach bul samples motifs with a more flexible siral-
egy and may have a higher likelihood of finding the optimal pattern. Through matrix

optimization, sul erved motifs can be detected from the background noise.

One of m@r his h Is (hal deter of Lhe sel of coex-
pressed genes depends on the clustering approaches, which are known to be error
prone. That means that the quality of the inj mav be questionable when func-
uo_miy unrelaled genes are often clustered logether. In addition, the assumption that
coexpressed genes have commaon regulatory elements is notalways valid Many coex-
pressed genes have been found to belong to parallel signaling pathways that are unde:
the control of distinct regulatory mechanisms. Therefore, caution should always be
exercised when using this method.

“The following lists a small selection of motif find ing the EM or Gibbs 1
approach.

MEME (http://meme.sdsc.edu/meme/website/meme-intro.html) is the EM-
based program introduced in Chapter 7 for protein motf discovery but can also be
used in DNA motif finding. The use is similar to that for protein sequences.

AlignACE (http://atlas.med.harvard.edu/cgi-bin/ali pl) is a web-based pro-
gram using the Gibbs sampling algorithm to find common motifs. The program is

optimized for DNA motif ion. It lly determines the opti-
mal number and lengths of motifs from the input sequences.

Melina (Motif Elucidator In Nucleotid A bly; http://melina.hge.jp/)
is a web-based program that runs four individual motif-finding i - MEME,
GIBBS sampling, CONSENSUS, and C h - sl ly. The user
the results to the of motifs p d by all four
methods.
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ABSTRACT

The ExPASy (the Expert Protein Analysis System)
World Wide Web server (http:/www.expasy.org), is
provided as a service to the life sclence community by
a multidisciplinary team at the Swiss Institute of
Bloinformatics (SIB). It provides access to a varlety
of databases and analytical tools dedicated to proteins
and proteomics. ExPASy databases Include SWISS-
PROT and TrEMBL, SWISS-2DPAGE, PROSITE,
ENZYME and the SWISS-MODEL repository. Analysis
tools are available for specific tasks relevant to
proteomics, similarity searches, pattern and profile
searches, post-translational modification prediction,
topology prediction, primary, secondary and tertiary
structure analysis and sequence allgnment. These
databases and tools are tightly interlinked: a special
emphasis is placed on integration of database entries
with related resources developed at the SIB and
elsewhere, and the proteomics tools have been
designed to read the annotations In SWISS-PROT In
order to enhance their predictions. ExPASy started
to operate In 19983, as the first WWW server in the
field of life sciences. In addition to the main site in
Switzerland, seven mirror sites In different continents
currently serve the user community.

INTRODUCTION

The Swiss Institute of Bioinformatics (SIB, http:/www,isb-
sib.ch) is an academic not-for-profit foundation whose mission
is Lo promole research, the development of databanks and
computer technologies, teaching and seryice activities in the
field of bioinformatics, One of the SIB’s windows to the
world is the ExPASy server, which focuses on proteins and
proteomics, and provides access o a variety of databases and
analysis tools, Onc of the major asscts of ExPASy is the high
degree of integration and interconnectivity that it cstablishes
between all the available databases and services. Rather than
just making each service accessible in an isolated manner, we

put at the disposal of the users different expert views of the
complex world of biological data and knowledge.

DATABASES
ExPASy (1,2) is the main host for the following databascs that

are partially or completely developed at the SIB in Geneva:
e The m knowledgebase  (3,4)  (http://www.
cxpasy.org/sprot/) i1s a curated protcin scquence databasc,

which strives to provide high quality annotations (such as
the description of the function of a protein, its domain
structure, post-translational modifications and variants), a
minimal level of redundancy and a high level of integration
xith_other databases, SWISS-PROT is supplemented by
hich contains computer-annotated entries for all
sequences not yet integrated in SWISS-PROT.
SWISS-PROT and TrEMBL are maintained collaboratively
by the S1B and the European Bioinformatics Institute (EBL).
(SWISS-2DPAGE)(S) (http://www.expasy.org/ch2d/) is a
database of proteins identified on two-dimensional poly-
acrylamide gel electrophoresis (2D PAGE). SWISS-
2DPAGE contains dala from a variety of human and mouse

biological samples as well as from Arabidopsis thaliana,
Escherichia  coli, Saccharomyces  cerevisiaze and

Dictyostelium discoideum.
0‘6.7) (http://www.expasy.org/prosite/) is a data-
base of protein domains and families. PROSITE contains

biologically significant sites, patterns and profiles that help
lo reliably identify to which known protein (amily a new

cquence belongs.
CENZYME ¥8) (hitp://www.expasy.org/enzyme/) is a reposi-
tory of information relative to the nomenclature of enzymes.

' Repository (9) (http://www.expasy.org/
swissmod/smrep.html) is a database of automatlically

generated structural protein modcls.

Cross-references

All the databascs available on ExPASy arc cxtensively
cross-referenced to other molecular biology databases or
resources all over the world. SWISS-PROT for example is

*To whom correspondence should be addressed. Tel: +41 22 379 5050; Fax: +41 22 379 5858; Email: clisabeth, gasteiger@isb-sib.ch
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explicitly cross-referenced (10) to ~50 different databases
specializing in protein and nucleic acid sequences,
3D-structure, organism-specilic and genomic information,
domain and family signaturcs, post-translational modifica-
tions ot protcomics data. Examples for databascs currently
linked to SWISS-PROT in that manner are EMBL/GenBank/
DDBJ, PDB, FlyBase, MGD, MIM, MypuList, SGD,
SubtiList, TubercuList, WormPep, ZFIN, IntetPro, Pfam,
PRINTS, ProDom, PROSITE, SMART, TIGRFAMs, SWISS-
2DPAGE, HSSP, MEROPS and REBASE. On avetage, a
SWISS-PROT entry contains 7.8 explicit cross-references to
other databases (release 40.43 of 12 February 2003).
Literature references for the above-mentioned databases are
listed in the SWISS-PROT user manual, (http://www.expasy.
org/sprot/userman.html#DR_line).

Complementing these explicit cross-references, so-called
‘implicit links’ to ~25 additional resources are created on-the-
fly by the NiccProt view of SWISS-PROT and TrEMBL cntrics
(see below). This concept is targeted at data collections that do
not have their own system of unique identifiers, but can be
referenced via identifiers such as SWISS-PROT or EMBL
accession numbers, gene names, cte, Examples for databascs
linked to SWISS-PROT via implicit links arc thosc that arc
based on SWISS-PROT and provide a specific analytical view
of each entry (e.g. ProDom—automatically derived domain
views or ProtoMap—a hierarchical classification of all
SWISS-PROT entrics) and thosc databascs that share somc
identifier with SWISS-PROT (e.g. GeneCards—information
on human genes, accessible by the ITUGO approved gene
name). Implicit links are a specific feature of ExPASy and are
not available on other web servers, or in the SWISS-PROT/
TrEMBL data files that can be downloaded by fip. ‘I'hey greatly
enhance database interoperability and strengthen the role of
SWISS-PROT as a central hub for the interconnection of
biomolceular resources,

Update frequency and download options

SWISS-PROT, PROSITE, ENZYME and SWISS-2DPAGE arc
updated at a frequency of ~1-2 weeks.

For all the ExPASy databases, data and associated docu-
meniation files can be copied locally by anonymous FTP
(fip.cxpasy.org). In particular, the different download options
for the SWISS-PROT and TrEMBL databases, including the
different available subsections, release frequencies and data
formats, are documented at http://www.expasy.org/sprot/
download html. Among others, we distribute the files to
assemble 2 non-redundant and complete protein scquence
database (ftp:/fip.expasy.org/databases/sp_tr_nrdb/) consisting
of three components: SWISS-PROT, TrEMBL and new entries
to be later integrated into TrIMBI. (known as TriEIMBLnew).
These files are supplemented by a compilation of sequences
for splice variants, reconstructed from the annotations in
SWISS-PROT and TrEMBL feature tables. All these files are
completely rebuill every time SWISS-PROT is updaled,

A Tlarge varigty of documents (uscr manual, relcase notcs,
indiccs, nomcuclaturc documents, ctc,) are available with
SWISS-PROT; these documents can all be browsed from
ExPASy (hutp://www.expasy.org/sprotsp-docu.himl) and are
enhanced by a variety of hyperlinks.

Nucleic Acids Research, 2003, Vol. 31, No. 13 3785

No fees for academic users

The use of all EXPASy databases is free for academic users.
However, we implemenied in September 1998 a sysiem of
annual subscription fec for commcrcial uscrs of the SWISS-
PROT, PROSITE and SWISS-2DPAGE databascs. The funds
raised are used to bring these databases up-to-date, to keep
them up-to-date and to further enhance their quality. Further
information on this funding scheme is available at hitip://
WWW.cXpasy.org/announce/,

SOFTWARE TOOLS

We have developed, over the years, an extensive collection of
software tools, most of which are either targeted toward the
access and display of the databascs mentioned above, or can be
used to analyze protein sequences and proteomics data
originating from 2D-PAGE and mass spectrometry experi-
ments. These latter tools can all be accessed from ExPASy
(http://www.expasy.org/tools/).

Database query, display and navigation

A variety of query options are available from the home pages of
cach of the ExPASy databascs. These oplions allow the users to
display and retricve speeificd subscts of the database. For
cxample, from the home page of SWISS-PROT and TrEMBL,
different query forms allow searching by description, accession
number, authot, citation or by full text search. To complement
these options, we have also implemented an SRS (11) server that
allows complex scarches on any ficlds of the combination of
SWISS-PROT and TrTEMBL databases. PROSITE, ENZYME
and SWISS-2DPAGE can also be queried using SRS.

The original flat file format of all ExPASy databases is based
on different line types, where a two-letter line code defines the
information contained on the rest of that line (e.g. for SWISS-
PROT: see the user manual, hiip://www.expasy.org/spro/
userman html). This format is easy to parse by computer
programs, but not ncccssarily casy to rcad for human uscrs. In
order to provide a more verbose and user-friendly view of the
database entries, we provide for each database, on ExPASy, a
‘nice’ hypertext view, e.g. NiceProt for SWISS-PROT and
TrEMBL cntrics, An cxample for an entry in the NiceProt view
can be scen at  hitp:/www.cxpasy.org/egi-bin/niceprot.
pI?P57727%, or in Figure 1. The figure shows parts of that entry
in order to illustrate the easy navigation between information
contained in the entry itself, the corresponding documentation,
romote databases, and the submission forms or results of
sequence alignment or other EXPASy analysis tools. Similar
views are available for PROSITE (NiceSite and NiceDac),
FNZYME (NiceZyme) and SWISS-2DPAGR (Nice2Dpage).

Swiss-Shop (http://www.expasy.org/swiss-shop/) is an auto-
mated sequence alerting system which allows users to obtain
new SWISS-PROT entries relevant to their field(s) ol interest.
Keyword-based and sequence/pallern-based requests are
possible. Every time a weekly SWISS-PROT rcloasc is
performed, all new databasc cntrics matching the uscr-specificd
search keywords or patterns or the entries showing sequence
similarities to the user-specified sequence are automatically
sent Lo the user by email.
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Figure 1. The NiceProt view of 2 SWISS-PROT entry presents its contents in a
uscr-friendly view. Links arc provided to >70 databascs, a uscr manual and
ofher documents. NiceProt is also integrated with tools provided on ExPASy
and other servers, Excerpts of the view of u sample entry are presented in this
figure. A BLASTP similarity search against SWISS-PROT/TrliMBL/
TrEMBLnew can be performed with a single click (bution 1) on a very [ast ser-
ver (median request time: 6s). BLAST parameters can also be adjusted by
accessing the BLAST page (link 2), which provides a choice of BLASTP or
TBLASTN over a choice of databases and subsections, The result page (inset
3) combines & BLASTP search with a motif seurch in the PROSITE profiles
and Plam IIMM domain dalabases and displays a graphical overview ol the
maiching regions both on the query and on the hit. From there, it is possible
to browsc matching cntrics, including splice variants; to rerun a BLAST scarch
after masking rcgions that match PROSITE or Pfam domains in order to find
weaker similarities in other regions and to perform multiple alignments of
selected hit sequences,

Sequence analysis tools

‘m’ 12) provides very fast similarity scarches of a
proteln sequence against a protein or nucleotide database.
The ExPASy BLAST service is maintained in collaboration
with the Swiss EMBnet node on dedicated hardware. The
native output of BLAST is cxtended with several original

features (Fig. 1),

13) scans a scquence against all the patterns,
profilcs and rules in PROSITE or scans a pattern, profile or rule
agamnst all sequences in SWISS-PROT, TrEVMIBL and/or PDB,

. 14,15) is an automated knowledge-bascd
protein modclling server. It is able to build modcls for the

3D structure of proteins whose sequence is closely related to
that of proteins with known 3D structure.

o calculates physico-chemical parameters of a

protein sequence such as the amino acid composition, the
pl, the atomic composition, the extinction coelTicient, etc.

oomputes and represents the profile produced by
any amino acid scale on a selected protein. Some
50 predelined scales are available. such as the Doolitile
and Kytc hydrophobicity scalc.

(RandSeq)generales a random protein sequence, based on a
user-specified amino acid composition and sequence length,

(16) predicts tyrosine sulfation sites within
prolein sequences.

lates a nucleotide sequence into a protein in
six reading frames.

Proteomics tools

o(AACompldent)(17) identifies a protein by its amino acid
compOBITIoN,

AACompSim

X17) finds for a given SWISS-PROT entry, the

/MW (18) computes the theoretical isoelectric

d molecular weight (MW) from a SWISS-PROT
or TTEMBL cntry or for a uscr scquence,

e FindMod (19) predicts polential protein post-translational
modifications and potential singlc amino acid substitutions in
peptides. Experimentally measurcd peptide masses are coms-
pared with the theoretical peptides calculated from a specified
SWISS-PROT entry or from a user-entered sequence. Mass
differences are used to better characterize the protein of interest.

o FindPept (20) identifies peptides resulting from unspecific
cleavage of proteins by their experimental masses, taking
into account artefactual chemical modifications, post-
translational modifications and protcase autolytic cleavage.

calculates the mass of an oligosaccharide

structure.,

e GlycoMod (21) predicts possible oligosaccharide structures that
occur o proteing from their cxperimentally determined masses.
This is donc by comparing the mass of a potential glycan to a list
of pre-computed masses of glycan compositions.

T predicts potential proteasc cleavage sites and

by chemivals in a given protein sequence.

e PeptideMass (22) caloulates the theoretical masses of peptides
generated by the chemical or enzymatic eleavage of proteins so
as to assist in the interpretation of peptide mass fingerprinting.

o Peptident, Tagldent, Multildent (23-25), these three related
programs identify proteins using a variety of experimental
information such as the pl, the MW, the amino acid composition,
partial sequence tags and peplide mass lingerprinting data.

A very important feature of the EXPASy proteomics tools

(such as Peptldent, Tagldent, Multildent, PeptideMass,

FindPept or FindMod) is thai, when performing their

computations and predictions, they usc the annotations relevant

to post-translational modifications and processing, as well as
splice variants documented in the SWISS-PROT feature tables.

These tools are all listed on a page on ExPASy (http://
www.expasy.org/tools/) that also offers links 10 many other




seful programs for the analysis of protein sequences available
tlsewhgregon the web. Weynotably have links to the tools
provided by our colleagues [rom the bioinfonnagcs group at
ISREC (http:/www.isrce.isb=sib.ch) and the Swiss EMBnct
node (http:/www.ch.cmbnct.org) in Lausannc. They have
developed a BLAST similarity search servet, TMpred (to
predict transmembrane regions) and interfaces to the SAPS
(Statistical Analysis of Protein Sequences), COILS (prediction
of coiled coil regions), Clustal and T-Coffec (multiple
sequence alignment) programs.

ExPASy AS A PORTAL TO OTHER LIFE
SCIENCE RESOURCES

The mass of information available to life scientists on the web
has completely changed the way in which biological data is
accessed and processed, It has created many opportunitics, but
also brought ncw dangers. One of the most critical
problems is the difficulty for researchers to distinguish useful
and up-to-date sources of information from sites that provide
either ‘fossilized" or low-quality data. To partially address this
problem, we have developed a series of lists and tools:

e Amos WWW links page (http://www.expasy.org/
alinks.html) is a list that contains links to >1000
information resources for the life sciences. This list is
updated very frequently and is organized in a number of
sections that correspond o specilic lopics.

o WORLD-2DPAGE (http://www.expasy.org/ch2d/2d-index.
html) is a list of all known 2D PAGE database WWW
servers and related services.

e Biollunt (http://www.expasy.org/Biollunt/) is a service to
help search the internet for molecular biology information,
BioHunt is built by Marvin, a software robot which
automatically roams the web to scarch and index lifc
science and bioinformatics information. Currently BioHunt
indexes ~35 000 documents.

¢ 2DHunt (http://www.cxpasy.org/ch2d/2DHunt/) is a specia-
lized index for 2D PAGE-related sites.

¢ ExPASy tools pagc (http:/www.cxpasy.org/tools/), in
addition to hosting the above-mentioned tools provided
and maintained by the Swiss Institute of Bioinformatics, the
tools page serves as a portal to useful web-accessible tools
on bioinformatics servers elsewhere. Tools local to the
ExPASy server are marked by the ExPASy logo.

e List of conferences and events (hitp://www.expasy.org/cont.
html) is a list of conferences and meetings relovant to protcomics,
bioinformatics and other domains in the life sciences.

OTHER INTERESTING ExPASy FEATURES

* Biochemical pathways (hip:/www.expasy.org/tools/path-
ways/) is an indexed, digitized and clickable version of the
Bochringer Mannheim’s ‘Biochemical Pathways’ poster and
1s available on the server. It allows the wser to navigate
through the graphical representation of metabolic pathways
and is linked 10 the ENZYME database.
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e DeepView (SWISS-PdbViewer) (15) (http/t/hwwl:vdlecxrg::?frt
org/spdbv/) is an application running on the e
Windows, Mac, SGI and Linux platforms, gﬂ'ermg a e
rangc of options to visualize and' manipulate lpfot'
structurcs. It can also be uscd as a WW_W hcl;?cr application
for the display of PDB formatted entries. Swiss-PdbViewer
can be downloaded from ExPASy and complements the
aforementioned SWISS-MODEL homology-modeling tool.

o LALNVIEW (26) (http://www.expasy.org/tools/lalnview.
html) is an application that runs on the chrqson
Windows, Mac and Unix platforms. LALN VIEW is a
graphical viewer for pairwisc scquence ahgn_mcnts. It can.bc
used to display the results of a pairwise alignment carried
out with the SIM (27) software also installed on [IxPASy
(http://www.expasy.org/tools/sim-prot.html).

e 2D PAGE: a wide variety of information concerning 2D
PAGE is available from ExPASy. This includes the full
description of experimental protocols as well as an overview
of the Mclanic 3 2D PAGE analysis software package. A 2D
gel viewet is also available for download.

e Protcin Spotlight (http://www.cxpasy.org/spotlight/) is a
periodical roview centered on a specific protein or group
of proteins.

e Reercational, Ono must not forget that scicnee can also have
a lighter side. So we hope that users will take the time to
take a small pause from the hectic pace of modern research
and visit Swiss-Quiz (http://www.expasy.org/swiss-quiz/).
With Swiss-Quiz one can have a chance to win some Swiss
chocolate (real, not virtual!) after having successfully
answered a quiz from the field of molecular biology.

o ExPASyBar is a uscful navigation bar to thc most important
databases and tools on ExPASy. ExPASyBar was developed
by Martin Ilagsman from the Institute of Chemical
Technology in Prague, in collaboration with the ExPASy
team. It is an add-on to the frec Mozilla web browscr (http://

www.mozilla.org), and can be downloaded from http:/
expasybat.mozdev.org.

MIRROR SITES

Network congestion and resulting slow response times
represent a major problem lor users in certain parts of the
world, To help address this issue, we decided to implement
mirror sitcs of ExPASy in various countrics. Such sitcs can
help users to access the ExPASy databases and tools more
rapidly in locations that do not have a fast connection to
Switzerland. The mirror sites are computers that host exact
copies of the information available from the Geneva ExPASy
server. They are updated at the same frequency as the main
ExPASYy site in Switzerland, EXPASy mirror sites are located in
academic institutions that have shown an active interest in
hosting such sites. As of today, seven sites are operational. The
ExPASy mirror sites arc located in:

1. Australia: hip://au.expasy.org/ at the Australian Prorcome
Analysis Facility (APAF), Sydney.

2. Bolivia: hiip://bo.expasy.org/ at the Universidad Catélica
Boliviana (UCB), Clochabamba.




