Name:	Mr. Nayan Prabhakar Kasturi
Class:	M. Sc. Bioinformatics (Part I)
Roll Number:	110
Course:	M. Sc. Bioinformatics
Department:	Department of Bioinformatics
Paper:	Mandatory Paper I
-	Fundamental of Biology & Bioinformatics (GNKPSBI1501)
Academic Year:	2023-24

DEPARTMENT OF BIOINFORMATICS

CERTIFICATE

This is to certify that <u>Mr. Nayan Prabhakar Kasturi</u> (Roll No: <u>110</u>) of M.Sc. Bioinformatics (Part I) has satisfactorily completed the practical for Mandatory Paper 1: Fundamental of Biology & Bioinformatics (GNKPSBI1501) for Semester I course prescribed by the University of Mumbai during the academic year 2023-2024.

TEACHER-IN-CHARGE (Mrs. Aparna Patil Kose) HEAD OF THE DEPARTMENT (Dr. Gursimran Kaur Uppal)

EXTERNAL EXAMINER

INDEX

Sr. No.	Experiment	Date	Page No.	Sign
1.	2-D Separation of Plant Pigments using Paper Chromatography	09/09/23		
2.	Estimation of Vitamin C using UV-VIS Spectrophotometer	27/09/23		
3.	Thin Layer Chromatography to determine "curcumin" content of Turmeric sample	04/10/23		
4.	Biochemical Estimation of RNA using orcinol method	03/11/23		
5.	Biochemical Estimation of DNA using DPA method	04/11/23		
6.	Introduction to Sequence Alignment tools:	01/11/23		
6(A)	To study and explore similar sequences of the protein 'Albumin' (UniProt ID: P02768) by using Basic Local Alignment Search Tool (BLAST).	01/11/23		
6(B)	To study protein sequence similarity by exploring the FASTA tool for the query 'Maltose' (UniProt ID: P68187).	01/11/23		
6(C)	To explore the PSI BLAST tool for the further study of the query 'Leucine' (UniProt ID: Q8IX15).	01/11/23		
6(D)	To perform an iterative blast for query Flavodoxin (UniProt ID: P53554) by exploring Pattern Hit Initiated BLAST (PHI-BLAST) Tool.	01/11/23		
6(E)	To explore and compare the protein sequences of 'Myosin' from two organisms <i>Gallus gallus</i> (UniProt ID: Q90623) and <i>Mus musculus</i> (UniProt ID: F8VQB6) by performing global pairwise sequence alignment using EMBOSS Needle Tool.	01/11/23		
6(F)	To explore and compare the protein sequences of 'Collagen' in two organisms, Rattus norvegicus (UniProt ID: P05539) and Homo sapiens (UniProt ID: P08572), by performing local pairwise sequence alignment using the EMBOSS Water tool.	01/11/23		

WEBLEM 6

INTRODUCTION TO SEQUENCE ALIGNMENT TOOLS

INTRODUCTION:

Alignment of biological sequences is a fundamental task in bioinformatics. It involves identifying regions of similarity between two or more sequences, which can then be used to infer functional, structural, or evolutionary relationships. Sequence alignment is the problem of comparing biological sequences by searching for a series of nucleotides or amino acids that appear in the same order in the input sequences, possibly introducing gaps into them. When there are two sequences, it is called pairwise sequence alignment; otherwise, it is called multiple sequence alignment (MSA). Global alignment is to find the best match between the entire sequences.

Most MSA methods are based on one of the two pairwise alignment algorithms: the optimal algorithm proposed by Needleman and Wunsch (NW) for global alignment, and the improvement to the NW algorithm proposed by Smith and Waterman (SW) to obtain the local alignment. Various algorithms are employed for sequence alignment, two prominent ones being the Needleman-Wunsch algorithm and the Smith-Waterman algorithm.

The Needleman-Wunsch algorithm performs global alignment, comparing entire sequences, while the Smith-Waterman algorithm is utilized for local alignment, identifying regions of similarity within sequences. These algorithms form the backbone of sequence alignment studies and are accessible through powerful bioinformatics tools available under EMBOSS (European Molecular Biology Open Software Suite). Both algorithms are composed of three phases: initialization, distance matrix computation and trace back. Nevertheless, they differ in their applied techniques at each phase. There are many different techniques used in sequence alignment methods, such as heuristic algorithms, and dynamic programming. Although they ensure the best alignment, dynamic programming methods (such as Needleman-Wunsch and Smith-Waterman) can be computationally demanding for longer sequences. For big datasets, heuristic approaches frequently yield near-optimal alignments, by favoring optimality for of speed and efficiency.

Among the widely used tools and methods, BLAST (Basic Local Alignment Search Tool) and FASTA (Fast Alignment Search Tool) are pivotal in bioinformatics. BLAST uses heuristic methods for comparing sequences quickly and efficiently against large databases, allowing rapid identification of homologous sequences. FASTA combines heuristic methods with probability models to perform quick sequence alignments and similarity searches. These tools are used by researchers in a wide range of fields to identify homologous sequences, infer evolutionary relationships, identify functional and structural motifs, and design primers and probes.

Pairwise Alignment Tools

Pairwise alignment tools are typically used to identify regions of similarity between two sequences of unknown evolutionary relationship. They work by comparing the two sequences and identifying regions of identical or similar characters. Gaps are inserted between the

characters of the two sequences so that the identical or similar characters are aligned in successive columns.

BLAST:

BLAST (Basic Local Alignment Search Tool) is a family of sequence alignment algorithms and programs designed to search for regions of similarity between biological sequences. It is used to search for homologous sequences in a database of known sequences, which can be used to identify genes, infer evolutionary relationships, and design primers and probes. It works by comparing a query sequence to a database of sequences using a heuristic approach. This means that it does not search the entire database for matches, but instead uses a number of shortcuts to identify potential matches. The first step in BLAST is to break the query sequence into short segments, called words. The length of the words depends on the type of sequence being searched (e.g., DNA or protein). BLAST then searches the database for sequences that contain the same words as the query sequence. If a match is found, BLAST extends the alignment in both directions to find the longest possible alignment. BLAST calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. BLAST then reports the alignments with the highest scores.

Types of BLAST:

There are five types (variants) of BLAST that are differentiated based on the type of sequence (DNA or protein) of the query and database sequences.

- 1. BLASTN compares a nucleotide query sequence to a nucleotide sequence database.
- 2. BLASTP compares a protein query sequence to a protein sequence database.
- **3. BLASTX** compares a nucleotide query sequence to a protein sequence database by translating the query sequence into its six possible reading frames and aligning them with the protein sequences.
- **4. TBLASTN** compares a protein query sequence to a nucleotide sequence database by translating the nucleotide sequences in all six reading frames and aligning them with the protein sequence.
- **5. TBLASTX** compares a nucleotide query sequence to a nucleotide sequence database by translating the query sequence in all six reading frames and aligning them with the nucleotide sequences.

FASTA:

FASTA (Fast Alignment Search Tool) is a sequence alignment algorithm and program that is used to search for regions of similarity between biological sequences. It works by first building a hash table of the query sequence. The hash table is a data structure that allows FASTA to quickly find all of the sequences in the database that contain the same words as the query sequence. It then aligns the query sequence to each of the matching sequences in the database to find the longest possible alignment. It calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. It then reports the alignments with the highest scores. It is often used in conjunction with BLAST to identify and analyze homologous sequences. FASTA is also used to design primers and probes for PCR and other molecular biology techniques.

PSI-BLAST:

PSI-BLAST (Position-Specific Iterative BLAST) is a sequence alignment tool that uses a position-specific scoring matrix (PSSM) to search for distant homologs in protein sequences. It is particularly well-suited for identifying homologs that have diverged significantly from their known relatives. It works by first running a regular BLAST search of the protein sequence database using the query sequence. This produces a list of initial hits. It then constructs a PSSM from the alignments of the initial hits. The PSSM is a statistical model that describes the probability of each amino acid at each position in the alignment. PSI-BLAST then uses the PSSM to search the protein sequence database again. This produces a list of new hits. It then repeats this process, using the PSSM from the previous iteration to search for new hits. PSI-BLAST continues to iterate until the PSSM no longer changes or until a certain number of iterations have been reached. PSI-BLAST then reports the alignments with the highest scores.

PHI-BLAST:

PHI-BLAST (Phylogenetically Inconsistent BLAST) is a sequence alignment tool that uses a probabilistic model to search for distant homologs in protein sequences. It is particularly wellsuited for identifying homologs that have diverged significantly from their known relatives. It works by first building a phylogenetic tree of the known homologs of the query sequence. It then uses this tree to generate a position-specific scoring matrix (PSSM) for each node in the tree. The PSSM is a statistical model that describes the probability of each amino acid at each position in the alignment. It then searches the database of protein sequences for sequences that match the PSSMs at the nodes of the phylogenetic tree. It does this by calculating a score for each alignment based on the similarity of the sequences and the PSSM. The higher the score, the more similar the sequences are and the more likely they are to be homologous. It then reports the alignments with the highest scores. It also reports the probability that each alignment is a true homolog. This probability is based on the score of the alignment, the PSSM of the node in the phylogenetic tree, and the phylogenetic relationships between the sequences in the alignment. PHI-BLAST is a powerful tool for identifying distant homologs. It is used by researchers in a wide range of fields, including genetics, genomics, proteomics, and molecular biology.

EMBOSS Needle:

EMBOSS Needle is a pairwise sequence alignment tool that uses the Needleman- Wunsch algorithm to produce global alignments. A global alignment is an alignment that aligns the entire length of both sequences. It works by comparing the two sequences and identifying regions of identical or similar characters. Gaps are inserted between the characters of the two sequences so that the identical or similar characters are aligned in successive columns. It calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. It then reports the alignment with the highest score. EMBOSS Needle is a powerful tool for aligning biological sequences and it is particularly well-suited for aligning sequences of known evolutionary relationship or sequences with low levels of divergence.

EMBOSS Water:

EMBOSS Water is a pairwise alignment tool that uses the Smith-Waterman algorithm to produce local alignments. This means that only the most similar regions of the two sequences are aligned. It is a good choice for aligning sequences of unknown evolutionary relationship or sequences with high levels of divergence. It works by comparing the two sequences and identifying regions of identical or similar characters. Gaps are inserted between the characters of the two sequences so that the identical or similar characters are aligned in successive columns. It then calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. It then reports the alignment with the highest score. It is a powerful tool for aligning biological sequences. It is often used in conjunction with other alignment tools, such as BLAST and FASTA, to identify and analyze homologous sequences. EMBOSS Water is also used to design primers and probes for PCR and other molecular biology techniques.

REFERENCES:

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. <u>https://doi.org/10.1016/s0022-2836(05)80360-2</u>
- Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. <u>https://doi.org/10.1016/0022-2836(70)90057-4</u>
- Bhagwat, M., & Aravind, L. (2007). PSI-BLAST Tutorial. In Methods in molecular biology (pp. 177–186). <u>https://doi.org/10.1007/978-1-59745-514-5_10</u>
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., López, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1). <u>https://doi.org/10.1038/msb.2011.75</u>

<u>WEBLEM 6(A)</u> BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) (URL: https://blast.ncbi.nlm.nih.gov)

<u>AIM:</u>

To study and explore similar sequences of the protein albumin (UniProt ID: P02768) by using Basic Local Alignment Search Tool (BLAST).

INTRODUCTION:

BLAST (Basic Local Alignment Search Tool) is an algorithm and program for comparing primary biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA and/or RNA sequences. A BLAST search enables a researcher to compare a subject protein or nucleotide sequence (called a query) with a library or database of sequences, and identify database sequences that resemble the query sequence above a certain threshold. BLAST (Basic Local Alignment Search Tool) has become the defacto standard in search and alignment tools [Altschul et al., 1990]. The BLAST algorithm works by finding a short, or local, region of high similarity between two sequences, and then extending this match out from this starting point to both the left and the right. A score is assigned to the match. The score will increase as more residues are found to match and will decrease if there are gaps in the alignment. Alignments with a score that exceeds a certain threshold are reported in the output.

BLAST searches for high scoring sequence alignments between the query sequence and the existing sequences in the database using a heuristic approach that approximates the Smith-Waterman algorithm.

BLAST tool can be used to identify unknown sequences by comparing them with known sequences in a database which helps in predicting the functions of proteins or genes which can be used in phylogenetic analysis as well as in identifying functionally conserved domains within proteins which is important for predicting the functions of proteins.

Albumin:

Albumin is a family of globular proteins, with the most common members being the serum albumins. All proteins within the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and susceptible to heat denaturation. Albumins are commonly present in blood plasma and distinguish themselves from other blood proteins by their lack of glycosylation. Compounds containing albumins are termed albuminoids. Several blood transport proteins share an evolutionary relationship within the albumin family, including serum albumin, alpha-fetoprotein, vitamin D-binding protein, and afamin. This family is exclusively found in vertebrates. In a broader sense, the term "albumins" may refer to other proteins that coagulate under specific conditions.

METHODOLOGY:

- 1. Open the Homepage of the UniProt database and search for the query of Albumin protein.
- 2. Select one entry from the results for *Homo sapiens* (UniProt ID: P02768) and download its FASTA sequence in canonical format.
- 3. Open the homepage of BLAST and select Protein BLAST, i.e., BLASTP.
- 4. Paste the FASTA sequence in 'Enter Query Sequence' box.
- 5. Set the desired parameters.
- 6. Run the BLAST.

OBSERVATIONS:

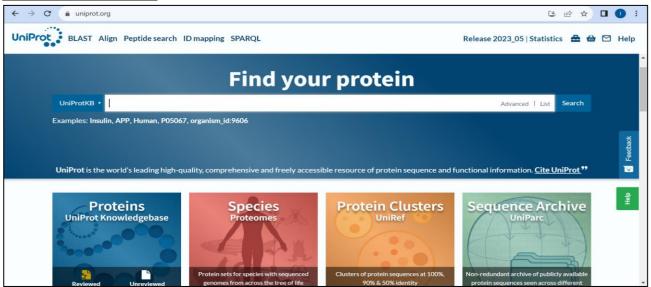


Figure 1: Homepage of the UniProt Database

← → C	rotkb?query=albumin				년 년 ☆	
UniProt BLAST Align	Peptide search ID	mapping SPARQL	UniProtKB • albumin	Advand	ced List Search 🖴 🕁	ð 🗹 Help
Status Reviewed (Swiss-Prot)	UniPr	otKB 48,2	217 results	search "albumin" as a Protein Name, Gene C	Ontology, Gene Name[]	
(677)	BLAST Align	Map ID 土 Downloa	ad ᡠ Add View: Car	ds 🔿 Table 🖲 💆 Customize colum	ns 📽 Share 🔹 1 row sele	cted out of
Unreviewed (TrEMBL) (47,540)	Entry 🔺	Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms	D P02770	ALBU_RAT	Albumin	Alb	Rattus norvegicus (Rat)	608 AA
A. thaliana (513)	P08835	ALBU_PIG	Albumin	ALB	Sus scrofa (Pig)	607 A 607
Rice (435) Human (91)	P49065	ALBU_RABIT	Albumin	ALB	Oryctolagus cuniculus (Rabbit)	608 A
Rat (67) Mouse (52)	□ Q5NVH5	ALBU_PONAB	Albumin	ALB	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	609 A
Faxonomy	✓ P02768	ALBU_HUMAN	Albumin	ALB, GIG20, GIG42, PRO0903, PRO1708, PRO2044, PRO2619, PRO2675,	Homo sapiens (Human)	609 AA

Figure 2: Searching for the query albumin and selecting (UniProt ID: P02768)

← → C 🍙 uniprot.org/unipr	otkb/P02768/entry	년 순 ☆ 🛯 🕕 :
UniProt BLAST Align I	Peptide search ID mapping SPARQL UniProtKB •	Advanced List Search 🖴 🔂 🗹 Help
Function	Section 2017 Point ALBU_HUMAN	
Names & Taxonomy	Protein ⁱ Albumin	Amino acids 609 (go to sequence)
Subcellular Location	Gene ⁱ ALB Status ⁱ S UniProtKB reviewed (Swiss-Prot)	Protein Evidence at protein level
Disease & Variants	Organism ⁱ Homo sapiens (Human)	Annotation 55
PTM/Processing		score'
Expression	Entry Variant viewer 639 Feature viewer Ge	enomic coordinates new Publications External links His
Interaction	4	
Structure	BLAST Align 土 Download 🖶 Add Add a publication	Entry feedback
Family & Domains	Function	
Sequence & Isoforms		and drugs (Probable). Its main function is the regulation of the
Similar Proteins	colloidal osmotic pressure of blood (Probable). Major zinc (PubMed:19021548).	transporter in plasma, typically binds about 80% of all plasma zinc
		s approximately 45% of circulating calcium and magnesium in

Figure 3: Download option for retrieving FASTA sequence

<pre>>sp P02768 ALBU_HUMAN Albumin OS=Homo sapiens OX=9606 GN=ALB PE=1 SV=2 MKWVFFJSLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQVLQQCPF EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP ERNECFLQHKDDDNPLNPRLVRPEVDVMCTAFHODKETFLKKYLYEIARHPYFYAPFLIF FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV ARLSQRPFKAEFAEVSKLVTDLTKVHTECCHGDLECADDRADLAKYICENQDSISSKLK ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGNGVEIFFE QLGEYKFQNALLURLAKTVFTTLKVCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFFE QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV LNQLCVLHEKTPVSDRVTKCCTESLUNRRPCFSALEVDETYVPKEFNAETFTFHADICTL SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV AASQAALGL</pre>

Figure 4: FASTA sequence in canonical format

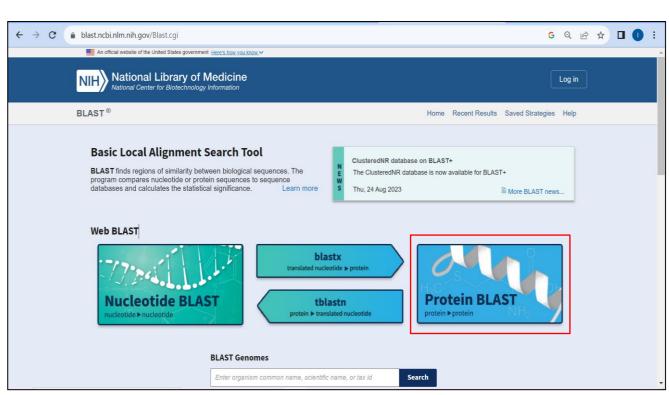


Figure 5: Homepage of Basic Local Alignment Search Tool (BLAST)

← → C 🌲 blast.ncbi.nlm.nih.gov/Blast.cgi	i?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome	G Q 🖻 🖈 🔲 🚺 🗄
An official website of the United State	es government Here's how you know.∽	A
NIH National Libra	echnology Information	Log in
BLAST [®] » blastp suite	Home Recent Results	Saved Strategies Help
blastn blastp blastx tblastn	Standard Protein BLAST	
Enter Query Sequence	BLASTP programs search protein databases using a protein query. more	Reset page Bookmark
Enter accession number(s), gi(s), or FASTA sequence(s) >splP02768jALBU_HUMAN Abumin OS=Homo sapiens 0X=8006 PE=1 SV=2 MKWNTFISLLFUSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKA QYLQQCPF	GN=ALB From	
Or, upload file Choose File No file chosen Job Title Enter a descriptive tile for your BLAST see Align two or more sequences ?	e arch e	
Choose Search Set		
Databases (nr etc.): New	Experimental databases For more info see What is clustered nr?	
Compare Select to compare standard and ex	xperimental database 🕜	back
Standard Database Non-redundant protein sequences Organism	. (nr) • 0	Eeedback
Optional Enter organism name or idcompl	letions will be suggested Add organism	

Figure 6: FASTA sequence pasted in 'Enter Query Sequence' box

← → C	blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome	G	Θ	Ŕ	☆			:
BLAST	Search database nr using Blastp (protein-protein BLAST) So Shore results in a new window		- (n	-		•
— Algorithm p	arameters							1
General Par	ameters	Rest	ore defa	ult sea	irch para	meters)	
Max target sequences	100 V Select the maximum number of aligned sequences to display 😧							
Short queries	Automatically adjust parameters for short input sequences ?							
Expect threshol	d 0.05							
Word size	5 • 0							L
Max matches in query range	a 0 0							
Scoring Par	ameters							L
Matrix	BLOSUM62 🗸 💡							
Gap Costs	Existence: 11 Extension: 1 V 9							I
Compositional adjustments	Conditional compositional score matrix adjustment 🗸 <table-cell></table-cell>							
Filters and I								
Filter	Low complexity regions 2							
Mask	Mask for lookup table only 🚱							
							ack ack	1
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window						Feedbac	
							ä	
								4

- > C	blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome	G	Q	Ē	☆	1	
Align two or m	iore sequences 👽						
Choose Sear	rch Set						
Databases	Standard databases (nr etc.): Experimental databases C Experimental databases For more info see What is clustered nr?						
Compare	Select to compare standard and experimental database 👔						
Standard							
Database	Non-redundant protein sequences (nr)						
Organism	Enter organism name or id-completions will be suggested exclude Add organism						
Optional	Enter organism common name, binomial, or taxi id. Only 20 top taxa will be shown ?						
Exclude	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmental sample sequences						
Program Sel Algorithm	Quick BLASTP (Accelerated protein-protein BLAST)						
	blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST)						
	O PHI-BLAST (Pattern Hit Initiated BLAST)						
	O DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm 😧						
	7						
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window						
- Algorithm p	parameters						hack
							Feedback
	FOLLOW NCBI						

Figure 8: Running BLAST

	i.nlm.nih.gov/Blast.cgi ical website of the United States government. Here's how you know ∽	ତ ର ଜ 🖈 🛛 🌒
NIH	National Library of Medicine National Center for Biotechnology Information	Log in
BLAST	» blastp suite » results for RID-MYEXHJN3013	Home Recent Results Saved Strategies Help
< Edit S	arch Save Search Search Summary *	How to read this report? DBLAST Help Videos DBack to Traditional Results Page
Job Title	sp P02768 ALBU_HUMAN Albumin OS=Homo sapiens	Filter Results
RID	MYEXHJN3013 Search expires on 11-12 15:30 pm Download All V	
Program	BLASTP 😧 Citation 🛩	Organism only top 20 will appear exclude
Database	nr <u>See details</u> ✓	Type common name, binomial, taxid or group name
Query ID	lcl Query_191534	+ Add organism
Descripti	sp P02768 ALBU_HUMAN Albumin OS=Homo sapiens O>	Percent Identity E value Query Coverage
Molecule	type amino acid	to to to
Query Le	ngth 609	
Other rep	Distance tree of results Multiple alignment MSA viewer	Filter
	Compare these results against the ne	w Clustered nr database 🕢 BLAST
Descri	tions Graphic Summary Alignments Taxonomy	thack
Seque	nces producing significant alignments	Download ∨ Select columns ∨ Show 100 ♥ 0
Sel	ct all 100 sequences selected	GenPept Graphics Distance tree of results Multiple alignment MSA Viewer
		Max Total Querv E Per. Acc.

Figure 9: Results for the query, Header Section (UniProt ID: P02768)

		Com	pare these resu	lts against th	e new Clustered	l nr databa	ase 🕜	BL	AST				
Descriptio	ons	Graphic Summary	Alignments	Taxonomy									
Sequence	es pro	ducing significant al	ignments			Downl	load ~	Se	elect c	olumn	s ~ s	how	100 🛩 🔞
select	all 100) sequences selected			<u>GenPept</u>	Graphics	Distanc	e tree	of resu	<u>ilts M</u>	<u>lultiple ali</u>	i <u>gnm</u>	ent MSA Viewer
		Descrip	tion		Scientific	Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
serum a	albumin-ii	nterferon alpha 1 fusion proteir	n [synthetic construct]		synthetic construct		1244	1244	100%	0.0	100.00%	781	AGI02589.1
albumir	n [synthet	ic construct]			synthetic construct		1239	1239	100%	0.0	100.00%	610	AAX36126.1
albumir	n preprop	rotein [Homo sapiens]			Homo sapiens		1239	1239	100%	0.0	100.00%	609	NP_000468.1
Serum a	albumin (I	Homo sapiens]			Homo sapiens		1237	1237	100%	0.0	99.84%	609	CAA23754.1
serum a	albumin [l	Homo sapiens]			Homo sapiens		1236	1236	100%	0.0	99.67%	609	AAN17825.1
🔽 unname	ed proteir	n product [Homo sapiens]			Homo sapiens		1234	1234	100%	0.0	99.67%	609	CAA23753.1
serum a	albumin p	recursor [Homo sapiens]			Homo sapiens		1234	1234	100%	0.0	99.67%	609	AAF01333.1
🔽 unname	ed proteir	n product [Homo sapiens]			Homo sapiens		1234	1234	100%	0.0	99.67%	609	BAG37325.1
Chain A	<u>A, Albumir</u>	n [Homo sapiens]			Homo sapiens		1232	1232	100%	0.0	99.51%	609	<u>6ZL1_A</u>
hypothe	etical prot	ein [Homo sapiens]			Homo sapiens		1230	1230	100%	0.0	99.18%	609	CAH18185.1
albumir	n [Gorilla	gorilla gorilla]			Gorilla gorilla gorilla		1229	1229	100%	0.0	99.01%	609	XP_004038851.3
unname	ed proteir	product [Homo sapiens]			Homo sapiens		1229	1229	100%	0.0	99.67%	608	BAF85444.1
albumir	n isoform	X1 [Pan paniscus]			Pan paniscus		1228	1228	100%	0.0	98.85%	609	XP_003832390.1
serum a	albumin [Homo sapiens]			Homo sapiens		1224	1224	100%	0.0	99.18%	609	AAX63425.1
albumir	n precurs	or [Pongo abelii]			Pongo abelii		1221	1221	100%	0.0	98.52%	609	NP_001127106.2
	ed proteir	n product [Homo sapiens]			Homo sapiens		1220	1220	100%	0.0	98.06%	618	BAG60658.1
_		synthetic construct			synthetic construct		1220	1220	100%	0.0	99.01%	603	AIC32938.1
_		pygmaeus]			Pongo pygmaeus		1219	1219	100%	0.0	98.36%	609	XP 054342130.1

Figure 10: Result for Description Section

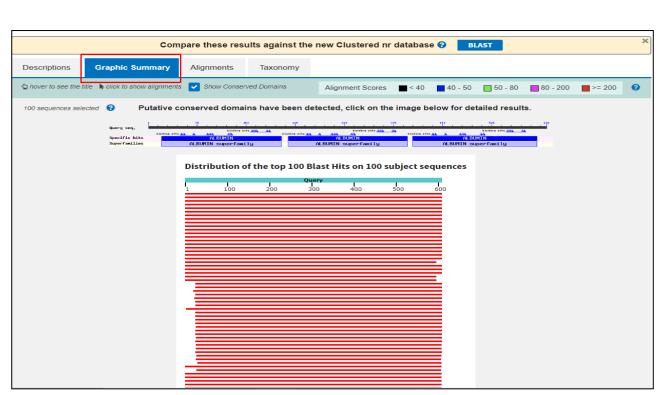


Figure 11: Result for Graphic Summary Section

	Compare these results against the new Clustered nr database @	BLAST
Descriptions		
Descriptions	Graphic Summary Alignments Taxonomy	
Alignment view	Pairwise	Download
100 sequences se	ected	
La Downloa	d GenPept Graphics	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
serum al	oumin-interferon alpha 1 fusion protein, partial [synthetic construct]	
Sequence I	0: AGI02589.1 Length: 781 Number of Matches: 1	
Range 1: 1	to 609 GenPept Graphics Vext Match A Previous Match	
Score 1244 bits(3	Expect Method Identities Positives Gaps 219) 0.0 Compositional matrix adjust. 609/609(100%) 609/609(100%) 0/609(0%)	
Query 1	MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF 60 MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF 60	
Sbjct 1	MKWYFFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF 60	
Query 61	EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP 120 EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP	
Sbjct 61	EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP 120	
Query 121	ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF 180 ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF	
Sbjct 121	ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF 180	
Query 181	FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV 240 FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV	
Sbjct 181		
Query 241	ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK 300 ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK	
Sbjct 241		
Query 301	ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYAR 360 ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYAR	
Sbjct 301		
Query 361	RHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFE 420 RHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPONLIKONCELFE	
Sbjct 361		
Query 421	QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV 480 QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV	
Sbjct 421		

Figure 12: Result for Alignment Section

	ary Alignments Ta	axonomy		
Reports Lineage Organi	sm Taxonomy			
100 sequences selected 😮				
Organism	Blast Name	Score	Number of Hits	Description
root			334	
synthetic construct	other sequences	1244	<u>13</u>	synthetic construct hits
. Homo sapiens	primates	1239	236	Homo sapiens hits
- Pongo abelii	primates	1239	5	Pongo abelii hits
. Gorilla gorilla gorilla	primates	1229	1	Gorilla gorilla gorilla hits
Pan paniscus	primates	1228	1	Pan paniscus hits
- Pan troglodytes	primates	1228	3	Pan troglodytes hits
- Pongo pygmaeus	primates	1219	1	Pongo pygmaeus hits
. Nomascus leucogenys	primates	1211	1	Nomascus leucogenys hits
- Hylobates moloch	primates	1211	1	Hylobates moloch hits
. Symphalangus syndactylus	primates	1206	1	Symphalangus syndactylus hits
- unidentified	unclassified sequences	1188	2	unidentified hits
. Macaca mulatta	primates	1175	4	Macaca mulatta hits
. Macaca fascicularis	primates	1175	5	Macaca fascicularis hits
. Macaca thibetana thibetana	primates	1174	1	Macaca thibetana thibetana hits
. Theropithecus gelada	primates	1173	1	Theropithecus gelada hits
Macaca nemestrina	primates	1172	-	Macaca nemestrina hits

Figure 13: Result for Taxonomy Section based on Lineage

Descriptions Graphic Summary Alignments Taxonomy Reports Lineage Organism Taxonomy			
100 sequences selected 3			
Description	Score	E value	Accession
synthetic construct [other sequences]	▼ Next	A Previo	us ≪First
serum albumin-interferon alpha 1 fusion protein, partial [synthetic construct]	1244	0.0	AGI02589
albumin, partial [synthetic construct]	1239	0.0	AAX36126
albumin [synthetic construct]	1239	0.0	ABM82340
serum albumin [synthetic construct]	1220	0.0	AIC32938
HSA-cIFN [synthetic construct]	1195	0.0	QCO95453
HSA-GGGGS-GH fusion protein, partial [synthetic construct]	1192	0.0	AF084000
IL-1Ra-GGGGS-HSA fusion protein, partial [synthetic construct]	1191	0.0	AEL88488
HSA-GGGGS-IL-1Ra fusion protein, partial [synthetic construct]	1191	0.0	AEZ51871
human serum albumin and interferon-alpha2b fusion protein, partial [synthetic construct]	1190	0.0	QNI40628
HSA-GGGGS-PTH(1-34), partial [synthetic construct]	1189	0.0	AER13700
serum albumin, partial [synthetic construct]	1188	0.0	AIC32937
somatostatin (SST) doublet/albumin fusion protein [synthetic construct]	1186	0.0	UTT97830
human serum albumin mutein, partial [synthetic construct]	1185	0.0	QNI40627
Homo sapiens (human) [primates]	▼ Next	▲ Previo	us ≪ First
albumin preproprotein [Homo sapiens]	1239	0.0	NP_000468
RecName: Full=Albumin; Flags: Precursor [Homo sapiens]	1239	0.0	P02768
Chain A, SERUM ALBUMIN [Homo sapiens]	1239	0.0	4BKE_A
Chain A. Common allower in Human appringed	1020	0.0	ELLID A

Figure 13a: Result for Taxonomy Section based on Organism

Descriptions Graphic Summary Alignmen	ts Taxonomy			
Reports Lineage Organism Taxonom	,			
100 sequences selected 3	*******			
Taxonomy	Number of hits	Number of Organisms	Description	
⊟ <u>root</u>	334	67		
<u>synthetic construct</u>	13	1	synthetic construct hits	
. ⊟ <u>cellular organisms</u>	<u>319</u>	65		
⊟ <u>Boreoeutheria</u>	317	64		
Euarchontoglires	284	35		
⊟Primates	283	34		
DHaplorrhini	278	29		
BSimilformes	277	28		
⊟Catarrhini	271	23		
BHominoidea	250	9		
 ⊟ <u>Hominidae</u>	247	6		
⊟Homininae	241	4		
	236	1	Homo sapiens hits	
Gorilla gorilla gorilla	1	1	Gorilla gorilla gorilla hits	
	_		<u>321112_321110 1110</u>	

Figure 13b: Result for Taxonomy Section based on Taxonomy

RESULTS:

The Basic Local Alignment Search Tool (BLAST) was used to explore the protein sequences similar to the protein sequence of albumin (UniProt ID: P02768). The query sequence is found 100% identical to three sequence entries.

Sequence Title	Organism	Max Score	Total Score	E Value	Percentage Identity	Accession ID
serum albumin- interferon alpha 1 fusion protein	Synthetic construct	1244	1244	0.0	100.0%	AGI02589.1
albumin	Synthetic construct	1239	1239	0.0	100.0%	AAX36126.1
albumin preproprotein	Homo Sapiens	1239	1239	0.0	100.0%	NP_000468.1

CONCLUSION:

The protein sequences similar to the protein sequence of albumin (UniProt ID: P02768) were studied by exploring the Basic Local Alignment Search Tool (BLAST).

REFERENCES:

- 1. Xiong, J. (2006). *Essential Bioinformatics*. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511806087
- S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Crystal structure of human serum albumin at 2.5 Å resolution, *Protein Engineering, Design and Selection*, Volume 12, Issue 6, June 1999, Pages 439– 446, <u>https://doi.org/10.1093/protein/12.6.439</u>

3. He, X., Carter, D. Atomic structure and chemistry of human serum albumin. *Nature* 358, 209–215 (1992). <u>https://doi.org/10.1038/358209a0</u>

WEBLEM 6(B) FASTA TOOL

(URL: https://www.ebi.ac.uk/Tools/sss/fasta/)

AIM:

To study protein sequence similarity by exploring FASTA tool for the query maltose (UniProt ID: P68187).

INTRODUCTION:

FASTA tool was originally developed for comparing protein sequences. FASTA is a text-based format for representing nucleotide or amino acid sequences. It's used in bioinformatics and biochemistry. FASTA is an abbreviation for "Fast-All". FASTA is a sequence alignment tool that takes nucleotide or protein sequences as input and compares it with existing databases. It was the first database similarity search tool developed, preceding the development of BLAST. The FASTA format allows for sequence names and comments to precede the sequences. Nucleotides or amino acids are represented using single-letter codes. For example, A => adenosine, C => cytidine, G => guanine, T => thymidine, and N => A/G/C/T (any). The original program was referred to as FASTP. It quickly became a popular tool for sequence alignment and database searching. The program has been continually updated and improved.

There are now different FASTA programs available, each used for different types of sequence searches:

- **1. FASTA** compares a DNA query sequence against a database of DNA sequences or a protein query sequence against a database of protein sequences using the FASTA algorithm.
- **2. SSEARCH** performs protein-protein or DNA-DNA comparisons using the SmithWaterman algorithm.
- **3. GGSEARCH/GLSEARCH** works using a global alignment algorithm (GGSEARCH) or a combination of global and local alignment algorithms (GLSEARCH) to compare protein and nucleotide sequences.
- **4. FASTX/FASTY** compares a DNA sequence and a database of protein sequences by translating the DNA sequence into three frames and allowing gaps and frameshifts.
- **5. TFASTX/TFASTY** compares a protein sequence and a database of DNA sequences. The DNA sequence is translated in six frames – three in the forward direction and three in the reverse direction.
- **6. FASTF/TFASTF** compares mixed peptide sequences against a protein (FASTF) or translated DNA (TFASTF) databases.
- **7. FASTS/TFASTS** compares a set of short peptide fragments against the protein (FASTS) or translated DNA (TFASTS) databases.

1. How FASTA Works

FASTA works by comparing a query sequence to a database of sequences to identify similar matches. The program uses a heuristic algorithm to quickly search the database and identify the most significant matches.

2. <u>The working mechanism of FASTA is described in the following steps:</u> Step 1: Identifying Regions

The first step is identifying regions with high similarity by creating a lookup table for the query sequence. This step is also called hashing step. To create the lookup table, the query sequence is first broken down into smaller words known as k-tuples (ktup).

Step 2: Re-Scoring

In the second step, the ten best diagonals are rescored using suitable scoring matrices. For protein, BLOSUM50 or PAM matrix is used; for DNA sequences, the identity matrix is used. A subregion with the highest score is identified for each of the rescanned diagonal regions.

Step 3: Joining Threshold

Next, a score cutoff or the joining threshold is applied that excludes segments unlikely to be part of the final alignment. The library sequences are ranked based on their Initial scores.

Step 4: Final Alignment

Finally, the gapped alignment is refined to produce the final alignment. This is done by using the banded Smith-Waterman algorithm, which is a dynamic programming algorithm that calculates the optimal score (opt) for alignment.

Maltose:

Maltose-binding protein (MBP) is a part of the maltose/maltodextrin system of Escherichia coli, which is responsible for the uptake and efficient catabolism of maltodextrins. It is a complex regulatory and transport system involving many proteins and protein complexes. MBP has an approximate molecular mass of 42.5 kilodaltons.

METHODOLOGY:

- 1. The protein FASTA (canonical) sequence for the desired protein for the query of 'Maltose' (UniProt ID: P68187) was retrieved from the UniProt Database.
- 2. Open the homepage of EBI FASTA tool. Select the desired Protein Database and paste the retrieved FASTA (canonical) sequence of Maltose (UniProt ID: P68187) in the query box of the EBI FASTA tool.
- 3. Set the desired parameters and select the 'SUBMIT' option to submit the query to the tool.
- 4. The results were shown in different tabs, namely, Submission Information, Tool Output, Graphic Output, Functional Forecasts, and Summary Table.
- 5. Interpret the results obtained.

OBSERVATIONS:

Figure 1: Homepage of the UniProt Database

← → C ☆ ■ uniprot	.org/uniprotkb?query=	maltose			6 G Q & * 0 0 0 1 *	- 7 🛛 🌔
UniProt BLAST Align	Peptide search ID n	napping SPARQ	UniProtKB • maltose		Advanced List Search	📤 🖨 🖾 He
Status Reviewed (Swiss-Prot) (796)			152 results or search "mailose" as a Proi d ⊜ Add View: Cards ⊖ Table ⊛ ∠ Cu		vity, Keyword, Gene Name, or Protein family	
Unreviewed (TrEMBL) (400.656)	Entry .	Entry Name 🔺	Protein Names 🖌	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms	P68187	MALK_ECOLI	Maltose/maltodextrin import ATP- binding protein MalK[]	malK, b4035, JW3995	Escherichia coli (strain K12)	371 AA
A. thaliana (70) Rice (48)	P53048	MAL11_YEAST	General alpha-glucoside permease[]	MAL11, AGT1, MAL1T, MTP1, YGR289C	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	616 AA
E. coli K12 (42)	P77791	MAA_ECOLI	Maltose O-acetyltransferase[]	maa, ylaD, b0459, JW0448	Escherichia coli (strain K12)	183 AA
B. subtilis (33) Fruit fly (29)	Q9L1K2	GLGE1_STRCO	Alpha-1,4-glucan:maitose-1-phosphate maitosyltransferase 1[]	gigE1, pep1, pep1A, pep1I, SCO5443, SC6A11.19c	Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145)	183 AA 675 AA
Taxonomy	D P02943	LAMB_ECOLI	Maltoporin[]	lamB, malB, b4036, JW3996	Escherichia coli (strain K12)	446 AA
Filter by taxonomy	D P54715	PTOCB_BACSU	PTS system maltose-specific EIICB component[]	malP, glv-2, glvC, glvCB, yfiB, BSU08200	Bacillus subtilis (strain 168)	527 AA
Group by Taxonomy	D POAEX9	MALE_ECOLI	Maltose/maltodextrin-binding periplasmic protein[]	malE, b4034, JW3994	Escherichia coli (strain K12)	396 AA
Keywords Gene Ontology	O P02916	MALF_ECOLI	Maltose/maltodextrin transport system permease protein MalF	malF, b4033, JW3993	Escherichia coli (strain K12)	514.AA
Enzyme Class	D P68183	MALG_ECOLI	Maltose/maltodextrin transport system permease protein MalG	malG, b4032, JW3992	Escherichia coli (strain K12)	296 AA
Proteins with 3D structure (226)	© Q7WUM3	MAK_ACTMI	Maltokinase[]	mak1	Actinoplanes missouriensis	437 AA

Figure 2: Searching for query maltose protein.

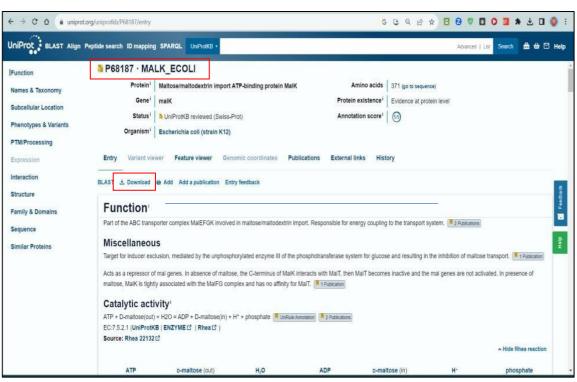


Figure 3: 'Download' option for retrieving the FASTA sequence of the protein

$\ \ \leftrightarrow \ \ \Box \ \ \ \nabla$	erest.uniprot.org/uniprotkb/P68187.fasta
MASVQLQNVTKAWGEVVVSI FIGEKRMNDTPPAERGVGM LQLAHLLDRKPKALSGGQR(KRLGRTMIYVTHDQVEAMTI FLPVKVTATAIDQVQVELPI	OLI Maltose/maltodextrin import ATP-binding protein MalK OS=Escherichia coli (strain K12) OX=83333 GN=malK PE=1 SV=1 SKDINLDIHEGEFVVFVGPSGCGKSTLLRMIAGLETITSGDL WVFQSYALYPHLSVAENMSFGLKLAGAKKEVINQRVNQVAEV RQRVAIGRTLVAEPSVFLLDEPLSNLDAALRVQMRIEISRLH TLADKIVVLDAGRVAQVGKPLELYHYPADRFVAGFIGSPKMN PMPNRQQVMLPVESRDVQVGAMMSLGIRPEHLLPSDIADVIL QIPSIRQNLVYRQNDVVLVEEGATFAIGLPPERCHLFREDGT

Figure 4: FASTA sequence of maltose protein.

EMBL-EBI Servic	es Researc	h Training	Industry About us	٩		EMBL	-EBI Hinxton •
FASTA							
Protein Nucleotide	Genomes	Proteomes	Whole Genome Shotgun	Web services Help	& Documentation	Bioinformatics Tools FAQ	Seedback
Tools > Sequence Similar	rity Searching	> FASTA		Marine State			
	er Services be	ta website is r	now available at https://w	wwdev.ebi.ac.uk/Tools/jd	ispatcher. We'd lov	ve to hear your feedback about	ut the new
webpages!				wwdev.ebi.ac.uk/Tools/jd	ispatcher. We'd loo	ve to hear your <u>feedback</u> abor	ut the new
webpagest Protein Sil	milarit	y Sea	arch	ing the FASTA suite of p	rograms. FASTA p	ve to hear your feedback abor rovides a heuristic search witt and GLSEARCH (global quer	n a protein query.
webpagest Protein Sil	milarit nce similarity : slate a DNA qu	y Sea	arch	ing the FASTA suite of p	rograms. FASTA p	rovides a heuristic search wit	n a protein query.
webpages! Protein Sil This tool provides seque FASTX and FASTY trans	milarit nce similarity : slate a DNA qu	y Sea	arch	ing the FASTA suite of p	rograms. FASTA p	rovides a heuristic search wit	n a protein query.

Figure 5: Homepage of FASTA tool.

FASTA										
Protein Nucleotide Genomes	Proteome	whol	le Genome Sholgun	Web services Help	& Documentation	on Bi	oinformatics	Tools FAQ	🗭 Feet	dback
Tools > Sequence Similarity Searchin	g > FASTA									
Service Announcement										
The new Job Dispatcher Services	beta website	is now av	ailable at https://w	wwdev.ebi.ac.uk/Tools/jdi	ispatcher. We'd	love to	hear your <u>f</u>	eedback abo	out the new	
webpages!										
Results for job fasta-120	231114.	07213	2-0421-291	5424-n1m						
				Comments in success of a subjection of the						
Results for job fasta-I20 Summary Table Tool Output Visu				Comments in success of a subjection of the						
Summary Table Tool Output Visu Selection:	al Output F	functional I		Comments in success of a subjection of the		Length a	Score k	dentities Pr	ositives o E()	6
Summary Table Tool Output Visu Selection: Select All Invert Clear	al Output F	Functional I	Predictions Subr	Comments in success of a subjection of the	MalK	Length ¢ 371	Score k (Bits) 7 341.4	dentities Pa	ositives e B() 100.0 3.0E	-
Summary Table Tool Output Visu Selection:	al Output F	Functional I	Predictions Subr D • Source 08=Escherich GN=malK PE=	nission Details textm import ATP-binding protein as coli (strain UTI89 / UPEC) OX= 1 SV+2	MalK	- 201	(8)(5) 7	• • *	¢ E0	-
Summary Table Tool Output Visu Selection: Select All Invert Clear Apply to selection:	al Output F	Functional I	Predictions Subr D • Source 01R3Q1 Matosermation OS=Escherich Circos.referer • Macromoleco	textrin import ATP-binding protein as coll (artan UTB9 / UPEC) OX= 1 SV-2 I cose and related information in: the structures > Bioscher maticales	i MaiK 364106	- 201	(8)(5) 7	• • *	¢ E0	-
Summary Table Tool Output Visu Selection: Select All Invert Clear Apply to selection: Annotations:	al Output F	Functional I	Predictions Subr D 3 Source D1R3Q1 Matose/mattor OS=Escherich GN=marK PE= Cross-referen- Nackotte s	nission Details teatrin import ATP-binding protein as coli (strain UTB9 / UPEC) OX= 1 SV=2 icees and related information in:	: МаК 364106	- 201	(8)(5) 7	• • *	¢ E0	-
Summary Table Tool Output Visu Selection: Select All Invert Clear Apply to selection: Annotations: Show Hide	al Output F	Functional I	Predictions Subn D • Source UR3Q1 Matosemation Q8=Escherch Q8=Escherch Q8=escherch Macomitien • Nockunds s • Nockunds s • Samtel	nission Details textrin import ATP-binding protein as coli (strain UTI89 / UPEC) OX= 1 SV>2 loog and related information in: Ar stratures > Bioscion materiales genrous > Excitores > Librarios	MalK 364106 In sequences MalK	- 201	(8)(5) 7	• • *	¢ E0	5-92

Figure 6: Searching sequence protein in FASTA tool.

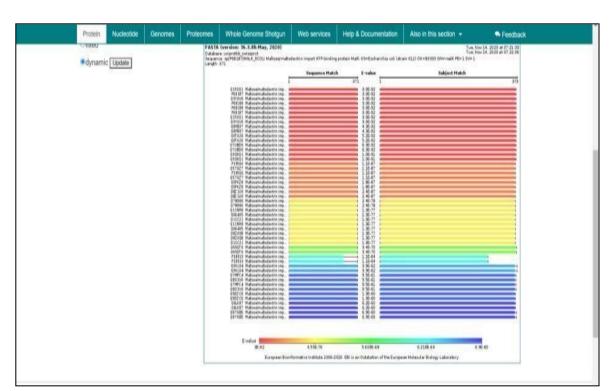


Figure 7: Visual output of maltose protein sequence.

Results for job f	asta-120231114-072132	-0421-2915424-p1m	
Summary Table Tool C	Output Visual Output Functional P	redictions Submission Details	
Program	Database	Launched Date	Input Sequence
FASTA Version	uniprotkb_swissprot	Tue, Nov 14, 2023 at 07:21:33 End Date	fasta-l20231114-072132-0421-2915424-p1m.input Output Result
36.3.8h May, 2020		Tue, Nov 14, 2023 at 07:22:06	fasta-I20231114-072132-0421-2915424-p1m.output
-T 32 -p -s BL50 -	-f -10 -g -2 -E *10.0 -1.0*		/fasta36 -1 \$DATA_CURRENT/fastacfg/fasta3d -120231114-072132-0421-2915424-p1m.m9* -m ' 2
cat fasta-I2023111 -T 32 -p -s BL50 fasta-I20231114-0	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m
cat fasta-12023111 -T 32 -p -s BL50 fasta-120231114-0' Input Parame	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m
cat fasta-I2023111 -T 32 -p -s BL50 fasta-I20231114-0	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m
cat fasta-I2023111 -T 32 -p -s BL50 - fasta-I20231114-0 Input Parame Sequence type	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m

Figure 8: Submission details of maltose protein on FASTA tool.

RESULTS:

The EBI – FASTA tool was used to explore the sequences similar to the sequence of maltose (UniProt ID: P02768). The query sequence is found 100% identities & 100% positives to maltose sequence entries found in two organisms, viz., *Escherichia coli* and *Shigella sonnei*, with E Value of 5.2e-98 and sequence length of 371.

CONCLUSION:

FASTA is a versatile bioinformatics tool primarily used for storing, searching and comparing biological sequence data. It's commonly employed for tasks like sequence alignment, similarity searches and database comparisons. Sequence similarity was searched and studiedfor the Query 'Maltose' (UniProt ID: P68187) using the FASTA program.

REFERENCES:

- Kryukov K, Ueda MT, Nakagawa S, Imanishi T (July 2020). "Sequence Compression Benchmark (SCB) database—A comprehensive evaluation of reference-free compressors for FASTA-formatted sequences". GigaScience. 9 (7): giaa072. <u>https://doi.org/10.1093/gigascience/giaa072</u>
- Andrew Lloyd, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Methods of Biochemical Analysis, 43), Briefings in Bioinformatics, Volume 2, Issue 4, December 2001, Pages 407–408, <u>https://doi.org/10.1093/bib/2.4.407</u>
- Pratas D, Hosseini M, Pinho A (2017). "Cryfa: a tool to compact and encrypt FASTA files". 11th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB). Advances in Intelligent Systems and Computing. Vol. 616. Springer. Pp. 305–312. Doi:10.1007/978-3-319-60816-7_37. https://link.springer.com/book/10.1007/978-3-319-60816-7_

<u>WEBLEM 6(C)</u> <u>PROTEIN- SPECIFIC ITERATED BLAST (PSI BLAST)</u> (URL: https://blast.ncbi.nlm.nih.gov/Blast.cgi)

AIM:

To explore the PSI BLAST tool to search putative homologs for query "Leucine" (UniProt ID: Q8IX15).

INTRODUCTION:

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) derives a position-specific scoring matrix (PSSM) or profile from the multiple sequence alignment of sequences detected above a given score threshold using protein—protein BLAST. This PSSM is used to further search the database for new matches and is updated for subsequent iterations with these newly detected sequences. Thus, PSI-BLAST provides a means of detecting distant relationships between proteins. BLAST (Basic Local Alignment Search Tool) is a sequence similarity search method, in which a query protein or nucleotide sequence is compared to nucleotide or protein sequences in a target database to identify regions of local alignment and report those alignments that score a given score threshold. Position-Specific Iterative (PSI)-BLAST is a protein sequence profile search method that builds off the alignments generated by a run of the BLASTp program. It first iteration of a PSI-BLAST search is identical to a run of BLASTp run above a certain preset score or *e*-value threshold and calculates a profile or a position-specific score matrix (PSSM) from the multiple alignment.

The PSSM captures the conservation pattern in alignment and stores it as a matrix of scores for each position in the alignment-highly conserved positions receive high scores and weakly conserved positions receive scores near zero. This profile is used in place of the original substitution matrix for a further search of the database to detect sequences that match the conservation pattern specified by the PSSM. The newly detected sequences from this second round of the search, which are above the specified score (e-value) threshold is again added to alignment the profile is refined for another round of searching. This process is iteratively continued until desired or until convergence, i.e., the state where no new sequences are detected above the defined threshold. The iterative profile generation process makes PSI-BLAST far more capable of detecting distant sequence similarities than a single query alone in BLASTp, because it combines the underlying conservation information from a range of related sequence into a single score matrix. In the evolution, three-dimensional (3D) structures of proteins may be conserved even after considerable erosion of their sequence similarity. PSI-BLAST has been demonstrated to be useful in detecting such relationships via sequence searches, which were previously only detected through direct comparison of the 3D structures. Here, we discuss practical aspects of using PSI-BLST and provide a tutorial on how to uncover distant relationships between proteins and use them to reach biological meaningful conclusions.

Significance:

- 1. PSI-BLAST is most conveniently used on the internet with the help of the graphical user interface provided by the PSI-BLAST search page on National Centre for Biotechnology Information (NCBI).
- 2. The PSI-BLAST page may be customized by the user in terms of automated or semiautomated or "two-page formatting" and other parameters modified as desired. This page can then be saved as permanent internet bookmark for repeated use on futureoccasions.
- 3. As a rule of the thumb, beginners are advised to use the profile-inclusion threshold of expect (e)-value = 0.005 for their analysis. However, a user familiar with globular domains and compositional bias may use the inclusion threshold of 0.01 for inclusion in the profile, if a sequence does not have any major compositionally biased segments.
- 4. A pair of protein sequences can either be homologous (sharing a common evolutionary ancestor) or nonhomologous (evolutionarily unrelated).
 - a. It should be noted that PSI-BLAST does not offer a direct binary decision on whether two sequences are related or not. However, the *e*-value obtained for a PSI-BLAST alignment can be used as a guide for this purpose.
- 5. As a heuristic it may be assumed that any compositionally unbiased query, encompassing a globular domain in a protein, giving a hit with e-value = <0.01 is likelyto be an indication of a homologous relationship. However, a user must carefully evaluate such alignments case-by-case because there can occasionally be false- positives.
- 6. A user may set the number of alignments and hits view as at least 1000 if searching the nonredundant (nr) database of NCBI, because of the large number hits obtained due to the current size of the database. PSI-BLAST may also be downloaded and run as a standalone program for Windows or UNIX-type operating systems.
 - a. However, in this case the various parameters need to be specified using the set of command-line flags for the program. An advantage of using the standalone version is the ability to use alignments as queries to generate a starting PSSM or saving and reusing the profile generated by a run of PSI-BLAST.

Leucine:

Leucine (symbol **Leu** or **L**) is essential amino acid that is used in the biosynthesis of proteins. Leucine is an α -amino acid, meaning it contains an α -amino group (which is in the protonated $-NH_3^+$ form under biological conditions), an α -carboxylic acid group (which is in the deprotonated $-COO^-$ form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG.

Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. It is the most important ketogenic amino acid in humans.

L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite

and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion.

METHODOLOGY:

- 1. Go to the website of BLAST tool.
- 2. Click protein blast as protein is more conserved than nucleotide.
- 3. Go on UniProt portal.
- 4. Search for query 'Leucine'.
- 5. From shown results select UniProt ID: 'Q8IX15' entry.
- 6. Download the sequence in FASTA (Canonical) format.
- 7. Copy the sequence and paste under BLASTp suite.
- 8. Select Protein Data Bank (PDB) database under standard and program algorithm parameter as psi-blast with threshold 0.001.
- 9. Click BLAST to run the query.
- 10. Click Run to observe 2nd iterated and continue till 5 iterations.

OBSERVATIONS:

	Select protein BLAST.
NIH National Library of Medicine	Log in
BLAST®	Home Recent Results Saved Strategies Help
Web BLAST Mucleotide BLAST	In BLAST+ Be is now available for BLAST+ More BLAST news More BLAST news
BLAST Genomes	
Enter organism common name, scientific name, or tax id Searc Human Mouse Rat Microbes	

Figure 1: Homepage of BLAST

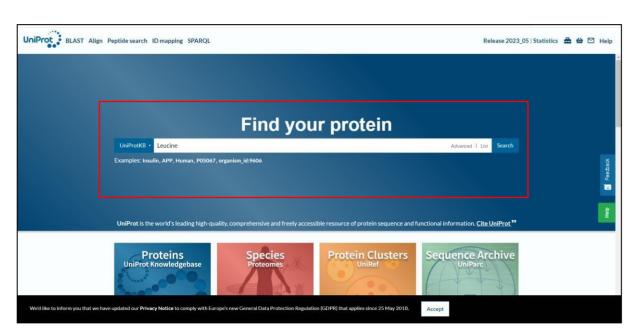


Figure 2: Query search in UniProt portal

Reviewed (Swiss-Prot) (12,443)	UNI			35 results or search "Leucine" as a Protein Name. Gene Ontology, Keywo		Name, or Disease	
Unreviewed (TrEMBL) (2,769,292)	Ent	_	Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms	P00	0727	AMPL_BOVIN	Cytosol aminopeptidase[]	LAP3	Bos taurus (Bovine)	519 AA
A. thaliana (5,874) Rice (3,372)	D Q9	UIC8	LCMT1_HUMAN	Leucine carboxyl methyltransferase 1[]	LCMT1, LCMT, CGI-68	Homo sapiens (Human)	334 AA
Human (3,131) Rat (2,299)	Q8	i6V48	LUZP1_HUMAN	Leucine zipper protein 1	LUZP1	Homo sapiens (Human)	1,076 AA
Mouse (2,118)	🖬 Q8	IX15	HOMEZ_HUMAN	Homeobox and leucine zipper protein Homez[]	HOMEZ, KIAA1443	Homo sapiens (Human)	550 AA
axonomy Filter by taxonomy	U Q/	LOXO	TRIL_HUMAN	TLR4 interactor with leucine rich repeats[]	IRIL, KIAAU644	Homo sapiens (Human)	811 AA
iroup by Faxonomy	Q9	6LR2	LURA1_HUMAN	Leucine rich adaptor protein 1[]	LURAP1, C1orf190, LRAP35A, LRP35A	Homo sapiens (Human)	239 AA
Keywords	07	5427	LRCH4_HUMAN	Leucine-rich repeat and calponin homology domain-containing protein 4[]	LRCH4, LRN, LRRN1, LRRN4	Homo sapiens (Human)	683 AA
Sene Ontology Enzyme Class	D P4	9911	AN32A_RAT	Acidic leucine-rich nuclear phosphoprotein 32 family member A []	Anp32a, Lanp	Rattus norvegicus (Rat)	247 AA
Proteins with	04	3300	LRRT2_HUMAN	Leucine-rich repeat transmembrane neu Microsoft Store 2[]	LRRTM2, KIAA0416, LRRN2	Homo sapiens	516 AA

Figure 2a: Select desired organism

Download	×	Advanced List Scarch 🚘 🕁 🖸 Help
Format FASTA (canonical)	Preview Cancel Download	Amino acids 550 (go to sequence) Protein existence ¹ Evidence at protein level Annotation score ¹ 65
		Publications External links History
	Microsoft	pilessince 25 May 2018. Accept

>sp[Q8IX15|HOMEZ_HUMAN Homeobox and leucine zipper protein Homez OS=Homo sapiens 0X=9606 GN=HOMEZ PE=1 SV=2 MVRGwEPPPGLDCAISEGHKSEGTMPPNKEASGLSSSPAGLICLPPISELQLW/TQAAQ TSELDSNEHLLKTFSYFPYPSLADIALLCLRYGLQMEKVKTWFMAQRLRCGISWSSEEIE ETRARVVYRRDQLHFKSLLSFTHHAGRPEEVPPPPVPAPEQVGIGIGPPTLSKPTQTKG LKVEPEEPSGMPPLQPSHQKLKESLIMTPGSGAFPYQSDFWQHLQSSGLSKKQGARGPNQS HGIGTASWNHSTTVPQPQARDKPPPIALIASSCKEESASSVTPSSSTSSSFQVLANGAT AASKPLQPLGCVPQSVSPSEQALPPHLEPAWPQGLRHHSVPGRVGPTEYLSPDWQRQRKT KRKTKEQLAILKSFFLQCQWARREDYQKLEQITGLPRPEIIQWFGDTRYALKHGQLKWFR DNAVPGAPSFQOPAIPTPPSTRSLFRAETPPEPIPPPPDIQPLERYWAAHQQLRETD IPQLSQASRLSTQQVLDWFDSRLPQPAEVVVCLDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDOD DDDDDVIIQD

Figure 2c: Copying the sequence

	NIH National Library of Medicine National Center for Biotechnology Information			[Log in
	BLAST [®] » blastp suite	Home	Recent Results	Saved Strategies	Help
blastn	step blastx tblastn tblastx Standard Protein BLAST				
Enter Query S	BLASTP programs search protein databases using a protein query. more				Reset page Bookmark
QQLRETD	Inber(s), al(s), or FASTA sequence(s) & Clear Query subrange Clear Query subrange Tom To				
Or, upload file	Choose File No file chosen				
Job Title					
Align two or mo	Enter a descriptive title for your BLAST search 😧				
Choose Searc	h Set				
Databases	Standard databases (nr etc.): Imm O Experimental databases For more info see What is clustered nr?				
Compare	Select to compare standard and experimental database ?				
Standard					back
Database	Protein Data Bank proteins(pdb) V				Feedback
Organism Optional	Enter organism name or id-completions will be suggested Add organism				
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown 😧				
Exclude	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmental sample sequences				

Figure 3: Pasting the sequence in BLASTp format

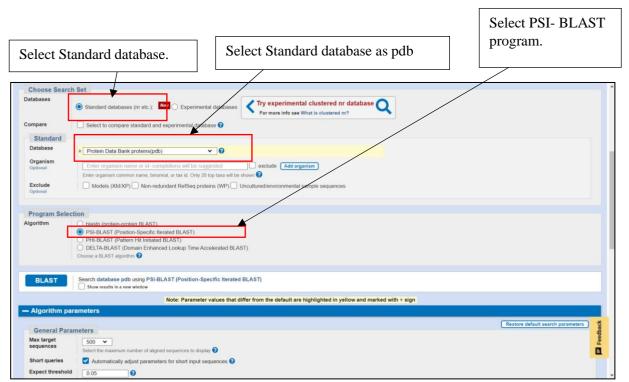


Figure 4: Selecting Standard database as pdb and program selection as PSI- BLAST

		Restore default search parameters
General Param	eters	
lax target equences	500 V Select the maximum number of aligned sequences to display (2)	
hort queries	Automatically adjust parameters for short input sequences ?	
xpect threshold	0.05	
/ord size	3 • 0	
lax matches in a		
uery range	0	
Scoring Param	atore	
latrix	BLOSUM62 V	
ap Costs	Existence: 11 Extension: 1 V	
ompositional djustments	Conditional compositional score matrix adjustment 🗸 🔇	
Filters and Ma		
Filters and Ma	Low complexity regions 🕐	
lask		
арк	Mask for lookup table only ? Mask lower case letters ?	
PSI/PHI/DELTA	BLAST	
pload PSSM	Choose File No file chosen	
SI-BLAST	0.001	
hreshold seudocount		
Jeauseeun	0	
	Search database pdb using PSI-BLAST (Position-Specific Iterated BLAST)	

Figure 5: Keeping PSI-BLAST threshold as 0.001 and running PSI - BLAST

		Home Recent Results Saved Strategies Help
< Edit Search	Save Search Search Summary ¥	How to read this report? BLAST Help Videos DBack to Traditional Results Page
Job Title	sp Q8IX15 HOMEZ_HUMAN Homeobox and leucine	Filter Results
RID	N9ERW6E1016 Search expires on 11-16 19:35 pm Download All ~	
Program	PSI-BLAST Iteration 1 Citation ~	Organism only top 20 will appear exclude
Database	pdb See details ~	Type common name, binomial, taxid or group name
Query ID	Icl Query_53057	+ Add organism
Description	sp]Q8IX15 HOMEZ_HUMAN Homeobox and leucine zippe	Percent Identity E value Query Coverage
Molecule type	amino acid	to to to
Query Length	550	PSI-BLAST incl.
Other reports	Distance tree of results Multiple alignment MSA viewer	threshold
		0.001 Filter Reset
		Run PSI-Blast iteration 2
Descriptions	Graphic Summary Alignments Taxonomy	Number of sequences 500 Run

Figure 6: Result shown for UniProt ID: Q8IX15 in BLASTp

							Cl	ick	run	to rı	ın 2	2 nd ite
			Kull F SI-Dias									
Descriptions Graphic	Summary Alignments	Taxonomy	Number of s			500					R	un
Sequences producing s	gnificant alignments			Dowr	load	~ ;	Select c	olumn	s Y S	how 50	• 00	0
8 sequences selected			GenPept G	raphics	Dista	ance tre	e of resu	its A	Iultiple a	lignment	MSA	lewer
Sequences with E-value BE	TTER than threshold											-
select all 6 sequences se	lected			PSI-BLAST iteration 1							tion 1	
	Description		Scientific Name		Total Qu Score Co				Acces	sion for PSI	Used to build PSSM	Newly added
Chain A. Homeobox and leue	ine zipper protein Homez [Homo sapiens	Homo s	apiens	139	139 1	1% 20	-39 100	00%	76 <u>2ECC</u>	_A 🔽		
and the second s	ine zipper protein Homez (Homo sapiens	Homo s	apiens	116	116 1				0 <u>2YS9</u>	100		
and the second state in the second state in the second	neoboxes protein 1 [Homo sapiens]	Homo s							6 <u>3NAR</u>	1.0		
and the second sec	neoboxes protein 2 [Homo sapiens]	Homo s							36 <u>3NAU</u>			
-	neoboxes protein 1 [Homo sapiens] neoboxes protein 3 [Homo sapiens]	Homo s		48.9 40.4			-07 50		4 21Y9			
	n 2 with max number of seque		Run	40.4	40.4	210 04	-04 37	3076	0 212080			
Sequences with E-value W	-											-
select all 2 sequences se	lected								PS	BI-BLAST	l itera	tion 1
	Description	Scientific	Name Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession	Select I for PSI to blast F	build	Newly added
Chain A. DNA-binding protein	SATB1 [Homo sapiens]	Homo sapiens	36.2	36.2	11%	0.013	42.03%	71	2 <u>MW8_</u> A			
Chain A. Zinc fingers and ho	neoboxes protein 1 [Homo sapiens]	Homo sapiens	35.8	35.8	11%	0.027	35.82%	89	2ECB_A			

Figure 6a: Result shown for sequence with E- value better and worse than threshold

Descriptions Graphic Summary Alignments Taxonomy	Number of sequences 500 Run										
Sequences producing significant alignments		Dow	nload	1 ×	Sele	ct colur	nns	✓ Sho	w 50	00 🗸	0
62 sequences selected equences newly added this iteration ?	GenPept Graphics Distance tree of results Multiple alignment MSA Viewer										
Sequences with E-value BETTER than threshold											-
select all 37 sequences selected Skip to the first new sequence								PSI-	BLAST	T iterati	on 2
Description	Scientific Name	Max Score	Total Score	1000	E value	Per. Ident	Acc. Len	Accession	PSI		Newly added
Chain A. Homeobox and leucine zipper protein Homez [Homo sapiens]	Homo sapiens	117	117	11%	3e-31	100.00%	76	2ECC_A		0	
Chain A. Zinc fingers and homeoboxes protein 1.[Homo sapiens]	Homo sapiens	113	113	12%	1e-29	49.28%	96	3NAR_A		0	
Chain A. Homeobox and leucine zipper protein Homez [Homo sapiens]	Homo sapiens	106	106	10%	2e-27	100.00%	70	2YS9_A		0	
Chain A, Zinc, fingers and homeoboxes protein 2 [Homo sapiens]	Homo sapiens	97.9	97.9	9%	20-24	46.30%	66	3NAU_A		0	
Chain A. Zinc fingers and homeoboxes protein 3 [Homo sapiens]	Homo sapiens	90.2	90.2	11%	10-21	33.85%	76	2DN0_A		0	
Chain A. Zinc fingers and homeoboxes protein 1.[Homo_sapiens]	Homo sapiens	87.5	87.5	9%	1e-20	44.44%	74	2LY9_A	✓	0	
Chain A. Zinc fingers and homeoboxes protein 2 [Homo sapiens]	Homo sapiens	55.9	55.9	10%	2e-09	36.84%	89	2DMP_A			0
Chain A. Zinc fingers and homeoboxes protein 3. [Homo sapiens]	Homo sapiens	50.5	50.5	12%	1e-07	32.84%	75	2DA5_A			0
Chain A. Zinc fingers and homeoboxes protein 1.[Homo sapiens]	Homo sapiens	48.6	48.6	10%	10-06	38.60%	89	2ECB_A			0
Chain P. Pituitary homeobox 2 (Homo sapiens)	Homo sapiens	43.9	43.9	10%	20-05	22.03%	68	<u>21.7F_P</u>			0
Chain P. Pituitary homeobox 2 [Homo sapiens]	Homo sapiens	43.9	43.9	10%	3e-05	22.03%	68	21.7M_P			0
Chain A. Paired box protein Pax-3 [Homo sapiens]	Homo sapiens	42.8	42.8	10%	40-05	24.14%	61	3CMY_A			0
Chain A. PROTEIN (HOMEOBOX VENTRAL NERVOUS SYSTEM DEFECTIVE PROTEIN) (D	ro Drosophila mel	43.2	43.2	11%	5e-05	26.56%	80	1QRY_A			0
Chain A. LIM/homeobox protein Lhx9 [Homo sapiens]	Homo sapiens	43.2	43.2	13%	56-05	26.67%	80	2DMQ A			0

Figure 7: 2nd iterated result of UniProt ID: Q8IX15 organism

RESULTS:

PSI BLAST was explored using query 'Leucine' (Q8IX15) in order to get putative homologs. The first iteration showed 8 new putative sequences and the addition of new sequences was carried till 5th iteration, but then the process if halted as further iteration would drop the result accuracy and the iteration showed that new putative homologs are available for query 'Leucine'.

CONCLUSION:

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) derives a position-specific scoring matrix (PSSM) or profile from the multiple sequence alignment of sequences detected above a given score threshold using protein–protein BLAST. This PSSM is used to further search the database for new matches and is updated for subsequent iterations with these newly detected sequences. Thus, PSI-BLAST provides a means of detecting distant relationships between proteins. PSI-BLAST (Position specific iterative – BLAST) algorithm program was used to view and explore best iterated results for query 'Leucine' (UniProt ID: Q8IX15).

REFERENCES:

- 1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.
- 2. PSI-BLAST. (n.d.). National Institutes of Health. https://www.ncbi.nlm.nih.gov/books/NBK2590/
- 3. Pruitt KD, Tatusova T, Ostell JM. McEntyre J, Ostell J, editors. The Reference Sequence (RefSeq) Project. National Library of Medicine (US), NCBI; Bethesda, MD: The NCBI Handbook. 2005 Chapter 18.
- 4. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. (1997 September 01) *Nucleic acids research* 25 (17):3389-3402
- Zhang, L., Li, F., Guo, Q., Duan, Y., Wang, W., Zhong, Y., Yang, Y., & Yin, Y. (2020). Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. *Nutrients*, 12(5), 1299. <u>https://doi.org/10.3390/nu12051299</u>

<u>WEBLEM 6(D)</u> <u>PATTERN HIT INITIATED BLAST (PHI-BLAST) TOOL</u> <u>(URL: https://blast.ncbi.nlm.nih.gov)</u>

<u>AIM:</u>

To perform iterative blast for query 'Flavodoxin' protein (UniProt ID: P53554) by exploring Pattern Hit Initiated BLAST (PHI-BLAST) Tool.

INTRODUCTION:

Pattern Hit Initiated BLAST (PHI-BLAST) Tool, represents a variant of the BLAST algorithm employed for searching a protein database to identify other instances of a specific pattern occurring at least once within the input sequence. It facilitates the alignment and construction of the Position-Specific Scoring Matrix (PSSM) around a motif present in the query sequence. PHI-BLAST was developed by Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David J. Lipmann at the National Institutes of Health (NIH).

PHI-BLAST finds application in the analysis of various protein sequences, including CED4like cell death regulators, HS90-type ATPase domains, archaeal tRNA nucleotidyltransferases, and archaeal proteins. It is utilized to identify protein sequences containing a specific pattern specified by the user and similar to the query sequence.

Compared to other BLAST tools, PHI-BLAST offers advantages such as increased speed and the ability for the user to express a rigid pattern occurrence requirement. This feature aids in reducing the number of hits that solely contain the pattern but lack true homology to the query sequence. However, PHI-BLAST may have a potential disadvantage in that it might be less sensitive than PSI-BLAST for detecting remote homologs. Additionally, the use of a specific pattern may restrict the search scope, potentially causing the omission of homologs lacking the specified pattern.

Flavodoxin:

Flavodoxins are small, soluble, electron-transfer proteins. Flavodoxins contains flavin mononucleotide as prosthetic group. The structure of flavodoxin is characterized by a five-stranded parallel beta sheet, surrounded by five alpha helices. They have been isolated from prokaryotes, cyanobacteria, and some eukaryotic algae. It functions in various metabolic processes, including photosynthesis, nitrogen and fatty acid metabolism. Flavodoxin is also involved in the detoxification of reactive oxygen species. The protein is reduced by flavodoxin reductase and transfers electrons to various redox enzymes. The semiquinone conformation of flavodoxin is stabilized by a hydrogen bond to the N-5 position of flavin, and a common tryptophan residue near the binding site aids in lowering SQ reactivity. The hydroquinone form is forced into a planar conformation, destabilizing it.

METHODOLOGY:

- 1. Open the homepage of UniProt database and search for the query 'Flavodoxin' protein.
- 2. Select any one entry from the results e.g., *Bacillus subtilis (strain 168)* (UniProt ID: P53554) and download its FASTA sequence in canonical format.
- 3. Open the homepage of BLAST and click on protein BLAST.
- 4. Paste the FASTA sequence in 'Enter query sequence' box and in program selection click on PHI-BLAST option.
- 5. Open the homepage of PROSITE database and search for the query 'Flavodoxin' protein.
- 6. Enter the FASTA sequence in 'Quick Scan mode of ScanProsite' box and scan it.
- 7. Copy the decoded pattern and paste it in the pattern in 'Enter a PHI pattern' box on PHI-BLAST portal and set the desired algorithm parameters.
- 8. Run the PHI-BLAST.
- 9. After each iteration, the new sequences are added to the results. These new sequences are highlighted using yellow color.
- 10. Run the PHI-BLAST iteration for 3-5 times, post which it starts generating garbage results, due to the decrease in sensitivity.
- 11. Interpret the results obtained.

OBSERVATIONS:

Figure 1: Homepage of the UniProt database

Status	BLA	ST Alian	Map ID	호 Download 쑵 Add	View: Cards 🔿 Table 💿 🚄 Customize columns	Share - 1 row selected of	out of 25	
Reviewed (Swiss-Prot) (16)		Entry .		Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Unreviewed (TrEMBL) (17)		P53554	а	BIOI_BACSU	Biotin biosynthesis cytochrome P450[]	biol, CYP107H, BSU30190	Bacillus subtilis (strain 168)	395 AA
Popular organisms				17000 01001				01111
B. subtilis (33) X		032224		AZOR2_BACSU	FMN-dependent NADH:quinone oxidoreductase 2[]	azoR2, yvaB, BSU33540	Bacillus subtilis (strain 168)	211 AA
Taxonomy Filter by taxonomy	0	032214	3	CYSJ_BACSU	Sulfite reductase [NADPH] flavoprotein alpha-component[]	cysJ, yvgR, BSU33440	Bacillus subtilis (strain 168)	605 AA
Group by Taxonomy	D	O35022	8	AZOR1_BACSU	FMN-dependent NADH:quinone oxidoreductase 1[]	azoR1, yocJ, BSU19230	Bacillus subtilis (strain 168)	208 AA
Keywords Gene Ontology		P54482	a	ISPG_BACSU	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin)[]	ispG, yqfY, BSU25070	Bacillus subtilis (strain 168)	377 AA
Enzyme Class		034453	a	NOSO_BACSU	Nitric oxide synthase oxygenase[]	nos, yflM, BSU07630	Bacillus subtilis (strain 168)	363 AA
Proteins with 3D structure (3)		O34737	a	FLAV_BACSU	Probable flavodoxin 1	ykuN, BSU14150	Bacillus subtilis (strain 168)	158 AA
Activity regulation (1) Beta strand (3)		034589	a	FLAW_BACSU	Probable flavodoxin 2	ykuP, BSU14170	Bacillus subtilis (strain 168)	151 AA
Binding site (16)	0	P96674	a	YDEQ_BACSU	Uncharacterized NAD(P)H oxidoreductase YdeQ[]	ydeQ, BSU05300	Bacillus subtilis (strain 168)	197 AA

Figure 2: Query search for 'Flavodoxin' protein

UniProt BLAST Align P	eptide search ID mapping SPAR(QL UniProtKB •			Advanced	List Search 🏯 🔂 🎦 He	lp			
Function	P53554 · BIOI_BA	CSU								
Names & Taxonomy Subcellular Location Phenotypes & Variants	Gene ⁱ biol Status ⁱ 👌 UniProt	KB reviewed (Swiss-Prot)		Amino acids Protein existence ⁱ Annotation score ⁱ	395 (go to sequence) Evidence at protein level					
PTM/Processing Expression	1	eature viewer Genomic o	oordinates Pub	ications External	links History	_				
Interaction Structure	BLAST ± Download to Add a publication Entry feedback									
Family & Domains Sequence Similar Proteins	Function ⁴ Catalyzes the C-C bond cleavage of fatty acid linked to acyl carrier protein (ACP) to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain fatty acids with the greatest affinity for myristic acid. Publications									
	Catalytic activity ⁱ a C2-C8-saturated long-chain f [flavodoxin] 1 Publication EC:1.14.14.46 (UniProtKB E Source: Rhea 52852 C		iced [flavodoxin] = 6-	carboxyhexanoyl-[ACP] + a fatty aldehyde + 3 H* + 3 I	H2O + 2 oxidized				
						Hide Rhea reaction				
	a C ₂ -C ₈ -saturated	O ₂	reduced	6-carbo WhatsApp yl-	a fatty	H*				

Figure 2a: Downloading the FASTA sequence for selected UniProt ID: P53554

Download ×	Advanced List Search 😂 🖨 🏹 Help
Format Text Text FASTA (canonical & isoform) JSON XML RDF/XML GFF	Amino acids 395 (go to sequence) Protein existence ¹ Evidence at protein level Annotation score ¹ So
	to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain
	-carboxyhexanoyl-[ACP] + a fatty aldehyde + 3 H* + 3 H2O + 2 oxidized A Hide Rhea reaction 6-carboxyhexanoyl- a fatty H*

>sp|PS3554|BI0I_BACSU Biotin biosynthesis cytochrome P450 OS=Bacillus subtilis (strain 168) 0X=224308 GN=bioI PE=1 SV=1 MTIASSTASSEFLKNPYSFYDTLRAVHPIYKGSFLKYPGWYUTGYEETAATLKDARFKVR TPLPESSTKYQDLSHVQNQMMLFQNQPDHRRLRTLASGAFTPRTTESYQPYIIETVHHLL DQVQGKKKKEVISDFAFPLASFVIANIIGYPEEDREQLKEWAASLIQTIDFTRSRKALTE GNIMAVQAMAYFKELIQKRRHPQDUBTSNLLKGREKDKLTEELAASTCILLATAGHETT VNLISNSVLCLLQHPEQLLKLRENPDLIGTAVEECLRYESPTQMTARVASEDIDICGVTI RQGEQVYLLLGAANRDPSIFTMPDVFDITRSPNPHLSFGHGHHVCLGSSLARLEAQIAIN TLLQRMPSLNLADFEWRYRPLFGFRALEELPVTFE

Figure 2c: View of the downloaded FASTA sequence

	Search PROSITE Search
Database of protein domains	s, families and functional sites
SARS-CoV-2 relevant PROSITE motifs	
PROSITE consists of documentation entries describing protein domains, families and f	unctional sites as well as associated patterns and profiles to identify them [More /
References / Commercial users].	
PROSITE is complemented by ProRule , a collection of rules based on profiles and part	
additional information about functionally and/or structurally critical amino acids [More	
Release 2023_05 of 08-Nov-2023 contains 1938 document	tation entries, 1311 patterns, 1379 profiles and 1397 ProRule.
Search PROSITE	Browse PROSITE
e.g. PDOC00022, PS50089, SH3, zinc finger	by documentation entry
Search add wildcard **	by ProRule description
	by taxonomic scope
	by number of positive hits
Quick Scan mode of ScanProsite	Other tools
	PRATT
Quickly find matches of your protein sequences to PROSITE signatures (max. 10	allows to interactively generate conserved patterns from a series of unaligned
sequences). [?] Examples	proteins.
	MyDomains - Image Creator
	allows to generate custom domain figures.
	Custon Inoges of DOMAINS
For UniProtKB/TrEMBL accessions/dentifiers, only those of entries belonging to reference	

Figure 3: Homepage of PROSITE Database

Search PROSITE e.g. PDOC00022, PS50089, SH3, zinc finger Search add wildcard ***	Browse PROSITE • by documentation entry • by ProRule description • by taxonomic scope • by number of positive hits
Quick Scan mode of ScanProsite Quickly find matches of your protein sequences to PROSITE signatures (max. 10 sequences). [?] Examples >splP53554]BIOI_BACSU Biotin biosynthesis cytochrome P450 OS=Bacillus subtilis (strain 168) OX=224308 GN=biol PE=1 SV=1 MTIASSTASSEFLKNPYSFYDTLRAVHPIYKGSFLKYPGWYVTGY EETAAILKDARFKVR TPLPESSTKYQDLSHVQNQMMLFQNQPDHRRLRTLASGAFTPRT TESYQPYIIETVHHLL DQVQGKKKMEVISDFAFPLASFVIANIIGVPEEDREQLKEWAASLI QTIDFTRSRKALTE For UniProtKB/TrEMBL accessions/identifiers, only those of entries belonging to reference proteomes are accepted. Scan Clear Clear Exclude motifs with a high probability of occurrence from the scan For more scanning options go to ScanProsite	Other tools PRATT allows to interactively generate conserved patterns from a series of unaligned proteins. MyDomains - Image Creator allows to generate custom domain figures.

Figure 3a: Paste the downloaded FASTA sequence for pattern

sp-P53554- BIOI_BACSU (sp-P53554-BIO _BACSU)			(395 aa)				
S00086 CYTOCHROM	_		heme-iron ligan	d signature :			
38 - 347: [confiden	ce level: (0)] FGh	HHVCLG					

Fig 3b: Results page for the Quick Scan of ScanProSite using the sequence and retrieving the decoded sequence

	Description	Technical continu	Deferences	Convright	Missellensous	
	Description	Technical section	References	Copyright	Miscellaneous	
chnical section						
OSITE method (with tools a	ad information)	covered by this docu	montation:			
	iu iniornation)	covered by this docu	nentation.			
CYTOCHROME_P450, PS0	0086; Cytochro	me P450 cysteine he	me-iron ligand si	gnature (PAT	ERN)	
		-	-			
Consensus pattern:						
[FW]-[SGNH]-x-[GD]-{F	}-[RKHPT]-{P}-	C-[LIVMFAP]-[GAD]				
C is the heme iron ligar	ıd					
 Sequences in UniProtK 	B/Swiss-Prot ki	nown to belong to this	class: 1580			
 detected by PS00 	086: <mark>1472</mark> (true	positives)				
 undetected by PS 	00086: 108 (98	false negatives and	10 'partials')			
 Other sequence(s) in U 	niProtKB/Swiss	-Prot detected by PS	00086:			
47 false positives and 1	unknown.					
Retrieve an alignment of	of UniProtKB/Sv	viss-Prot true positive	hits:			
Clustal format, color, co	ndensed view	/ Clustal format, colo	r / Clustal forma	at, plain text /	Fasta format	
Retrieve the sequence	logo from the a	ignment				
Taxonomic distribution	of all UniProtKE	(Swiss-Prot + TrEME	BL) entries match	ning PS00086		
Retrieve a list of all Uni	ProtKB (Swiss-	Prot + TrEMBL) entrie	s matching PS0	0086		
Coop UniDrott/D (Quing	Prot and/or Tr	EMBL) entries agains	PS00086			
 Scan UniProted (Swiss 	-FIOL anu/or Th	_MDL) chinos agains				
View ligand binding sta						

Figure 3c: Consensus pattern for the FASTA sequence

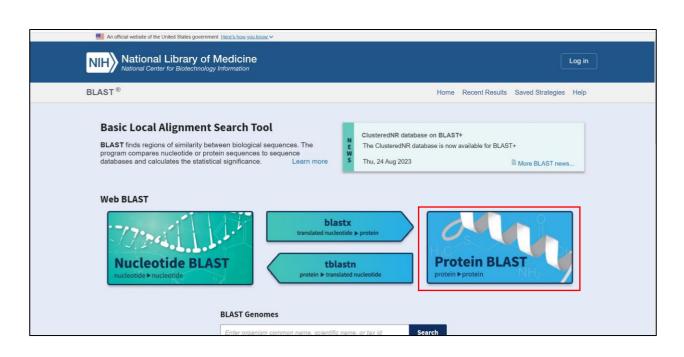


Figure 4: Homepage of Basic Local Alignment Search Tool (BLAST)

В	AST [®] » blastp suite	Home Recent Results Saved Strategies Help
blastn bl	stp blastx tblastn tblastx Standard Protein BLAST	
Enter Query S	BLASTP programs search protein databases using a protein query, mor	e Reset page Bookmark
Enter accession n >splP53554/BIOI_BA subtilis (strain 168) C	withber(e), gi(e), or FASTA coquence(e) Given Query subrange Query subrange CSU Biolin historynthesis cytochrome P450 OS=Bacillus From X=224308 GNE-biol PE-1 SV=1 To	
Or, upload file Job Title	Choose File No file chosen spIP53554/BIOI_BACSU Biotin biosynthesis cytochrome Enter a descriptive title for your BLAST search re sequences	
Choose Searc	h Set	
Databases	Standard databases (nr etc.): New O Experimental databases For more info see What is clustered nr database	°Q
Compare	Select to compare standard and experimental database 2	
Standard Database	Non-redundant protein sequences (nr)	
Organism Optional	Enter organism name or Id-completions will be suggested exclude Add organism	

Figure 5: Pasting the FASTA sequence in 'Enter query sequence' box

	Standard databases (nr etc.): I C Experimental databases	
	For more info see What is clustered nr?	
Standard		
Database	Non-redundant protein sequences (nr) V	
Organism	Enter organism name or id-completions will be suggested	
Optional	Enter organism common name, binomia, or tax id. Only 20 to tax avell be shown ?	
Exclude	Models (XM/XP) Non-redundant RefSeg proteins (WP) Uncultured/environmental sample sequences	
Optional	monore (Anisys 1) the incorrect intervent (Anisys 2) incorrect and an intervent (Anisys 2)	
	PHI-BLAST (Pattern Hit Initiated BLAST) FGhGHHVCLG Enter a PHI pattern	
	C DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm 😧	
BLAST		
BLAST - Algorithm pa	Choose a BLAST algorithm Search database nr using PHI-BLAST (Pattern Hit Initiated BLAST) Show results in a new window	E Taoritació

Fig 5a: Paste the decoded pattern from ProSite in 'Enter a PHI pattern' box

- Algorithm para	meters		
			Restore default search parameters
General Paran	eters		
Max target sequences	500 V Select the maximum number of aligned sequences to display 2		
Short queries	Automatically adjust parameters for short input sequences ?		
Expect threshold	0.05		
Word size	3 • 3		
Max matches in a query range	0		
Scoring Paran	eters		
Matrix	BLOSUM62 V		
Gap Costs	Existence: 11 Extension: 1 🗸		
Filters and Ma	sking		
Filter	Low complexity regions ?		
Mask	Mask for lookup table only Mask lower case letters		
PSI/PHI/DELTA	BLAST		
Upload PSSM Optional	Choose File No file chosen	0	
PSI-BLAST Threshold	0.005		ack
Pseudocount	0		Feedback
BLAST	Search database nr using PHI-BLAST (Pattern Hit Initiated BLAST) Show results in a new window		

Figure 5b: Setting the parameters for running BLAST Tool

NIH Nation	ional Library of Medicine	Log in
BLAST [®] » bl	astp suite » results for RID-NCNRZU34013	Home Recent Results Saved Strategies Help
< Edit Search	Save Search Search Summary • 😧	How to read this report? BLAST Help Videos DBack to Traditional Results Page
Job Title	sp P53554 BIOI_BACSU Biotin biosynthesis cytochrome	Filter Results
RID	NCNRZU34013 Search expires on 11-18 00:53 am Download All Y	
Program	PHI-BLAST Iteration 1 Citation ~	Organism only top 20 will appear exclude
Database	nr <u>See details</u> ~	Type common name, binomial, taxid or group name
Query ID	Icl Query_148430	+ Add organism
Description	sp P53554 BIOI_BACSU Biotin biosynthesis cytochrome F	Percent Identity E value Query Coverage
Molecule type	amino acid	to to to
Query Length	395	PSI-BLAST incl.
Other reports	Distance tree of results Multiple alignment MSA viewer @	threshold 0.005 Filter Reset
		Run PSI-Blast iteration 2
		Number of sequences 500 Run

Figure 6: Results obtained after running BLAST tool

Descriptions	Graphic Summary	Alignments Ta	ixonomy											
Sequences pro	oducing significant a	lignments with patte	ern at posit	ion: 338 🗸		Dow	nload	~	Selec	t coli	u mns ~ Sho	w 5	• 00	0
500 sequences sele	ected			GenPer	ot <u>Gr</u>	aphics	Dis	tance tr	ee of re	esults	Multiple align	ment	MSA V	<u>'iewer</u>
Sequences with	E-value BETTER than t	hreshold												-
select all 50	00 sequences selected										PSI-E	BLAST	l iterat	ion 1
	Description	1	Scie	ntific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession	Select for PSI blast	to	Newly added
biotin biosynthe	esis cytochrome P450 [Bacillale	25]	Bacillales		759	759	100%	0.0	0.00%	395	WP_004398783.1			
cytochrome P4	50 [Bacillus subtilis]		Bacillus su	btilis	758	758	100%	0.0	0.00%	395	WP_213385756.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	758	758	100%	0.0	0.00%	410	WP_009968007.1			
Chain B, Biotin	biosynthesis cytochrome P450)-like enzyme [Bacillus subtilis	Bacillus su	btilis	757	757	99%	0.0	<mark>0.00%</mark>	404	<u>3EJB_B</u>			
biotin biosynthe	esis cytochrome P450 [Bacillus	1	Bacillus		757	757	100%	0.0	0.00%	395	WP_041520532.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	756	756	100%	0.0	0.00%	395	WP_257986148.1			
biotin biosynthe	esis cytochrome P450 [Bacillus]	Bacillus		755	755	100%	0.0	0.00%	395	WP_029318272.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	755	755	100%	0.0	0.00%	395	WP_235120692.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	755	755	100%	0.0	0.00%	410	WP_015714547.1			
biotin biosynthe	esis cytochrome P450 [Bacillot	a bacterium]	Bacillota ba	acterium	755	755	100%	0.0	0.00%	395	MDP4124600.1	<		
cytochrome P4	50 [Bacillus subtilis]		Bacillus su	btilis	754	754	100%	0.0	0.00%	395	MBR0007637.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	754	754	100%	0.0	0.00%	395	WP_080529685.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	754	754	100%	0.0	0.00%	410	WP_003229201.1			
biotin biosynthe	esis cytochrome P450 [Bacillot	a bacterium]	Bacillota ba	acterium	753	753	100%	0.0	0.00%	395	MDP4112686.1			

Figure 7: Result for Description section of query

Figure 8: Result for Graphic Summary section

Alignment	view P	airwise		~ 0	Restore defaul	ts	Download ~
231 sequence	s selected	0					
🕹 Dow	nload 🗸	GenPept	Graphics				▼ Next ▲ Previous
MULT	ISPECIE	S: biotin bio	synthesis cytoch	rome P450 [Bacillal	esl		
			1 Length: 395 Nun	and a second			
See	7 more t	title(s) ¥ See	all Identical Protein	is(IPG)			
_					_		
	1: 1 to 3	95 GenPept G				tch A Previous Match	Related Information Gene - associated gene details
Score 759 bit	s(1971)	Expect 0.0	Identities 395/395(100%)	Positives 395/395(100%)	Gaps 0/395(0%)	AlphaFold Structure - 3D
Query	(2)			YKGSFLKYPGWYVTGYEETA	ann ar a thatachtain		structure displays
		MTIASSTASSE	LKNPYSFYDTLRAVHPI	YKGSFLKYPGWYVTGYEETA	AILKDARFKVR		Identical Proteins - Identical proteins to WP 004398783.1
Sbjct	5			YKGSFLKYPGWYVTGYEETA			proteina to wr_004556765.1
Query	61			RRLRTLASGAFTPRTTESYQ RRLRTLASGAFTPRTTESYQ		120	
Sbjct	61	TPLPESSTKYQ	DLSHVQNQMMLFQNQPDH	RRLRTLASGAFTPRTTESYQ	PYIIETVHHLL	120	
Query	121	DQVQGKKKMEV	ISDFAFPLASFVIANIIG	VPEEDREQLKEWAASLIQTI VPEEDREQLKEWAASLIQTI	DETRSRKALTE	180	
Sbjct	121	DQVQGKKKMEV	ISDFAFPLASFVIANIIG	VPEEDREQLKEWAASLIQTI	DFTRSRKALTE	180	
Query	181			MLLKGREKDKLTEEEAASTC		240	
Sbjct	181	GNIMAVQAMAY	FKELIQKRKRHPQQDMIS	MLLKGREKDKLTEEEAASTC MLLKGREKDKLTEEEAASTC	ILLAIAGHETT	240	
Query	241	VNLISNSVLCL	QHPEQLLKLRENPDLIG	TAVEECLRYESPTQMTARVA	SEDIDICGVTI	300	
Shict	241	VNLISNSVLCLI VNLISNSVLCLI	QHPEQLLKLRENPDLIG	TAVEECLRYESPTOMTARVA TAVEECLRYESPTOMTARVA	SEDIDICGVTI SEDIDICGVTI	300	
Patter Query		ROGEOVYLLLG	ANRDPSIFTNPDVFDIT	********* RSPNPHLSFGHGHHVCLGSS	LARLEAQIAIN	360	
Sbjct		RQGEQVYLLLGA	ANRDPSIFTNPDVFDIT	RSPNPHLSFGHGHHVCLGSS RSPNPHLSFGHGHHVCLGSS	LARLEAQIAIN	100000	
Query		TLLQRMPSLNLA	ADFEWRYRPLFGFRALEE	LPVTFE 395	-		
Sbjct	361		ADFEWRYRPLFGFRALEE ADFEWRYRPLFGFRALEE				

Figure 9: Result for Alignment Section

Descriptions Graphic Summ	nary Alignments	axonomy	1	
Reports Lineage Organ				
100 sequences selected				
Organism	Blast Name	Score	Number of Hits	Description
root			334	
. synthetic construct	other sequences	1244	13	synthetic construct hits
. <u>Homo sapiens</u>	primates	1239	236	Homo sapiens hits
. Pongo abelii	primates	1239	5	Pongo abelii hits
. Gorilla gorilla gorilla	primates	1229	1	Gorilla gorilla gorilla hits
. Pan paniscus	primates	1228	1	Pan paniscus hits
. Pan troglodytes	primates	1228	3	Pan troglodytes hits
. Pongo pygmaeus	primates	1219	1	Pongo pygmaeus hits
. Nomascus leucogenys	primates	1211	1	Nomascus leucogenys hits
. Hylobates moloch	primates	1211	1	Hylobates moloch hits
. Symphalangus syndactylus	primates	1206	1	Symphalangus syndactylus hits
. unidentified	unclassified sequences	1188	2	unidentified hits
. Macaca mulatta	primates	1175	4	Macaca mulatta hits
. Macaca fascicularis	primates	1175	5	Macaca fascicularis hits
. Macaca thibetana thibetana	primates	1174	1	Macaca thibetana thibetana hits
. Theropithecus gelada	primates	1173	1	Theropithecus gelada hits
. Macaca nemestrina	primates	1172	1	Macaca nemestrina hits

Figure 10: Result for Taxonomy section based on 'Lineage'

Descriptions Graphic Summary Alignments Taxonomy			
Reports Lineage Organism Taxonomy			
100 sequences selected 💡			
Description	Score	E value	Accession
synthetic construct [other sequences]	▼ Next	A Previo	ous ∢ First
serum albumin-interferon alpha 1 fusion protein, partial [synthetic construct]	1244	0.0	AGI02589
albumin, partial [synthetic construct]	1239	0.0	AAX36126
albumin [synthetic construct]	1239	0.0	ABM82340
serum albumin [synthetic construct]	1220	0.0	AIC32938
HSA-cIFN [synthetic construct]	1195	0.0	QCO95453
HSA-GGGGS-GH fusion protein, partial [synthetic construct]	1192	0.0	AF084000
IL-1Ra-GGGGS-HSA fusion protein, partial [synthetic construct]	1191	0.0	AEL88488
HSA-GGGGS-IL-1Ra fusion protein, partial [synthetic construct]	<mark>11</mark> 91	0.0	AEZ51871
human serum albumin and interferon-alpha2b fusion protein, partial [synthetic construct]	1190	0.0	QNI40628
HSA-GGGGS-PTH(1-34), partial [synthetic construct]	1189	0.0	AER13700
serum albumin, partial [synthetic construct]	1188	0.0	AIC32937
somatostatin (SST) doublet/albumin fusion protein [synthetic construct]	1186	0.0	<u>UTT97830</u>
human serum albumin mutein, partial [synthetic construct]	1185	0.0	QNI40627
Homo sapiens (human) [primates]	▼ Next	A Previo	ous ≪First
albumin preproprotein [Homo sapiens]	1239	0.0	NP_000468
RecName: Full=Albumin; Flags: Precursor [Homo sapiens]	1239	0.0	P02768
Chain A, SERUM ALBUMIN [Homo sapiens]	1239	0.0	4BKE A

Figure 11: Result for Taxonomy section based on 'Organism'

Descriptions Graphic Summary Alignmen	nts Taxonomy			
Reports Lineage Organism Taxonom	y			
100 sequences selected 👔	unnud -			
Taxonomy	Number of hits	Number of Organisms	Description	
Broot	334	67		
<u>synthetic construct</u>	13	1	synthetic construct hits	
. ⊟ <u>cellular organisms</u>	<u>319</u>	65		
⊟ <u>Boreoeutheria</u>	317	64		
Euarchontoglires	284	35		
B <u>Primates</u>	283	34		
□ <u>Haplorrhini</u>	278	29		
B <u>Simiiformes</u>	277	28		
	271	23		
⊟ <u>Hominoidea</u>	250	9		
⊟ <u>Hominidae</u>	247	6		
⊟ <u>Homininae</u>	241	4		
<u>Homo sapiens</u>	236	1	Homo sapiens hits	
Gorilla gorilla gorilla	1	1	Gorilla gorilla gorilla hits	
	4	2		
Pan paniscus	1	1	Pan paniscus hits	
Pan troglodytes	3	1	Pan troglodytes hits	

Figure 12: Result for Taxonomy section based on 'Taxonomy'

RESULTS:

Pattern-Hit Initiated BLAST (PHI-BLAST) tool is a variant of the Basic Local Alignment Search Tool (BLAST) algorithm, specifically designed for detecting distant relationships between protein sequences and identifying domains of potential functional significance within sequences. The tool was used to studied query where it is able to detect the pattern in the organisms which confirms the identification of remote homologs or conserved domains for the query protein sequences.

CONCLUSION:

PHI-BLAST is widely used in bioinformatics, particularly for analyzing protein sequences to identify conserved domains, motifs, or functional signatures. It aids in understanding evolutionary relationships between proteins and assists in annotating sequences with functional information based on conserved patterns. Its ability to focus the alignment and construction of the PSSM around a motif provides a valuable approach for researchers and bioinformaticians working in the field of protein analysis.

- 1. ResearchGate. (2023). BLAST Algorithm. https://www.reseatchgate.net/publication/230503487
- Zheng Zhang, Webb Miller, Alejandro A. Schäffer, Thomas L. Madden, David J. Lipman, Eugene V. Koonin, Stephen F. Altschul, Protein sequence similarity searches using patterns as seeds, Nucleic Acids Research, Volume 26, Issue 17, 1 September 1998, Pages 3986–3990, <u>https://doi.org/10.1093/nar/26.17.3986</u>
- Sancho J. Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci. 2006 Apr;63(7-8):855-64. doi: 10.1007/s00018-005-5514-4. PMID: 16465441. <u>https://pubmed.ncbi.nlm.nih.gov/16465441</u>

<u>WEBLEM 6(E)</u> <u>EMBOSS NEEDLE – GLOBAL PAIRWISE SEQUENCE ALIGNMENT</u> (URL: https://www.ebi.ac.uk/Tools/psa/emboss_needle/)

<u>AIM:</u>

To explore and compare the protein sequences of 'Myosin' from two organisms *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6) by performing global pairwise sequence alignment using EMBOSS Needle Tool.

INTRODUCTION:

The European Molecular Biology Open Software Suite, or EMBOSS, is a part of the European Bioinformatics Institute (EBI). One of the prominent tools of EMBOSS is EMBOSS Needle, which is based on the Needleman-Wunsch algorithm. The Needleman-Wunsch algorithm was developed by Saul B. Needleman and Christian D. Wunsch in 1970 for global sequence alignment. It works on the principle of dividing the large problem into a series of smaller problems and uses the solutions to the smaller problems to find an optimal solution to the larger problem, assigning a score to every possible alignment and finding all possible alignments having the highest score.

The unique feature of the EMBOSS Needle tool is that it finds the alignment with the maximum possible score where the score of an alignment is equal to the sum of the matches taken from the scoring matrix, minus penalties arising from opening and extending gaps in the aligned sequences. The substitution matrix and gap opening and extension penalties are user-specified. A penalty is subtracted from the score for each gap opened (Gap insertion penalty) and a penalty is subtracted from the score for the extension of the inserted gaps (Gap extension penalty). Typically, the cost of extending a gap is set to be 5-10 times lower than the cost for opening a gap.

Penalty for a gap of n positions is calculated using the following formula:

Gap at n^{th} position = gap opening penalty + (n - 1) * gap extension penalty

Myosin:

Myosin is a motor protein with a primary role in muscle contraction, interacting with actin filaments to generate force and movement. Beyond muscles, myosin participates in cell motility, cell division, intracellular transport, and maintenance of cell shape, making it a crucial component in various cellular processes. The need to analyze myosin with the EMBOSS Needle tool arises from the diverse functions of myosin, which contribute to the dynamic behavior and structural integrity of cells. By analyzing the sequence and structure of myosin, researchers can gain insights into its mechanisms and interactions, which can help develop a deeper understanding of its role in various cellular processes and potentially lead to new therapeutic strategies for muscle and non-muscle related disorders.

METHODOLOGY:

- 1. Open the UniProt database and search for the query of 'Myosin'.
- 2. From the results page, open the proteins of interest. Here, *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6).
- 3. Download the myosin protein sequences of both the organisms in FASTA file format.
- 4. Open the homepage of EMBOSS Needle tool and paste the sequences in the query box and set the desired parameters. Select the 'SUBMIT' to submit the query.
- 5. The results page of EMBOSS Needle tool displays the Alignment, Submission Details and View Alignment File. Interpret the results.

OBSERVATIONS:

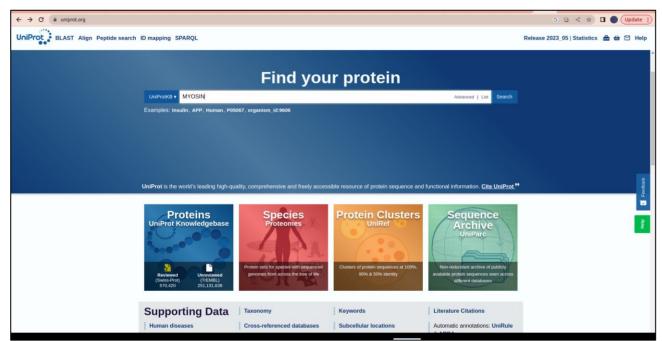


Figure 1: Homepage of the UniProt Database

- → C	otkb?query=MYOSIN		_			G ╚ < ☆	
DiProt BLAST Align F	Peptide search ID	mappin	ng SPARQI. U	IniProtKB • MYOSIN		Advanced List Search	🏯 ᡠ 🖸 Help
Status	BLAST Align	Map II	Ds ± Download	📾 Add View: Cards 🔿 Table 🖲 💆 Customize	columns 📽 Share 🔻 2 rows s	selected out of 75	
Reviewed (Swiss-Prot) (2,617)	E Entry .	E	Entry Name 🗼	Protein Names	Gene Names 🔒	Organism 🔒	Length 🗼
Unreviewed (TrEMBL)	P35579	8 N	MYH9_HUMAN	Myosin-9[]	МҮН9	Homo sapiens (Human)	1,960 AA
(505,853)	□ <u>096H55</u>	<u>a</u> N	YO19_HUMAN	Unconventional myosin-XIX[]	MYO19. MYOHD1	Homo sapiens (Human)	970 AA
Popular organisms Human (1,362)	Q90623	a N	VYPT1_CHICK	Protein phosphatase 1 regulatory subunit 12A $\left[\right]$	PPP1R12A, MBS, MYPT1	Gallus gallus (Chicken)	1,004 AA
A. thaliana (1,171) Mouse (1,049)	P08964	a N	MYO1_YEAST	Myosin-1[]	MYO1, YHR023W	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	1,928 AA
Rat (998)	E7EZG2	8 N	MY9AA_DANRE	Unconventional myosin-IXAa[]	myo9aa, myo9al1	Danio rerio (Zebrafish) (Brachydanio rerio)	2,522 AA
Zebrafish (755)	D3Z3P6	<u>a</u> h	AYO10_RAT	Unconventional myosin-X[]	Myo10	Rattus norvegicus (Rat)	2,060 AA
Taxonomy	F8VQB6	<u>a</u> N	YO10_MOUSE	Unconventional myosin-X[]	Myo10	Mus musculus (Mouse)	2,062 AA
Filter by taxonomy			AYO6_BOVIN	Unconventional myosin-W[]	MYOS	Bos taurus (Bovine)	1,295 AA
Group by	O43795	a N	YO1B_HUMAN	Unconventional myosin-lb[]	MYO1B	Homo sapiens (Human)	1,136 AA
Taxonomy	D P08590	a N	MYL3_HUMAN	Myosin light chain 3[]	MYL3	Homo sapiens (Human)	195 AA
Keywords	Q96A32	8 N	MYL11_HUMAN	Myosin regulatory light chain 11[]	MYL11, HSRLC, MYLPF	Homo sapiens (Human)	169 AA
Gene Ontology Enzyme Class	O94832	a N	MYO1D_HUMAN	Unconventional myosin-Id	MYO1D, KIAA0727	Homo sapiens (Human)	1,006 AA
Enzyme Glass	Q13402	a N	YO7A_HUMAN	Unconventional myosin-VIIa	MYO7A, USH1B	Homo sapiens (Human)	2,215 AA
roteins with		a N	YO5B_HUMAN	Unconventional myosin-Vb	MYO5B, KIAA1119	Homo sapiens (Human)	1,848 AA
3D structure (632) Active site (8,671)	P36006	8 N	MYO3_YEAST	Myosin-3[]	MYO3, YKL129C	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	1,272 AA
Activity regulation (595)	Q63356	a N	YO1E RAT	Unconventional myosin-le[]	Myo1e, Myr3	Rattus norvegicus (Rat)	1.107 AA

Figure 2: Results page of the UniProt Database for the query of Myosin with selected entries

Tools > Pairwise Sequence Alignment > EMBOSS Needle Service Announcement The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher . We'd love to hear your feedback about the new webpages! Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	EMBL-EBI Services Research Training Industry About us Q	EMBL-EBI 💓 Hinxton •
Tools > Pairwise Sequence Alignment > EMBOSS Needle Service Announcement The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpagest Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	EMBOSS Needle	
Service Announcement The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpagest Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	Input form Web services Help & Documentation Bioinformatics Tools FAQ	Seedback
The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpagest Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	ools > Pairwise Sequence Alignment > EMBOSS Needle	
EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN	webpages!	cher. We'd love to hear your <u>feedback</u> about the new
STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	Pairwise Sequence Alignment	
Enter a pair of PROTEIN	EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file.	
PROTEIN	STEP 1 - Enter your protein sequences	
	Enter a pair of	
sequences. Enter or paste your first protein sequence in any supported format:	PROTEIN	Ŧ
	sequences. Enter or paste your first protein sequence in any supported format:	

Figure 3: Homepage of EMBOSS Needle Tool

Input form Web services Help & Documentation Bioinformatics Tools	s FAQ 🗣 Feedback
Pairwise Sequence Alignment	
EMBOSS Needle reads two input sequences and writes their optimal globa	
STEP 1 - Enter your protein sequences	
STEP 1 - Enter your protein sequences	
Enter a pair of	
PROTEIN	Υ.
sequences. Enter or paste your first protein sequence in any supported for	mat
>sp0290523IMYPTI_CHICK Protein phosphatase 1 regulatory subunit MKMADAKQKRNEQLKRWIGSETDLEPPVVKKKTKVKFD0GAVFLAV ERGADINYANVOGITALIQACIDDNVDMVKFLVEINGANINQPDNEGW IAEYUSQGAHVGANVSEGOTPLDIAEEEAMEELLQNEVNRQGVDIEA ARQWLINSGGTALIVAAAGKYTEVLKLUQARYDVNIK HWGKEEACRILVENLCDMEAVIKVYGQTAFDVADEDILGYLEELQKKQ LIESTANLDNNQTQKTFKNKETLIMEQEKNASSIESLEHEKADEEEEEGH EDDDCECE AETDVALT AMMITTETGASAMMADEVACOCOTOTODIU	ACSSGOTEFVLRLL INFLHAAASGVD ARKEEERIMLRD KDYDGWTPLHAAA NULHSEKREKSP
Or, upload a file: Choose file No file chosen	Use a example sequence Clear sequence See more example inputs
AND	
Enter or paste your second protein sequence in any supported format:	
>spjFavQBdjMYOL0_MOUSE Unconventional myosin-X OS=Mus mus MDSFPEGARWW,RENGCHFPSTVNSCAECVVVECT0Y20VFTWK HEEGVDDMASLAELHGGSIMYALEORYKRNQIYTVIGSILASVNPYOP YSRCHLGELPHIFANARCVPCNULKAEVAGACKTEST TLDLGLQEKTSSVEQAILQSSPIMEAFGNAKTVYNINNSSRFGKFVQL VDVLLEKRWVRQNQFGRMVHIFVALLAGLQGEREEFTYJSJPENYH SDQESFRQVTAMEVMQFSKESVFRV.RLAGLHLQNIEFTAGGAQU LAGUPTET DAVGORDM HDFEFT TRLAGGAUNGANNFSRF	QSTITNQKVTAMHPL IAGLYERATIMEE KILIKFLSVISQQ NICQQGNIQGGRI YLNQSGCTEDKTI IPKYTALGRSAD

Figure 4: Submission of the protein sequences retrieved from the UniProt Database in the EMBOSS Needle Tool

← → C	veb/toolresult.ebi?job/d=emboss_needle420231113-113648-0200-10615023-p1m		G Q < ☆
	♠ EMBL-EBI Services Research Training Industry About us Q.	EMBL-EBI 💮 Hinxton 🗸	
	EMBOSS Needle		
	Input form Web services Help & Documentation Bioinformatics Tools FAQ	🗢 Feedback	
	Tools > Pairwise Sequence Alignment > EMBOSS Needle		
	Service Announcement The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear y webpages!	your <u>feedback</u> about the new	
	Results for job emboss_needle-l20231113-113648-0200-10615023-p1m		
	# # Aligned sequences: 2 # 1: Wr01_CNICK # 2: Wr01_NOIS # Componenty: 10.0 # Extend penalty: 0.5 # Length: 236 # Length		

Figure 5: Results page of the submitted query with Alignment option

MYPT1_CHICK	1	Θ
MY010_MOUSE	1 MDSFFPEGARVWLRENGQHFPSTVNSCAEGVVVFQTDYGQVFTYKQSTIT	50
MYPT1_CHICK	1	0
MY010_MOUSE	51 NQKVTAMHPLHEEGVDDMASLAELHGGSIMYNLFQRYKRNQIYTYIGSII	100
MYPT1_CHICK	1	Θ
MY010_MOUSE	101 ASVNPYQPIAGLYERATMEEYSRCHLGELPPHIFAIANECYRCLWKRHDN	150
MYPT1_CHICK	1	Θ
MY010_MOUSE	151 QCVLISGESGAGKTESTKLILKFLSVISQQTLDLGLQEKTSSVEQAILQS	200
MYPT1_CHICK	1	Θ
MY010_MOUSE	201 SPIMEAFGNAKTVYNNNSSRFGKFVQLNICQQGNIQGGRIVDYLLEKNRV	250
MYPT1_CHICK	1МКМ	3
MY010_MOUSE	251 VRQNPGERNYHIFYALLAGLDQGEREEFYLSLPENYHYLNQSGCTEDKTI	300
MYPT1_CHICK	4 ADAKQKRNEQLKRWIGSETDLEPPVVKRKKTKVKFDDGAVFLAACSSGDT	53
MY010_MOUSE	: . .::. .: :: : 301 SDQESFRQVITAMEVMQFSKEEVR	324
MYPT1_CHICK	54 EEVLRLLERGADINYANVDGLTALHQACIDDNVDMV	89
MY010_MOUSE	IIIIII:III:IIIIIIIIII 325 -EVLRLLAGILHLGNIEFITAGGAQIPFKTALGRSADLLGLDPTQLTD	371
MYPT1_CHICK	90KFLVENGANINQPDNEGWIPLHAAASC	116
MY010_MOUSE	:.:: :: . 372 ALTQRSMILRGEEILTPLSVQQAVDSRDSLAMALYARCFEWVIKKINSRI	421
MYPT1_CHICK	117GYLDIAEYLISQGAHVGAVNSEGDTPLDIAEEEAMEELLQN	157
MY010_MOUSE	.	460
MYPT1_CHICK	158 EVNRQGVDIEAARKEEERIMLRDARQWLNSGHINDVRHAKSGGTAL	203
MY010 MOUSE	: . . 461 YFNKHIFSLEQLEYSREGLVWEDI-DWIDNGECLDLIEKKLGLLALINEE	509
MYPT1_CHICK	204 -HVAAAKGYTEVLKLLIQARYDVNIKDYDGWTPLHAAAHWGKEEACRILV	252
MY010_MOUSE	 510 SHFPQATDSTLLEKLHSQ	541
MYPT1_CHICK	253 ENLCDMEAVNKVGQTAFDVADEDILGYLEELQKKQNLLHSEKREK	297
MY010 MOUSE	. :. : . . :.: : 542 NNFGVKHYAGEVQYDVRGILEKNRDTFRDDLLNLLRESRFDF	583
MYPT1 CHICK	298 KSPLIESTANLDNNQTQKTFKNK	320
MY010 MOUSE	.:.:::::::::::::::::::::::::::::::	633
		242

Figure 5a: Results page of the submitted query with Alignment option

Input form Web ser	vices Help & Documentation	Bioinformatics Tools FAQ		
Results for job	emboss_needle-I202	31113-093824-09	180-97302898-p1m	
Alignment Submissio	n Details		-	
Program	Launched Date	First Inp	ut Sequence	
needle	Mon, Nov 13, 2023	at 09:38:26 emboss	_needle-I20231113-093824-0980-97302898-p1m.inputA	
Version	End Date	Second	Input Sequence	
6.6.0	Mon, Nov 13, 2023	at 09:38:31 emboss	_needle-I20231113-093824-0980-97302898-p1m.inputB	
		Output F	Result	
		emboss	needle-l20231113-093824-0980-97302898-p1m.output	

Figure 6: View of submission details

RESULTS:

By exploring global pairwise sequence alignment using the EMBOSS Needle tool, the results were observed and studied for the protein query 'Myosin' in organisms *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6). It was found that in the pairwise alignment of the two organisms, they were not identical upon comparison, as the sequence identity is only 8.9%.

Length	2346
Identity	209/2346 (8.9%)
Similarity	359/2346 (15.3%)
Gaps	1626/2346 (69.3%)
Score	154.5

CONCLUSION:

EMBOSS Needle tool, for Global Pairwise Sequence Alignment, was explored by comparative study of protein 'Myosin' of two different organisms, namely, *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6).

- 1. Needleman, S. B. and Wunsch, C. D. (1970) *J. Mol. Biol.* 48, 443-453. https://www.bioinformatics.nl/cgi-bin/emboss/help/needle
- Robert S. Adelstein, James R. Sellers, in *Biochemistry of Smooth Muscle Contraction*, 1996. <u>https://doi.org/10.1016/B978-0-12-801387-8.00003-X</u>

WEBLEM 6(F)

EMBOSS WATER – LOCAL PAIRWISE SEQUENCE ALIGNMENT

(URL: https://www.ebi.ac.uk/Tools/psa/emboss_water/)

AIM:

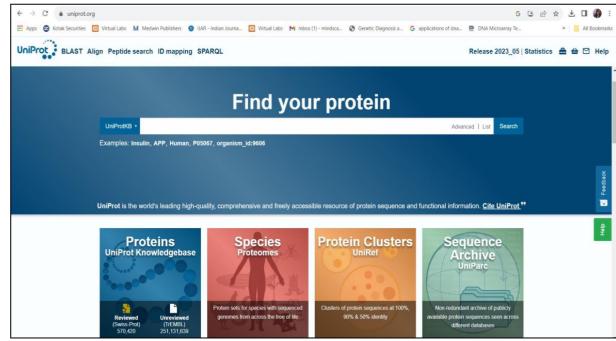
To explore and compare the protein sequences of 'collagen' in two organisms, *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572), by performing local pairwise sequence alignment using the EMBOSS Water tool.

INTRODUCTION:

The European Molecular Biology Open Software Suite, or EMBOSS, is a part of the European Bioinformatics Institute (EBI). One of the prominent tools of EMBOSS is EMBOSS Water, which is based on the Smith-Waterman algorithm. Smith-Waterman algorithm was developed by Temple F. Smith and Michael S. Waterman in 1981 and is used for local sequence alignment, which finds the best subsequence match between two sequences by comparing all possible pairs of subsequences. The unique aspect of the EMBOSS Water tool is that it uses a speed-accelerated version of the Smith-Waterman method to determine the local alignment of a sequence with one or more other sequences. By examining every potential alignment and choosing the best one, dynamic programming techniques guarantee the best possible local alignment. To do this, a scoring matrix with values for each potential residue or nucleotide match is incorporated.

The EMBOSS Water tool employs a modified Smith-Waterman algorithm with speed enhancements to compute the local alignment of one or more sequences. Users have the flexibility to specify the gap insertion penalty, gap extension penalty, and substitution matrix for calculating alignments. The output is a standard EMBOSS alignment file. Identity refers to the percentage of identical matches between two sequences over the entire reported aligned region, inclusive of any length gaps. Similarly, similarity represents the percentage of matches between the two sequences over the length of the reported aligned region, considering any gaps.

Collagen:


The most prevalent protein in the body, collagen, is found in various connective tissues such as the skin, tendons, bones, and ligaments. Its inherent stiffness and resistance to stretching contribute significantly to providing structural support within the extracellular space of connective tissues. Understanding collagen's structure, function, and its implications in various diseases and conditions, including autoimmune disorders like rheumatoid arthritis, lupus, dermatomyositis, and scleroderma, is crucial. These conditions can adversely affect collagen, highlighting the importance of in-depth research.

The EMBOSS Water tool serves as a valuable resource in this pursuit. It is a pairwise sequence alignment program designed to determine the local alignment of one or more sequences. The tool utilizes a modified version of the Smith-Waterman technique, offering faster results for

researchers. By employing the EMBOSS Water tool to analyze collagen, researchers can gain deeper insights into its molecular makeup and its role in health and disease.

METHODOLOGY:

- 1. Open the UniProt database and search for the query of 'Collagen'.
- 2. From the results page, open the proteins of interest. Here, *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572).
- 3. Download the collagen protein sequences of both the organisms in FASTA canonical file format.
- 4. Open the homepage of EMBOSS Water tool and paste the sequences in the query box and set the desired parameters. Select the 'SUBMIT' to submit the query.
- 5. The results page of EMBOSS Water tool displays the Alignment, Submission Details and View Alignment File. Interpret the results.

OBSERVATIONS:

Figure 1: Homepage of the UniProt database

🖁 Apps 🕝 Kotak Securities 🔀 Virtu	al Labs 🛛 🔊	A Medwin Put	blisher	s 🧿 IJAR - Indian Journ	a 🔀 Virtual Labs M Inbox (1) - mindsca	🔇 Genetic Diagnosis a 🧲 appla	cations of dna 🔮 DNA Microarray Te	» 📔 All Bookr
UniProt BLAST Align P	eptide s	earch ID	map	ping SPARQL	IniProtKB • collagen		Advanced List Search	🖴 🅁 🖸 He
Status	BLA	ST Align	Мар	DIDs 🛓 Download	Add View: Cards ○ Table ● .	🖞 Customize columns 👒 Sh	are • 2 rows selected out of 100	
Reviewed (Swiss-Prot)	•	Entry 🔺		Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
(2,837)		P12109		CO6A1_HUMAN	Collagen alpha-1(VI) chain	COL6A1	Homo sapiens (Human)	1,028 AA
Unreviewed (TrEMBL) (282,263)		Q03692	8	COAA1_HUMAN	Collagen alpha-1(X) chain	COL10A1	Homo sapiens (Human)	680 AA
		P02465		CO1A2_BOVIN	Collagen alpha-2(I) chain[]	COL1A2	Bos taurus (Bovine)	1,364 AA
Popular organisms Human (1,256)	0	P28481	a	CO2A1_MOUSE	Collagen alpha-1(II) chain[]	Col2a1	Mus musculus (Mouse)	1,487 AA
Mouse (1,121)		P05539	a	CO2A1_RAT	Collagen alpha-1(II) chain[]	Col2a1	Rattus norvegicus (Rat)	1,419 AA
Rat (1,043)		P08572	a	CO4A2_HUMAN	Collagen alpha-2(IV) chain[]	COL4A2	Homo sapiens (Human)	1,712 AA
Zebrafish (652)		Q5TAT6	3	CODA1_HUMAN	Collagen alpha-1(XIII) chain[]	COL13A1	Homo sapiens (Human)	717 AA
Bovine (611)	0	Q8IZC6	а	CORA1_HUMAN	Collagen alpha-1(XXVII) chain	COL27A1, KIAA1870	Homo sapiens (Human)	1,860 AA
Taxonomy		P02462	8	CO4A1_HUMAN	Collagen alpha-1(IV) chain[]	COL4A1	Homo sapiens (Human)	1,669 AA
Filter by taxonomy		P12107	a	COBA1_HUMAN	Collagen alpha-1(XI) chain	COL11A1, COLL6	Homo sapiens (Human)	1,806 AA
Group by		Q99715	a	COCA1_HUMAN	Collagen alpha-1(XII) chain	COL12A1, COL12A1L	Homo sapiens (Human)	3,063 AA
Taxonomy	0	Q9P218	8	COKA1_HUMAN	Collagen alpha-1(XX) chain	COL20A1, KIAA1510	Homo sapiens (Human)	1,284 AA
Keywords	0	Q07092		COGA1 HUMAN	Collagen alpha-1(XVI) chain	COL16A1, FP1572	Homo sapiens (Human)	1.604 AA
Gene Ontology							, and the second s	

Figure 2: Results page of the UniProt Database for the query of collagen with selected entries

$\rightarrow c$	ebi.ac.uk/Tools/psa/emboss_water/	G 년 1	r 🛨 🗖 🚯
Apps 🧭 Kota	ak Securities 🔯 Virtual Labs 🛛 M Medwin Publishers 🧔 IJAR - Indian Journa 🔯 Virtual Labs 🎽 Inbox (1) - mindsca 🔇 Genetic Diagnosis a	a G applications of dna 🖻 DNA Microarray Te	» 🧧 All Bookm
	EMBL-EBI Services Research Training Industry About us Q.	EMBL-EBI 💮 Hinxton +	
	EMBOSS Water		
	Input form Web services Help & Documentation Bioinformatics Tools FAQ	🗣 Feedback	
	Tools > Pairwise Sequence Alignment > EMBOSS Water		
	Service Announcement The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We webpages!	'd love to hear your feedback about the new	
	Pairwise Sequence Alignment		
	Pairwise Sequence Alignment EMBOSS Water uses the Smith-Waterman algorithm (modified for speed enhancements) to calculate the local align	iment of two sequences.	
		iment of two sequences.	
	EMBOSS Water uses the Smith-Waterman algorithm (modified for speed enhancements) to calculate the local align	iment of two sequences.	

Figure 3: Homepage of EMBOSS Water Tool

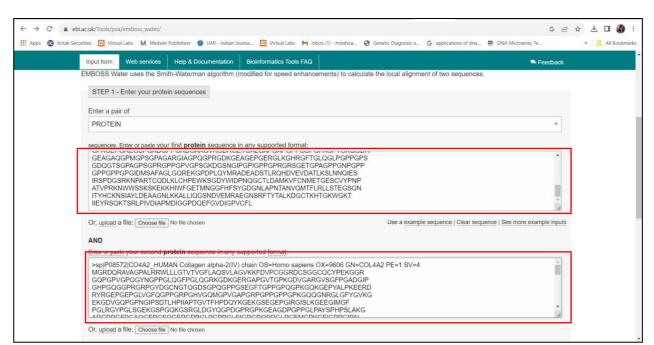


Figure 4: Submission of the protein sequences retrieved from the UniProt Database in the EMBOSS Water Tool

Input form	Web services	Help & Documentation	Bioinformatics Tools FAQ			🗭 Feedback
PGLRG	PGLSGEKGSP0	GQKGSRGLDGYQGPD	KGEKGSEGEPGIRGISLKGEEC GPRGPKGEAGDPGPPGLPAYSI	PHPSLAKG		•
Or, upload	a file: Choose file	No file chosen				
STEP 2	- Set your pairwis	e alignment options				
OUTPUT F	ORMAT					
pair						•
	- Submit your job]	change the default settings.) notified by email when the result	e ere evelleble)		
Submit		ns box il you want to be	nouned by email when the result	s are avanable)		
f you use th	is service, please	consider citing the follow	wing publication: Search and se	quence analysis tools servi	ces from EMBL-EBI in 2022	
			TAO hafar and line hale from a	ur auspect staff. If you have a	ny foodback or opcountered an	v iesues plazea lat i
lease read	the provided Hel	p & Documentation and I	FAQs before seeking help from o	iur support stait. It you nave a	iny recuback of encountered an	ly issues please let u

Figure 5: Submission of the query to the EMBOSS Water Tool

Bubmission Details Vision Alignment Submission Details Command Line: Submission Details * Instance: Submission Details	
Alignment Submission Details View Alignment File ************************************	
View Alignation File # Program: water # Rundars: Toe 14 Mov 2023 05:36:24 # CommandLine: water # -=	
# Program: water # Program: water # Fundars: Tus 14 Mov 2023 05:36:24 # Commandline: water # - auto: # - stoout # - stoout # - stoout	
# Programa: water # Rundate: Tru 14 Nov 2023 05:36:24 # Commandline: water # -atdout # -stdout # -stdout	
<pre># -datafile EBIOSUM62 # -gapostend 0.5 # -gapostend 0.5 # -sportein1 # -sportein2 # Align_format: pair # Report_file: stdout # Report_file: stdout</pre>	
# # # Aligned_sequences: 2 # Aligned_sequences: 2 # (1: CO2A] PAT # 2: CO2A] PAT # 2: CO2A] PAT # 2: CO2A] PAT # 2: CO2A PAT # Co2a penality: 0.5 # # Length: 1483 # Length: 1483 # Length: 1483 # Length: 1483 # Socie: 255.0 # Socie:	

Figure 6: Results page of the submitted query with Alignment option

10	- an 1				
In	nput form	Web services	Help & Documentation	Bioinformatics Tools FAQ	Peedback
CO2A	A1_RAT		LQCQGQDARKLG		
C04A	A2_HUMAN	:. 17 LLLGTVTVGFLAQ	:. . : .: SVLAGVKKFDVPCGGRDCSGGCQCYP	EKGGRGQPGP- 65	
C02A	A1_RAT		GPAGEQGPRGDRGDKGERGAP		
C04A	A2_HUMAN	: : . 66VGPQGYNGPP	.: .: GLQGFPGLQGRKGDKGERGAPGVTGP	. (GDVGARGV5G 112	
C02A	A1_RAT	85 EPGTPGNPGPPGP	PGPPGPPGLGGGNFAAQMAGGFDEKA	GGAQMGVMQGP 134	
C04A	A2_HUMAN	113 FPGADGIPGHPGQ GGPRGRPGYDGCN-GTQGDSGPQGPP	SSEGFTGPPGP 161	
C02A	A1_RAT		GPAGAPGPQGFQGNPGE		
CO4A	A2_HUMAN	. . .: . 162 QGPKGQKGEPYAL	. . . PKEERDRYRGEPGEPGLVGFQGPPGR		
CO2A	A1_RAT	172GPRGPPGP	AGK PGDDGEAGKPGK		
C04A	A2_HUMAN	212 APGRPGPPGPPGP	. :. :. : :. : : : : : : : : : : : : :	GIPSDTLHPI 261	
C02A	A1_RAT		AGERGLPGPQGARGF		
C04A	A2_HUMAN		. : . .: KGEKGSEGEPGIRGISLKGEEGIMGF	PGLRGYPGLSG 311	
CO2A	A1_RAT		D	GA 230	
C04A	A2_HUMAN	.: . 312 EKGSPGQKGSRGL	l DGYQGPDGPRGPKGEAGDPGPPGLPA	YSPHPSLAKGA 361	
C02A	A1_RAT		GSPGENGSPGPMGPR		
C04A	A2_HUMAN		. . . GSQGEPGDPGLPGPPGLSIGDGDQRR	. GLPGEMGPKGF 411	
CO2A	A1_RAT		RGNDGQPGPAGPPGPVGPAGGPGFL-		
C04A	A2_HUMAN				
CO2A	A1_RAT		GAQGSRGEPGNPGSPG		
C04A	A2_HUMAN	: 462 PGLPGSPGARGPK	GWKGDAGECRCTEGDEAIKGLPGLPG	. .: .: PKGFAGIN 508	
C02A	A1_RAT		IAGAPGFPGPRGPPGPQGATGPLGPK		
C04A	A2_HUMAN	509 GEPGRKGDRGDPG		GDSRTITTKGE 558	
C02A	A1_RAT	385 -GQTGEPGIAGFK	GEQGPKGETGPAGPQGAPGPAGE E	SKRGARGEPGG 431	
0044	A2 HEMAN	559 RCOPCVPCVPCNV	:. . . : :	SPECIPICAPICT 608	

Figure 6a: Results page of the submitted query with Alignment option

Alignment Submission	Details		
Program	Launched Date	First Input Sequence	
water Version	Tue, Nov 14, 2023 at 05:36:22 End Date	emboss_water-I20231114-053621-0214-83062705-p1m.inputA Second Input Sequence	
6.6.0	Tue, Nov 14, 2023 at 05:36:24	emboss_water-I20231114-053621-0214-83062705-p1m.inputB	

RESULTS:

By exploring local pairwise sequence alignment using EMBOSS Water Tool, the results were observed and studied for query for protein query 'collagen' for organism *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572) and it was observed that the local pairwise sequence alignments of the two organisms were found to be identical upon comparison, as the sequence identity is 39.6%.

Length	1483
Identity	587/14683 (39.6%)
Similarity	681/1483 (45.9%)
Gaps	356/1483 (69.3%)
Score	2455.0

CONCLUSION:

EMBOSS Water tool, for Local Pairwise Sequence Alignment, was explored by comparative study of protein collagen of two different organisms, namely, *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572).

- 1. Smith TF, Waterman MS (1981) *J. Mol. Biol* 147(1). https://emboss.sourceforge.net/apps/release/6.6/emboss/apps/water.html
- 2. H. Jawad, R.A. Brown, in *Comprehensive Biotechnology*, 2011. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/collagen

WEBLEM 6

INTRODUCTION TO SEQUENCE ALIGNMENT TOOLS

INTRODUCTION:

Alignment of biological sequences is a fundamental task in bioinformatics. It involves identifying regions of similarity between two or more sequences, which can then be used to infer functional, structural, or evolutionary relationships. Sequence alignment is the problem of comparing biological sequences by searching for a series of nucleotides or amino acids that appear in the same order in the input sequences, possibly introducing gaps into them. When there are two sequences, it is called pairwise sequence alignment; otherwise, it is called multiple sequence alignment (MSA). Global alignment is to find the best match between the entire sequences.

Most MSA methods are based on one of the two pairwise alignment algorithms: the optimal algorithm proposed by Needleman and Wunsch (NW) for global alignment, and the improvement to the NW algorithm proposed by Smith and Waterman (SW) to obtain the local alignment. Various algorithms are employed for sequence alignment, two prominent ones being the Needleman-Wunsch algorithm and the Smith-Waterman algorithm.

The Needleman-Wunsch algorithm performs global alignment, comparing entire sequences, while the Smith-Waterman algorithm is utilized for local alignment, identifying regions of similarity within sequences. These algorithms form the backbone of sequence alignment studies and are accessible through powerful bioinformatics tools available under EMBOSS (European Molecular Biology Open Software Suite). Both algorithms are composed of three phases: initialization, distance matrix computation and trace back. Nevertheless, they differ in their applied techniques at each phase. There are many different techniques used in sequence alignment methods, such as heuristic algorithms, and dynamic programming. Although they ensure the best alignment, dynamic programming methods (such as Needleman-Wunsch and Smith-Waterman) can be computationally demanding for longer sequences. For big datasets, heuristic approaches frequently yield near-optimal alignments, by favoring optimality for of speed and efficiency.

Among the widely used tools and methods, BLAST (Basic Local Alignment Search Tool) and FASTA (Fast Alignment Search Tool) are pivotal in bioinformatics. BLAST uses heuristic methods for comparing sequences quickly and efficiently against large databases, allowing rapid identification of homologous sequences. FASTA combines heuristic methods with probability models to perform quick sequence alignments and similarity searches. These tools are used by researchers in a wide range of fields to identify homologous sequences, infer evolutionary relationships, identify functional and structural motifs, and design primers and probes.

Pairwise Alignment Tools

Pairwise alignment tools are typically used to identify regions of similarity between two sequences of unknown evolutionary relationship. They work by comparing the two sequences and identifying regions of identical or similar characters. Gaps are inserted between the

characters of the two sequences so that the identical or similar characters are aligned in successive columns.

BLAST:

BLAST (Basic Local Alignment Search Tool) is a family of sequence alignment algorithms and programs designed to search for regions of similarity between biological sequences. It is used to search for homologous sequences in a database of known sequences, which can be used to identify genes, infer evolutionary relationships, and design primers and probes. It works by comparing a query sequence to a database of sequences using a heuristic approach. This means that it does not search the entire database for matches, but instead uses a number of shortcuts to identify potential matches. The first step in BLAST is to break the query sequence into short segments, called words. The length of the words depends on the type of sequence being searched (e.g., DNA or protein). BLAST then searches the database for sequences that contain the same words as the query sequence. If a match is found, BLAST extends the alignment in both directions to find the longest possible alignment. BLAST calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. BLAST then reports the alignments with the highest scores.

Types of BLAST:

There are five types (variants) of BLAST that are differentiated based on the type of sequence (DNA or protein) of the query and database sequences.

- 1. BLASTN compares a nucleotide query sequence to a nucleotide sequence database.
- 2. BLASTP compares a protein query sequence to a protein sequence database.
- **3. BLASTX** compares a nucleotide query sequence to a protein sequence database by translating the query sequence into its six possible reading frames and aligning them with the protein sequences.
- **4. TBLASTN** compares a protein query sequence to a nucleotide sequence database by translating the nucleotide sequences in all six reading frames and aligning them with the protein sequence.
- **5. TBLASTX** compares a nucleotide query sequence to a nucleotide sequence database by translating the query sequence in all six reading frames and aligning them with the nucleotide sequences.

FASTA:

FASTA (Fast Alignment Search Tool) is a sequence alignment algorithm and program that is used to search for regions of similarity between biological sequences. It works by first building a hash table of the query sequence. The hash table is a data structure that allows FASTA to quickly find all of the sequences in the database that contain the same words as the query sequence. It then aligns the query sequence to each of the matching sequences in the database to find the longest possible alignment. It calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. It then reports the alignments with the highest scores. It is often used in conjunction with BLAST to identify and analyze homologous sequences. FASTA is also used to design primers and probes for PCR and other molecular biology techniques.

PSI-BLAST:

PSI-BLAST (Position-Specific Iterative BLAST) is a sequence alignment tool that uses a position-specific scoring matrix (PSSM) to search for distant homologs in protein sequences. It is particularly well-suited for identifying homologs that have diverged significantly from their known relatives. It works by first running a regular BLAST search of the protein sequence database using the query sequence. This produces a list of initial hits. It then constructs a PSSM from the alignments of the initial hits. The PSSM is a statistical model that describes the probability of each amino acid at each position in the alignment. PSI-BLAST then uses the PSSM to search the protein sequence database again. This produces a list of new hits. It then repeats this process, using the PSSM from the previous iteration to search for new hits. PSI-BLAST continues to iterate until the PSSM no longer changes or until a certain number of iterations have been reached. PSI-BLAST then reports the alignments with the highest scores.

PHI-BLAST:

PHI-BLAST (Phylogenetically Inconsistent BLAST) is a sequence alignment tool that uses a probabilistic model to search for distant homologs in protein sequences. It is particularly wellsuited for identifying homologs that have diverged significantly from their known relatives. It works by first building a phylogenetic tree of the known homologs of the query sequence. It then uses this tree to generate a position-specific scoring matrix (PSSM) for each node in the tree. The PSSM is a statistical model that describes the probability of each amino acid at each position in the alignment. It then searches the database of protein sequences for sequences that match the PSSMs at the nodes of the phylogenetic tree. It does this by calculating a score for each alignment based on the similarity of the sequences and the PSSM. The higher the score, the more similar the sequences are and the more likely they are to be homologous. It then reports the alignments with the highest scores. It also reports the probability that each alignment is a true homolog. This probability is based on the score of the alignment, the PSSM of the node in the phylogenetic tree, and the phylogenetic relationships between the sequences in the alignment. PHI-BLAST is a powerful tool for identifying distant homologs. It is used by researchers in a wide range of fields, including genetics, genomics, proteomics, and molecular biology.

EMBOSS Needle:

EMBOSS Needle is a pairwise sequence alignment tool that uses the Needleman- Wunsch algorithm to produce global alignments. A global alignment is an alignment that aligns the entire length of both sequences. It works by comparing the two sequences and identifying regions of identical or similar characters. Gaps are inserted between the characters of the two sequences so that the identical or similar characters are aligned in successive columns. It calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. It then reports the alignment with the highest score. EMBOSS Needle is a powerful tool for aligning biological sequences and it is particularly well-suited for aligning sequences of known evolutionary relationship or sequences with low levels of divergence.

EMBOSS Water:

EMBOSS Water is a pairwise alignment tool that uses the Smith-Waterman algorithm to produce local alignments. This means that only the most similar regions of the two sequences are aligned. It is a good choice for aligning sequences of unknown evolutionary relationship or sequences with high levels of divergence. It works by comparing the two sequences and identifying regions of identical or similar characters. Gaps are inserted between the characters of the two sequences so that the identical or similar characters are aligned in successive columns. It then calculates a score for each alignment, which is based on the similarity of the two sequences and the presence of gaps. The higher the score, the more similar the two sequences are. It then reports the alignment with the highest score. It is a powerful tool for aligning biological sequences. It is often used in conjunction with other alignment tools, such as BLAST and FASTA, to identify and analyze homologous sequences. EMBOSS Water is also used to design primers and probes for PCR and other molecular biology techniques.

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. <u>https://doi.org/10.1016/s0022-2836(05)80360-2</u>
- Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. <u>https://doi.org/10.1016/0022-2836(70)90057-4</u>
- Bhagwat, M., & Aravind, L. (2007). PSI-BLAST Tutorial. In Methods in molecular biology (pp. 177–186). <u>https://doi.org/10.1007/978-1-59745-514-5_10</u>
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., López, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1). <u>https://doi.org/10.1038/msb.2011.75</u>

<u>WEBLEM 6(A)</u> BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) (URL: https://blast.ncbi.nlm.nih.gov)

<u>AIM:</u>

To study and explore similar sequences of the protein albumin (UniProt ID: P02768) by using Basic Local Alignment Search Tool (BLAST).

INTRODUCTION:

BLAST (Basic Local Alignment Search Tool) is an algorithm and program for comparing primary biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA and/or RNA sequences. A BLAST search enables a researcher to compare a subject protein or nucleotide sequence (called a query) with a library or database of sequences, and identify database sequences that resemble the query sequence above a certain threshold. BLAST (Basic Local Alignment Search Tool) has become the defacto standard in search and alignment tools [Altschul et al., 1990]. The BLAST algorithm works by finding a short, or local, region of high similarity between two sequences, and then extending this match out from this starting point to both the left and the right. A score is assigned to the match. The score will increase as more residues are found to match and will decrease if there are gaps in the alignment. Alignments with a score that exceeds a certain threshold are reported in the output.

BLAST searches for high scoring sequence alignments between the query sequence and the existing sequences in the database using a heuristic approach that approximates the Smith-Waterman algorithm.

BLAST tool can be used to identify unknown sequences by comparing them with known sequences in a database which helps in predicting the functions of proteins or genes which can be used in phylogenetic analysis as well as in identifying functionally conserved domains within proteins which is important for predicting the functions of proteins.

Albumin:

Albumin is a family of globular proteins, with the most common members being the serum albumins. All proteins within the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and susceptible to heat denaturation. Albumins are commonly present in blood plasma and distinguish themselves from other blood proteins by their lack of glycosylation. Compounds containing albumins are termed albuminoids. Several blood transport proteins share an evolutionary relationship within the albumin family, including serum albumin, alpha-fetoprotein, vitamin D-binding protein, and afamin. This family is exclusively found in vertebrates. In a broader sense, the term "albumins" may refer to other proteins that coagulate under specific conditions.

METHODOLOGY:

- 1. Open the Homepage of the UniProt database and search for the query of Albumin protein.
- 2. Select one entry from the results for *Homo sapiens* (UniProt ID: P02768) and download its FASTA sequence in canonical format.
- 3. Open the homepage of BLAST and select Protein BLAST, i.e., BLASTP.
- 4. Paste the FASTA sequence in 'Enter Query Sequence' box.
- 5. Set the desired parameters.
- 6. Run the BLAST.

OBSERVATIONS:

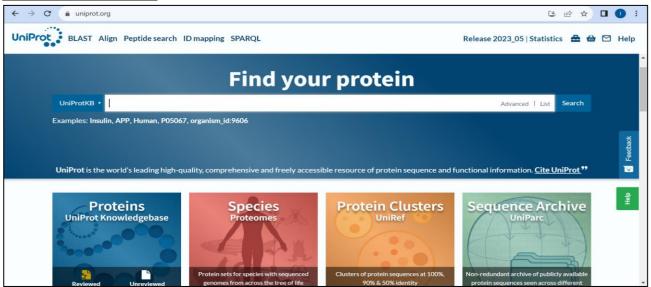


Figure 1: Homepage of the UniProt Database

← → C	rotkb?query=albumin				년 년 ☆	
UniProt BLAST Align	Peptide search ID	mapping SPARQL	UniProtKB • albumin	Advand	ced List Search 🖴 🕁	ð 🗹 Help
Status Reviewed (Swiss-Prot)	UniPr	otKB 48,2	217 results	search "albumin" as a Protein Name, Gene C	Ontology, Gene Name[]	
(677)	BLAST Align	Map ID 土 Downloa	ad ᡠ Add View: Car	ds 🔿 Table 🖲 💆 Customize colum	ns 📽 Share 🔹 1 row sele	cted out of
Unreviewed (TrEMBL) (47,540)	Entry 🔺	Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms	D P02770	ALBU_RAT	Albumin	Alb	Rattus norvegicus (Rat)	608 AA
A. thaliana (513)	P08835	ALBU_PIG	Albumin	ALB	Sus scrofa (Pig)	607 A 607
Rice (435) Human (91)	P49065	ALBU_RABIT	Albumin	ALB	Oryctolagus cuniculus (Rabbit)	608 A
Rat (67) Mouse (52)	□ Q5NVH5	ALBU_PONAB	Albumin	ALB	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	609 A
Faxonomy	✓ P02768	ALBU_HUMAN	Albumin	ALB, GIG20, GIG42, PRO0903, PRO1708, PRO2044, PRO2619, PRO2675,	Homo sapiens (Human)	609 AA

Figure 2: Searching for the query albumin and selecting (UniProt ID: P02768)

← → C 🍙 uniprot.org/unipr	otkb/P02768/entry	년 순 ☆ 🛯 🕕 :
UniProt BLAST Align I	Peptide search ID mapping SPARQL UniProtKB •	Advanced List Search 🖴 🔂 🗹 Help
Function	Section 2017 Point ALBU_HUMAN	
Names & Taxonomy	Protein ⁱ Albumin	Amino acids 609 (go to sequence)
Subcellular Location	Gene ⁱ ALB Status ⁱ S UniProtKB reviewed (Swiss-Prot)	Protein Evidence at protein level
Disease & Variants	Organism ⁱ Homo sapiens (Human)	Annotation 55
PTM/Processing		score'
Expression	Entry Variant viewer 639 Feature viewer Ge	enomic coordinates new Publications External links His
Interaction	4	
Structure	BLAST Align 土 Download 🖶 Add Add a publication	Entry feedback
Family & Domains	Function	
Sequence & Isoforms		and drugs (Probable). Its main function is the regulation of the
Similar Proteins	colloidal osmotic pressure of blood (Probable). Major zinc (PubMed:19021548).	transporter in plasma, typically binds about 80% of all plasma zinc
		s approximately 45% of circulating calcium and magnesium in

Figure 3: Download option for retrieving FASTA sequence

<pre>>sp P02768 ALBU_HUMAN Albumin OS=Homo sapiens OX=9606 GN=ALB PE=1 SV=2 MKWVFFJSLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQVLQQCPF EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP ERNECFLQHKDDDNPLNPRLVRPEVDVMCTAFHODKETFLKKYLYEIARHPYFYAPFLIF FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV ARLSQRPFKAEFAEVSKLVTDLTKVHTECCHGDLECADDRADLAKYICENQDSISSKLK ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGNGVEIFFE QLGEYKFQNALLURLAKTVFTTLKVCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFFE QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV LNQLCVLHEKTPVSDRVTKCCTESLUNRRPCFSALEVDETYVPKEFNAETFTFHADICTL SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV AASQAALGL</pre>

Figure 4: FASTA sequence in canonical format

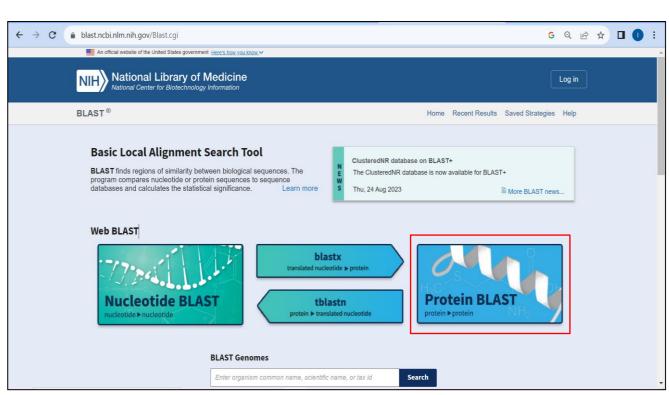


Figure 5: Homepage of Basic Local Alignment Search Tool (BLAST)

← → C 🌲 blast.ncbi.nlm.nih.gov/Blast.cgi	i?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome	G Q 🖻 🖈 🔲 🚺 🗄
An official website of the United State	es government Here's how you know.∽	A
NIH National Libra	ary of Medicine	Log in
BLAST [®] » blastp suite	Home Recent Results	Saved Strategies Help
blastn blastp blastx tblastn	Standard Protein BLAST	
Enter Query Sequence	BLASTP programs search protein databases using a protein query. more	Reset page Bookmark
Enter accession number(s), gi(s), or FASTA sequence(s) >splP02768jALBU_HUMAN Abumin OS=Homo sapiens 0X=8006 PE=1 SV=2 MKWNTFISLLFUSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKA QYLQQCPF	GN=ALB From	
Or, upload file Choose File No file chosen Job Title Enter a descriptive tile for your BLAST see Align two or more sequences ?	e arch e	
Choose Search Set		
Databases (nr etc.): New	Experimental databases For more info see What is clustered nr?	
Compare Select to compare standard and ex	xperimental database 🕜	back
Standard Database Non-redundant protein sequences Organism	. (nr) • 0	Eeedback
Optional Enter organism name or idcompl	letions will be suggested Add organism	

Figure 6: FASTA sequence pasted in 'Enter Query Sequence' box

← → C	blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome	G	Θ	Ŕ	☆			:
BLAST	Search database nr using Blastp (protein-protein BLAST) So Shore results in a new window		- (n	-		•
— Algorithm p	arameters							1
General Par	ameters	Rest	ore defa	ult sea	irch para	meters)	
Max target sequences	100 V Select the maximum number of aligned sequences to display 😧							
Short queries	Automatically adjust parameters for short input sequences ?							
Expect threshol	d 0.05							
Word size	5 • 0							L
Max matches in query range	a 0 0							
Scoring Par	ameters							L
Matrix	BLOSUM62 🗸 💡							
Gap Costs	Existence: 11 Extension: 1 V 9							I
Compositional adjustments	Conditional compositional score matrix adjustment 🗸 <table-cell></table-cell>							
Filters and I								
Filter	Low complexity regions 2							
Mask	Mask for lookup table only 🚱							
							ack ack	1
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window						Feedbac	
							ä	
								4

- > C	blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome	G	Q	Ē	☆	1	
Align two or m	iore sequences 👽						
Choose Sear	rch Set						
Databases	Standard databases (nr etc.): Experimental databases C Experimental databases For more info see What is clustered nr?						
Compare	Select to compare standard and experimental database 👔						
Standard							
Database	Non-redundant protein sequences (nr)						
Organism	Enter organism name or id-completions will be suggested exclude Add organism						
Optional	Enter organism common name, binomial, or taxi id. Only 20 top taxa will be shown ?						
Exclude	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmental sample sequences						
Program Sel Algorithm	Quick BLASTP (Accelerated protein-protein BLAST)						
	blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST)						
	O PHI-BLAST (Pattern Hit Initiated BLAST)						
	O DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm 😧						
	7						
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window						
- Algorithm p	parameters						hack
							Feedback
	FOLLOW NCBI						

Figure 8: Running BLAST

	i.nlm.nih.gov/Blast.cgi ical website of the United States government. Here's how you know ∽	ତ ର ଜ 🖈 🛛 🌒
NIH	National Library of Medicine National Center for Biotechnology Information	Log in
BLAST	» blastp suite » results for RID-MYEXHJN3013	Home Recent Results Saved Strategies Help
< Edit S	arch Save Search Search Summary *	How to read this report? DBLAST Help Videos DBack to Traditional Results Page
Job Title	sp P02768 ALBU_HUMAN Albumin OS=Homo sapiens	Filter Results
RID	MYEXHJN3013 Search expires on 11-12 15:30 pm Download All V	
Program	BLASTP 😧 Citation 🛩	Organism only top 20 will appear exclude
Database	nr <u>See details</u> ✓	Type common name, binomial, taxid or group name
Query ID	lcl Query_191534	+ Add organism
Descripti	sp P02768 ALBU_HUMAN Albumin OS=Homo sapiens O>	Percent Identity E value Query Coverage
Molecule	type amino acid	to to to
Query Le	ngth 609	
Other rep	Distance tree of results Multiple alignment MSA viewer	Filter
	Compare these results against the ne	w Clustered nr database 🕢 BLAST
Descri	tions Graphic Summary Alignments Taxonomy	thack
Seque	nces producing significant alignments	Download ∨ Select columns ∨ Show 100 ♥ 0
Sel	ct all 100 sequences selected	GenPept Graphics Distance tree of results Multiple alignment MSA Viewer
		Max Total Querv E Per. Acc.

Figure 9: Results for the query, Header Section (UniProt ID: P02768)

Compare these results against the new Clustered nr database ? BLAST													
Descriptio	ons	Graphic Summary	Alignments	Taxonomy									
Sequence	es pro	ducing significant al	ignments			Downl	load ~	Se	elect c	olumn	s ~ s	how	100 🛩 🔞
select	all 100) sequences selected			<u>GenPept</u>	Graphics	Distanc	e tree	of resu	<u>ilts M</u>	<u>lultiple ali</u>	i <u>gnm</u>	ent MSA Viewer
		Descrip	tion		Scientific	Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
serum a	albumin-ii	nterferon alpha 1 fusion proteir	n [synthetic construct]		synthetic construct		1244	1244	100%	0.0	100.00%	781	AGI02589.1
albumir	n [synthet	ic construct]			synthetic construct		1239	1239	100%	0.0	100.00%	610	AAX36126.1
albumir	n preprop	rotein [Homo sapiens]			Homo sapiens		1239	1239	100%	0.0	100.00%	609	NP_000468.1
serum a	albumin (I	Homo sapiens]			Homo sapiens		1237	1237	100%	0.0	99.84%	609	CAA23754.1
serum a	albumin [l	Homo sapiens]			Homo sapiens		1236	1236	100%	0.0	99.67%	609	AAN17825.1
🔽 unname	ed proteir	n product [Homo sapiens]			Homo sapiens		1234	1234	100%	0.0	99.67%	609	CAA23753.1
serum a	albumin p	recursor [Homo sapiens]			Homo sapiens		1234	1234	100%	0.0	99.67%	609	AAF01333.1
🔽 unname	ed proteir	n product [Homo sapiens]			Homo sapiens		1234	1234	100%	0.0	99.67%	609	BAG37325.1
Chain A	<u>A, Albumir</u>	n [Homo sapiens]			Homo sapiens		1232	1232	100%	0.0	99.51%	609	<u>6ZL1_A</u>
hypothe	etical prot	ein [Homo sapiens]			Homo sapiens		1230	1230	100%	0.0	99.18%	609	CAH18185.1
albumir	n [Gorilla	gorilla gorilla]			Gorilla gorilla gorilla		1229	1229	100%	0.0	99.01%	609	XP_004038851.3
unname	ed proteir	product [Homo sapiens]			Homo sapiens		1229	1229	100%	0.0	99.67%	608	BAF85444.1
albumir	n isoform	X1 [Pan paniscus]			Pan paniscus		1228	1228	100%	0.0	98.85%	609	XP_003832390.1
serum a	albumin [Homo sapiens]			Homo sapiens		1224	1224	100%	0.0	99.18%	609	AAX63425.1
albumir	n precurs	or [Pongo abelii]			Pongo abelii		1221	1221	100%	0.0	98.52%	609	NP_001127106.2
	ed proteir	n product [Homo sapiens]			Homo sapiens		1220	1220	100%	0.0	98.06%	618	BAG60658.1
_		synthetic construct			synthetic construct		1220	1220	100%	0.0	99.01%	603	AIC32938.1
_		pygmaeus]			Pongo pygmaeus		1219	1219	100%	0.0	98.36%	609	XP 054342130.1

Figure 10: Result for Description Section

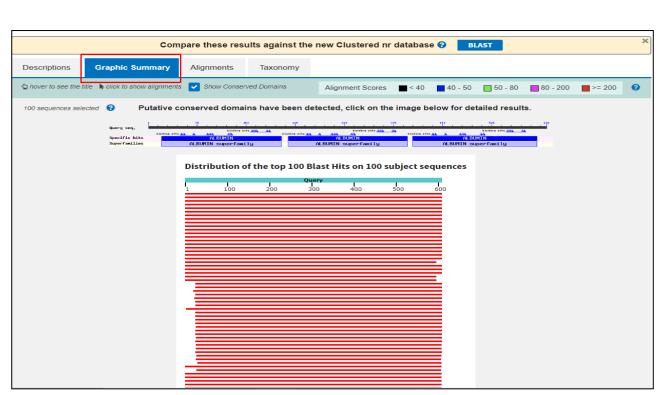


Figure 11: Result for Graphic Summary Section

	Compare these results against the new Clustered nr database ? BLAST						
Descriptions							
Descriptions	Graphic Summary Alignments Taxonomy						
Alignment view	Pairwise Restore defaults	Download					
100 sequences se	ilected						
· · ·							
🛓 <u>Downloa</u>	ad GenPept Graphics	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>					
serum al	bumin-interferon alpha 1 fusion protein, partial [synthetic construct]						
Sequence I	D: AGI02589.1 Length: 781 Number of Matches: 1						
Range 1: 1	to 609 GenPept Graphics Vext Match A Previous Match						
Score 1244 bits(3	Expect Method Identities Positives Gaps 3219) 0.0 Compositional matrix adjust. 609/609(100%) 609/609(100%) 0/609(0%)						
Query 1	MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF 60 MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF						
Sbjct 1	MKWVTFISLLFLFSSAYSRGVFRIDAHKSEVAHRFKDLGEENFKALVLIAFAQVLQQCFF 60						
Query 61	EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP 120 EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP						
Sbjct 61	EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP 120						
Query 12	L ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF 180 ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF						
Sbjct 12	L ERNECFLÖHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF 180						
Query 18	L FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV 240 FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV						
Sbjct 18							
Query 24:	L ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK 300 ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK						
Sbjct 24							
Query 30	L ECCEKPLLEKSHCIAEVENDEMPADLPSLAADEVESKDVCKNYAEAKDVFLGMFLYEYAR 360 ECCEKPLLEKSHCIAEVENDEMPADLPSLAADEVESKDVCKNYAEAKDVFLGMFLYEYAR						
Sbjct 30							
Query 36							
Sbjct 36	RHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFE I RHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFE 420						
Query 42:							
Sbjct 42	QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV L QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV 480						

Figure 12: Result for Alignment Section

	ary Alignments Ta	axonomy		
Reports Lineage Organi	sm Taxonomy			
100 sequences selected 😮				
Organism	Blast Name	Score	Number of Hits	Description
root			334	
synthetic construct	other sequences	1244	<u>13</u>	synthetic construct hits
. Homo sapiens	primates	1239	236	Homo sapiens hits
- Pongo abelii	primates	1239	5	Pongo abelii hits
. Gorilla gorilla gorilla	primates	1229	1	Gorilla gorilla gorilla hits
Pan paniscus	primates	1228	1	Pan paniscus hits
- Pan troglodytes	primates	1228	3	Pan troglodytes hits
- Pongo pygmaeus	primates	1219	1	Pongo pygmaeus hits
. Nomascus leucogenys	primates	1211	1	Nomascus leucogenys hits
- Hylobates moloch	primates	1211	1	Hylobates moloch hits
. Symphalangus syndactylus	primates	1206	1	Symphalangus syndactylus hits
- unidentified	unclassified sequences	1188	2	unidentified hits
. Macaca mulatta	primates	1175	4	Macaca mulatta hits
. Macaca fascicularis	primates	1175	5	Macaca fascicularis hits
. Macaca thibetana thibetana	primates	1174	1	Macaca thibetana thibetana hits
. Theropithecus gelada	primates	1173	1	Theropithecus gelada hits
Macaca nemestrina	primates	1172	-	Macaca nemestrina hits

Figure 13: Result for Taxonomy Section based on Lineage

100 sequences selected 😵			
Description	Score	E value	Accession
synthetic construct [other sequences]	▼ Next	A Previo	ous ≪ First
serum albumin-interferon alpha 1 fusion protein, partial [synthetic construct]	1244	0.0	AGI02589
albumin, partial [synthetic construct]	1239	0.0	AAX36126
albumin [synthetic construct]	1239	0.0	ABM82340
serum albumin [synthetic construct]	1220	0.0	AIC32938
HSA-cIFN [synthetic construct]	1195	0.0	QCO95453
HSA-GGGGS-GH fusion protein, partial [synthetic construct]	1192	0.0	AF084000
IL-1Ra-GGGGS-HSA fusion protein, partial [synthetic construct]	1191	0.0	AEL88488
HSA-GGGGS-IL-1Ra fusion protein, partial [synthetic construct]	1191	0.0	AEZ51871
human serum albumin and interferon-alpha2b fusion protein, partial (synthetic construct)	1190	0.0	QNI40628
HSA-GGGGS-PTH(1-34), partial [synthetic construct]	1189	0.0	AER13700
serum albumin, partial [synthetic construct]	1188	0.0	AIC32937
somatostatin (SST) doublet/albumin fusion protein [synthetic construct]	1186	0.0	UTT97830
human serum albumin mutein, partial (synthetic construct)	1185	0.0	QNI40627
Homo sapiens (human) [primates]	▼ Next	A Previo	ous ≪First
albumin preproprotein [Homo sapiens]	1239	0.0	NP_000468
RecName: Full=Albumin; Flags: Precursor [Homo sapiens]	1239	0.0	P02768
Chain A, SERUM ALBUMIN [Homo sapiens]	1239	0.0	4BKE A

Figure 13a: Result for Taxonomy Section based on Organism

Descriptions Graphic Summary Alignmen	ts Taxonomy			
Reports Lineage Organism Taxonom	,			
100 sequences selected 3	*******			
Taxonomy	Number of hits	Number of Organisms	Description	
⊟ <u>root</u>	334	67		
<u>synthetic construct</u>	13	1	synthetic construct hits	
. ⊟ <u>cellular organisms</u>	<u>319</u>	65		
⊟ <u>Boreoeutheria</u>	317	64		
Euarchontoglires	284	35		
⊟Primates	283	34		
D <u>Haplorrhini</u>	278	29		
BSimilformes	277	28		
⊟Catarrhini	271	23		
BHominoidea	250	9		
 ⊟ <u>Hominidae</u>	247	6		
⊟Homininae	241	4		
	236	1	Homo sapiens hits	
Gorilla gorilla gorilla	1	1	Gorilla gorilla gorilla hits	

Figure 13b: Result for Taxonomy Section based on Taxonomy

RESULTS:

The Basic Local Alignment Search Tool (BLAST) was used to explore the protein sequences similar to the protein sequence of albumin (UniProt ID: P02768). The query sequence is found 100% identical to three sequence entries.

Sequence Title	Organism	Max Score	Total Score	E Value	Percentage Identity	Accession ID
serum albumin- interferon alpha 1 fusion protein	Synthetic construct	1244	1244	0.0	100.0%	AGI02589.1
albumin	Synthetic construct	1239	1239	0.0	100.0%	AAX36126.1
albumin preproprotein	Homo Sapiens	1239	1239	0.0	100.0%	NP_000468.1

CONCLUSION:

The protein sequences similar to the protein sequence of albumin (UniProt ID: P02768) were studied by exploring the Basic Local Alignment Search Tool (BLAST).

- 1. Xiong, J. (2006). *Essential Bioinformatics*. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511806087
- S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Crystal structure of human serum albumin at 2.5 Å resolution, *Protein Engineering, Design and Selection*, Volume 12, Issue 6, June 1999, Pages 439– 446, <u>https://doi.org/10.1093/protein/12.6.439</u>

3. He, X., Carter, D. Atomic structure and chemistry of human serum albumin. *Nature* 358, 209–215 (1992). <u>https://doi.org/10.1038/358209a0</u>

WEBLEM 6(B) FASTA TOOL

(URL: https://www.ebi.ac.uk/Tools/sss/fasta/)

AIM:

To study protein sequence similarity by exploring FASTA tool for the query maltose (UniProt ID: P68187).

INTRODUCTION:

FASTA tool was originally developed for comparing protein sequences. FASTA is a text-based format for representing nucleotide or amino acid sequences. It's used in bioinformatics and biochemistry. FASTA is an abbreviation for "Fast-All". FASTA is a sequence alignment tool that takes nucleotide or protein sequences as input and compares it with existing databases. It was the first database similarity search tool developed, preceding the development of BLAST. The FASTA format allows for sequence names and comments to precede the sequences. Nucleotides or amino acids are represented using single-letter codes. For example, A => adenosine, C => cytidine, G => guanine, T => thymidine, and N => A/G/C/T (any). The original program was referred to as FASTP. It quickly became a popular tool for sequence alignment and database searching. The program has been continually updated and improved.

There are now different FASTA programs available, each used for different types of sequence searches:

- **1. FASTA** compares a DNA query sequence against a database of DNA sequences or a protein query sequence against a database of protein sequences using the FASTA algorithm.
- **2. SSEARCH** performs protein-protein or DNA-DNA comparisons using the SmithWaterman algorithm.
- **3. GGSEARCH/GLSEARCH** works using a global alignment algorithm (GGSEARCH) or a combination of global and local alignment algorithms (GLSEARCH) to compare protein and nucleotide sequences.
- **4. FASTX/FASTY** compares a DNA sequence and a database of protein sequences by translating the DNA sequence into three frames and allowing gaps and frameshifts.
- **5. TFASTX/TFASTY** compares a protein sequence and a database of DNA sequences. The DNA sequence is translated in six frames – three in the forward direction and three in the reverse direction.
- **6. FASTF/TFASTF** compares mixed peptide sequences against a protein (FASTF) or translated DNA (TFASTF) databases.
- **7. FASTS/TFASTS** compares a set of short peptide fragments against the protein (FASTS) or translated DNA (TFASTS) databases.

1. How FASTA Works

FASTA works by comparing a query sequence to a database of sequences to identify similar matches. The program uses a heuristic algorithm to quickly search the database and identify the most significant matches.

2. <u>The working mechanism of FASTA is described in the following steps:</u> Step 1: Identifying Regions

The first step is identifying regions with high similarity by creating a lookup table for the query sequence. This step is also called hashing step. To create the lookup table, the query sequence is first broken down into smaller words known as k-tuples (ktup).

Step 2: Re-Scoring

In the second step, the ten best diagonals are rescored using suitable scoring matrices. For protein, BLOSUM50 or PAM matrix is used; for DNA sequences, the identity matrix is used. A subregion with the highest score is identified for each of the rescanned diagonal regions.

Step 3: Joining Threshold

Next, a score cutoff or the joining threshold is applied that excludes segments unlikely to be part of the final alignment. The library sequences are ranked based on their Initial scores.

Step 4: Final Alignment

Finally, the gapped alignment is refined to produce the final alignment. This is done by using the banded Smith-Waterman algorithm, which is a dynamic programming algorithm that calculates the optimal score (opt) for alignment.

Maltose:

Maltose-binding protein (MBP) is a part of the maltose/maltodextrin system of Escherichia coli, which is responsible for the uptake and efficient catabolism of maltodextrins. It is a complex regulatory and transport system involving many proteins and protein complexes. MBP has an approximate molecular mass of 42.5 kilodaltons.

METHODOLOGY:

- 1. The protein FASTA (canonical) sequence for the desired protein for the query of 'Maltose' (UniProt ID: P68187) was retrieved from the UniProt Database.
- 2. Open the homepage of EBI FASTA tool. Select the desired Protein Database and paste the retrieved FASTA (canonical) sequence of Maltose (UniProt ID: P68187) in the query box of the EBI FASTA tool.
- 3. Set the desired parameters and select the 'SUBMIT' option to submit the query to the tool.
- 4. The results were shown in different tabs, namely, Submission Information, Tool Output, Graphic Output, Functional Forecasts, and Summary Table.
- 5. Interpret the results obtained.

OBSERVATIONS:

Figure 1: Homepage of the UniProt Database

← → C ☆ ■ uniprof	.org/uniprotkb?query=	maltose			6 G Q & * 0 0 0 1 *	- 7 🛛 🌔
UniProt BLAST Align	Peptide search ID n	napping SPARQ	UniProtKB • maltose		Advanced List Search	📤 🖨 🖾 He
Status Reviewed (Swiss-Prot) (796)			152 results or search "mailose" as a Proi d ⊜ Add View: Cards ⊖ Table ⊛ ∠ Cu		vity, Keyword, Gene Name, or Protein family	
Unreviewed (TrEMBL) (400.656)	Entry .	Entry Name 🔺	Protein Names 🖌	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms	P68187	MALK_ECOLI	Maltose/maltodextrin import ATP- binding protein MalK[]	malK, b4035, JW3995	Escherichia coli (strain K12)	371 AA
A. thaliana (70) Rice (48)	D P53048	MAL11_YEAST	General alpha-glucoside permease[]	MAL11, AGT1, MAL1T, MTP1, YGR289C	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	616 AA
E. coli K12 (42)	P77791	MAA_ECOLI	Maltose O-acetyltransferase[]	maa, ylaD, b0459, JW0448	Escherichia coli (strain K12)	183 AA
B. subtilis (33) Fruit fly (29)	Q9L1K2	GLGE1_STRCO	Alpha-1,4-glucan:maitose-1-phosphate maitosyltransferase 1[]	gigE1, pep1, pep1A, pep1I, SCO5443, SC6A11.19c	Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145)	183 AA 675 AA
Taxonomy	D P02943	LAMB_ECOLI	Maltoporin[]	lamB, malB, b4036, JW3996	Escherichia coli (strain K12)	446 AA
Filter by taxonomy	D P54715	PTOCB_BACSU	PTS system maltose-specific EIICB component[]	malP, glv-2, glvC, glvCB, yfiB, BSU08200	Bacillus subtilis (strain 168)	527 AA
Group by Taxonomy	D POAEX9	MALE_ECOLI	Maltose/maltodextrin-binding periplasmic protein[]	malE, b4034, JW3994	Escherichia coli (strain K12)	396 AA
Keywords Gene Ontology	O P02916	MALF_ECOLI	Maltose/maltodextrin transport system permease protein MalF	malF, b4033, JW3993	Escherichia coli (strain K12)	514 AA
Enzyme Class	D P68183	MALG_ECOLI	Maltose/maltodextrin transport system permease protein MalG	malG, b4032, JW3992	Escherichia coli (strain K12)	296 AA
Proteins with 3D structure (226)	© Q7WUM3	MAK_ACTMI	Maltokinase[]	mak1	Actinoplanes missouriensis	437 AA

Figure 2: Searching for query maltose protein.

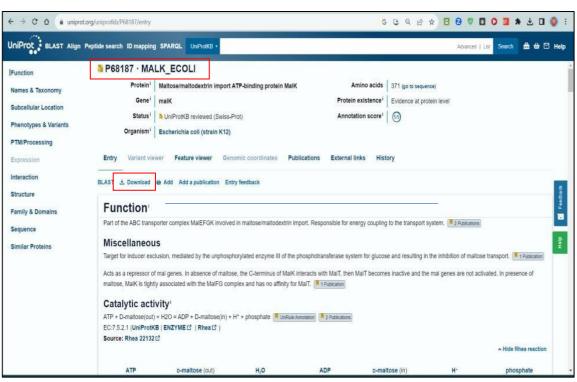


Figure 3: 'Download' option for retrieving the FASTA sequence of the protein

$\ \ \leftrightarrow \ \ \Box \ \ \ \nabla$	erest.uniprot.org/uniprotkb/P68187.fasta
MASVQLQNVTKAWGEVVVSI FIGEKRMNDTPPAERGVGM LQLAHLLDRKPKALSGGQR(KRLGRTMIYVTHDQVEAMTI FLPVKVTATAIDQVQVELPI	OLI Maltose/maltodextrin import ATP-binding protein MalK OS=Escherichia coli (strain K12) OX=83333 GN=malK PE=1 SV=1 SKDINLDIHEGEFVVFVGPSGCGKSTLLRMIAGLETITSGDL WVFQSYALYPHLSVAENMSFGLKLAGAKKEVINQRVNQVAEV RQRVAIGRTLVAEPSVFLLDEPLSNLDAALRVQMRIEISRLH TLADKIVVLDAGRVAQVGKPLELYHYPADRFVAGFIGSPKMN PMPNRQQVMLPVESRDVQVGAMMSLGIRPEHLLPSDIADVIL QIPSIRQNLVYRQNDVVLVEEGATFAIGLPPERCHLFREDGT

Figure 4: FASTA sequence of maltose protein.

EMBL-EBI Servic	es Researc	h Training	Industry About us	٩		EMBL	-EBI Hinxton •
FASTA							
Protein Nucleotide	Genomes	Proteomes	Whole Genome Shotgun	Web services Help	& Documentation	Bioinformatics Tools FAQ	Seedback
Tools > Sequence Similar	rity Searching	> FASTA		Marine State			
	er Services be	ta website is r	now available at https://w	wwdev.ebi.ac.uk/Tools/jd	ispatcher. We'd lov	ve to hear your feedback about	ut the new
webpages!				wwdev.ebi.ac.uk/Tools/jd	ispatcher. We'd loo	ve to hear your <u>feedback</u> abor	ut the new
webpagest Protein Sil	milarit	y Sea	arch	ing the FASTA suite of p	rograms. FASTA p	ve to hear your feedback abor rovides a heuristic search witt and GLSEARCH (global quer	n a protein query.
webpagest Protein Sil	milarit nce similarity : slate a DNA qu	y Sea	arch	ing the FASTA suite of p	rograms. FASTA p	rovides a heuristic search wit	n a protein query.
webpages! Protein Sil This tool provides seque FASTX and FASTY trans	milarit nce similarity : slate a DNA qu	y Sea	arch	ing the FASTA suite of p	rograms. FASTA p	rovides a heuristic search wit	n a protein query.

Figure 5: Homepage of FASTA tool.

FASTA										
Protein Nucleotide Genomes	Proteome	whol	le Genome Sholgun	Web services Help	& Documentation	on Bi	oinformatics	Tools FAQ	🗭 Feet	dback
Tools > Sequence Similarity Searchin	g > FASTA									
Service Announcement										
The new Job Dispatcher Services	beta website	is now av	ailable at https://w	wwdev.ebi.ac.uk/Tools/jdi	ispatcher. We'd	love to	hear your <u>f</u>	eedback abo	out the new	
webpages!										
Results for job fasta-120	231114.	07213	2-0421-291	5424-n1m						
				Comments in success of a subjection of the						
Results for job fasta-I20 Summary Table Tool Output Visu				Comments in success of a subjection of the						
Summary Table Tool Output Visu Selection:	al Output F	functional I		Comments in success of a subjection of the		Length a	Score k	dentities Pr	ositives o E()	6
Summary Table Tool Output Visu Selection: Select All Invert Clear	al Output F	Functional I	Predictions Subr	Comments in success of a subjection of the	MalK	Length ¢ 371	Score k (Bits) 7 341.4	dentities Pa	ositives e B() 100.0 3.0E	-
Summary Table Tool Output Visu Selection:	al Output F	Functional I	Predictions Subr D • Source 08=Escherich GN=malK PE=	nission Details textm import ATP-binding protein as coll (strain UTI89 / UPEC) OX= 1 SV+2	MalK	- 201	(8)(5) 7	• • *	¢ E0	-
Summary Table Tool Output Visu Selection: Select All Invert Clear Apply to selection:	al Output F	Functional I	Predictions Subr D • Source 01R3Q1 Matosermation OS=Escherich Circos.referer • Macromoleco	nission Details destrin import ATP-binding protein as coll (arban UTB9 / UPEC) OX= 1 SV>2 icces and related information in: us structures > Bioscher maticales	i MaiK 364106	- 201	(8)(5) 7	• • *	¢ E0	-
Summary Table Tool Output Visu Selection: Select All Invert Clear Apply to selection: Annotations:	al Output F	Functional I	Predictions Subr D 3 Source D1R3Q1 Matose/mattor OS=Escherich GN=marK PE= Cross-referen- Nackotte s	nission Details teatrin import ATP-binding protein as coli (strain UTIB9 / UPEC) OX= 1 SV=2 icees and related information in:	: МаК 364106	- 201	(8)(5) 7	• • *	¢ E0	-
Summary Table Tool Output Visu Selection: Select All Invert Clear Apply to selection: Annotations: Show Hide	al Output F	Functional I	Predictions Subn D • Source UR3Q1 Matosemation Q8=Escherch Q8=Escherch Q8=escherch Macromates • Nockurds s • Nockurds s • Samtet	nission Details textrin import ATP-binding protein as coli (strain UTI89 / UPEC) OX= 1 SV>2 loog and related information in: Ar stratures > Bisactor materiales genrous > Excitores > Librarios	MalK 364106 In sequences MalK	- 201	(8)(5) 7	• • *	¢ E0	5-92

Figure 6: Searching sequence protein in FASTA tool.

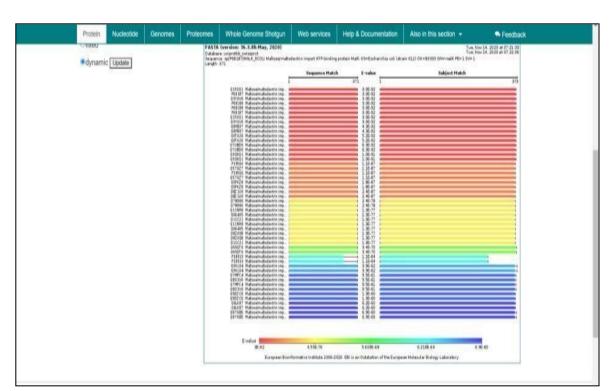


Figure 7: Visual output of maltose protein sequence.

Results for job f	asta-120231114-072132	-0421-2915424-p1m	
Summary Table Tool C	Output Visual Output Functional P	redictions Submission Details	
Program	Database	Launched Date	Input Sequence
FASTA Version	uniprotkb_swissprot	Tue, Nov 14, 2023 at 07:21:33 End Date	fasta-l20231114-072132-0421-2915424-p1m.input Output Result
36.3.8h May, 2020		Tue, Nov 14, 2023 at 07:22:06	fasta-I20231114-072132-0421-2915424-p1m.output
-T 32 -p -s BL50 -	-f -10 -g -2 -E *10.0 -1.0*		/fasta36 -1 \$DATA_CURRENT/fastacfg/fasta3d -120231114-072132-0421-2915424-p1m.m9* -m ' 2
cat fasta-I2023111 -T 32 -p -s BL50 fasta-I20231114-0	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m
cat fasta-12023111 -T 32 -p -s BL50 fasta-120231114-0' Input Parame	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m
cat fasta-I2023111 -T 32 -p -s BL50 fasta-I20231114-0	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m
cat fasta-I2023111 -T 32 -p -s BL50 - fasta-I20231114-0 Input Parame Sequence type	-f -10 -g -2 -E "10.0 -1.0" 72132-0421-2915424-plm.ml0"	-F 0.0 -b 50 -d 50 -m "F9B fasta	-I20231114-072132-0421-2915424-plm.m9" -m

Figure 8: Submission details of maltose protein on FASTA tool.

The EBI – FASTA tool was used to explore the sequences similar to the sequence of maltose (UniProt ID: P02768). The query sequence is found 100% identities & 100% positives to maltose sequence entries found in two organisms, viz., *Escherichia coli* and *Shigella sonnei*, with E Value of 5.2e-98 and sequence length of 371.

CONCLUSION:

FASTA is a versatile bioinformatics tool primarily used for storing, searching and comparing biological sequence data. It's commonly employed for tasks like sequence alignment, similarity searches and database comparisons. Sequence similarity was searched and studiedfor the Query 'Maltose' (UniProt ID: P68187) using the FASTA program.

- Kryukov K, Ueda MT, Nakagawa S, Imanishi T (July 2020). "Sequence Compression Benchmark (SCB) database—A comprehensive evaluation of reference-free compressors for FASTA-formatted sequences". GigaScience. 9 (7): giaa072. <u>https://doi.org/10.1093/gigascience/giaa072</u>
- Andrew Lloyd, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Methods of Biochemical Analysis, 43), Briefings in Bioinformatics, Volume 2, Issue 4, December 2001, Pages 407–408, <u>https://doi.org/10.1093/bib/2.4.407</u>
- Pratas D, Hosseini M, Pinho A (2017). "Cryfa: a tool to compact and encrypt FASTA files". 11th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB). Advances in Intelligent Systems and Computing. Vol. 616. Springer. Pp. 305–312. Doi:10.1007/978-3-319-60816-7_37. https://link.springer.com/book/10.1007/978-3-319-60816-7_

DATE: 01/11/2023

<u>WEBLEM 6(C)</u> <u>PROTEIN- SPECIFIC ITERATED BLAST (PSI BLAST)</u> (URL: https://blast.ncbi.nlm.nih.gov/Blast.cgi)

AIM:

To explore the PSI BLAST tool to search putative homologs for query "Leucine" (UniProt ID: Q8IX15).

INTRODUCTION:

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) derives a position-specific scoring matrix (PSSM) or profile from the multiple sequence alignment of sequences detected above a given score threshold using protein—protein BLAST. This PSSM is used to further search the database for new matches and is updated for subsequent iterations with these newly detected sequences. Thus, PSI-BLAST provides a means of detecting distant relationships between proteins. BLAST (Basic Local Alignment Search Tool) is a sequence similarity search method, in which a query protein or nucleotide sequence is compared to nucleotide or protein sequences in a target database to identify regions of local alignment and report those alignments that score a given score threshold. Position-Specific Iterative (PSI)-BLAST is a protein sequence profile search method that builds off the alignments generated by a run of the BLASTp program. It first iteration of a PSI-BLAST search is identical to a run of BLASTp run above a certain preset score or *e*-value threshold and calculates a profile or a position-specific score matrix (PSSM) from the multiple alignment.

The PSSM captures the conservation pattern in alignment and stores it as a matrix of scores for each position in the alignment-highly conserved positions receive high scores and weakly conserved positions receive scores near zero. This profile is used in place of the original substitution matrix for a further search of the database to detect sequences that match the conservation pattern specified by the PSSM. The newly detected sequences from this second round of the search, which are above the specified score (e-value) threshold is again added to alignment the profile is refined for another round of searching. This process is iteratively continued until desired or until convergence, i.e., the state where no new sequences are detected above the defined threshold. The iterative profile generation process makes PSI-BLAST far more capable of detecting distant sequence similarities than a single query alone in BLASTp, because it combines the underlying conservation information from a range of related sequence into a single score matrix. In the evolution, three-dimensional (3D) structures of proteins may be conserved even after considerable erosion of their sequence similarity. PSI-BLAST has been demonstrated to be useful in detecting such relationships via sequence searches, which were previously only detected through direct comparison of the 3D structures. Here, we discuss practical aspects of using PSI-BLST and provide a tutorial on how to uncover distant relationships between proteins and use them to reach biological meaningful conclusions.

Significance:

- 1. PSI-BLAST is most conveniently used on the internet with the help of the graphical user interface provided by the PSI-BLAST search page on National Centre for Biotechnology Information (NCBI).
- 2. The PSI-BLAST page may be customized by the user in terms of automated or semiautomated or "two-page formatting" and other parameters modified as desired. This page can then be saved as permanent internet bookmark for repeated use on futureoccasions.
- 3. As a rule of the thumb, beginners are advised to use the profile-inclusion threshold of expect (e)-value = 0.005 for their analysis. However, a user familiar with globular domains and compositional bias may use the inclusion threshold of 0.01 for inclusion in the profile, if a sequence does not have any major compositionally biased segments.
- 4. A pair of protein sequences can either be homologous (sharing a common evolutionary ancestor) or nonhomologous (evolutionarily unrelated).
 - a. It should be noted that PSI-BLAST does not offer a direct binary decision on whether two sequences are related or not. However, the *e*-value obtained for a PSI-BLAST alignment can be used as a guide for this purpose.
- 5. As a heuristic it may be assumed that any compositionally unbiased query, encompassing a globular domain in a protein, giving a hit with e-value = <0.01 is likelyto be an indication of a homologous relationship. However, a user must carefully evaluate such alignments case-by-case because there can occasionally be false- positives.
- 6. A user may set the number of alignments and hits view as at least 1000 if searching the nonredundant (nr) database of NCBI, because of the large number hits obtained due to the current size of the database. PSI-BLAST may also be downloaded and run as a standalone program for Windows or UNIX-type operating systems.
 - a. However, in this case the various parameters need to be specified using the set of command-line flags for the program. An advantage of using the standalone version is the ability to use alignments as queries to generate a starting PSSM or saving and reusing the profile generated by a run of PSI-BLAST.

Leucine:

Leucine (symbol **Leu** or **L**) is essential amino acid that is used in the biosynthesis of proteins. Leucine is an α -amino acid, meaning it contains an α -amino group (which is in the protonated $-NH_3^+$ form under biological conditions), an α -carboxylic acid group (which is in the deprotonated $-COO^-$ form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG.

Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. It is the most important ketogenic amino acid in humans.

L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite

and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion.

METHODOLOGY:

- 1. Go to the website of BLAST tool.
- 2. Click protein blast as protein is more conserved than nucleotide.
- 3. Go on UniProt portal.
- 4. Search for query 'Leucine'.
- 5. From shown results select UniProt ID: 'Q8IX15' entry.
- 6. Download the sequence in FASTA (Canonical) format.
- 7. Copy the sequence and paste under BLASTp suite.
- 8. Select Protein Data Bank (PDB) database under standard and program algorithm parameter as psi-blast with threshold 0.001.
- 9. Click BLAST to run the query.
- 10. Click Run to observe 2nd iterated and continue till 5 iterations.

OBSERVATIONS:

	Select protein BLAST.
NIH National Library of Medicine	Log in
BLAST®	Home Recent Results Saved Strategies Help
Web BLAST Mucleotide BLAST	In BLAST+ Be is now available for BLAST+ More BLAST news More BLAST news
BLAST Genomes	
Enter organism common name, scientific name, or tax id Searc Human Mouse Rat Microbes	

Figure 1: Homepage of BLAST

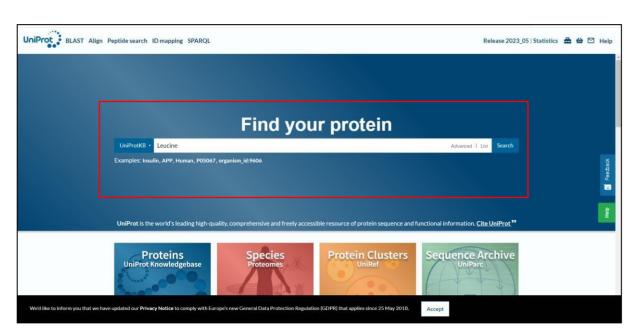


Figure 2: Query search in UniProt portal

Reviewed (Swiss-Prot) (12,443)	UNI			35 results or search "Leucine" as a Protein Name. Gene Ontology, Keywo		Name, or Disease	
Unreviewed (TrEMBL) (2,769,292)	Ent	_	Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Popular organisms	P00	0727	AMPL_BOVIN	Cytosol aminopeptidase[]	LAP3	Bos taurus (Bovine)	519 AA
A. thaliana (5,874) Rice (3,372)	D Q9	UIC8	LCMT1_HUMAN	Leucine carboxyl methyltransferase 1[]	LCMT1, LCMT, CGI-68	Homo sapiens (Human)	334 AA
Human (3,131) Rat (2,299)	Q8	i6V48	LUZP1_HUMAN	Leucine zipper protein 1	LUZP1	Homo sapiens (Human)	1,076 AA
Mouse (2,118)	🖬 Q8	IX15	HOMEZ_HUMAN	Homeobox and leucine zipper protein Homez[]	HOMEZ, KIAA1443	Homo sapiens (Human)	550 AA
axonomy Filter by taxonomy	U Q/	LOXO	TRIL_HUMAN	TLR4 interactor with leucine rich repeats[]	IRIL, KIAAU644	Homo sapiens (Human)	811 AA
iroup by Faxonomy	Q9	6LR2	LURA1_HUMAN	Leucine rich adaptor protein 1[]	LURAP1, C1orf190, LRAP35A, LRP35A	Homo sapiens (Human)	239 AA
Keywords	07	5427	LRCH4_HUMAN	Leucine-rich repeat and calponin homology domain-containing protein 4[]	LRCH4, LRN, LRRN1, LRRN4	Homo sapiens (Human)	683 AA
Sene Ontology Enzyme Class	D P4	9911	AN32A_RAT	Acidic leucine-rich nuclear phosphoprotein 32 family member A []	Anp32a, Lanp	Rattus norvegicus (Rat)	247 AA
Proteins with	04	3300	LRRT2_HUMAN	Leucine-rich repeat transmembrane neu Microsoft Store 2[]	LRRTM2, KIAA0416, LRRN2	Homo sapiens	516 AA

Figure 2a: Select desired organism

Download	×	Advanced List Scarch 🚘 🕁 🖸 Help
Format FASTA (canonical)	Preview Cancel Download	Amino acids 550 (go to sequence) Protein existence ¹ Evidence at protein level Annotation score ¹ 65
		Publications External links History
	Microsoft	pilessince 25 May 2018. Accept

>sp[Q8IX15|HOMEZ_HUMAN Homeobox and leucine zipper protein Homez OS=Homo sapiens 0X=9606 GN=HOMEZ PE=1 SV=2 MVRGwEPPPGLDCAISEGHKSEGTMPPNKEASGLSSSPAGLICLPPISELQLW/TQAAQ TSELDSNEHLLKTFSYFPYPSLADIALLCLRYGLQMEKVKTWFMAQRLRCGISWSSEEIE ETRARVVYRRDQLHFKSLLSFTHHAGRPEEVPPPPVPAPEQVGIGIGPPTLSKPTQTKG LKVEPEEPSGMPPLQPSHQKLKESLIMTPGSGAFPYQSDFWQHLQSSGLSKKQGARGPNQS HGIGTASWNHSTTVPQPQARDKPPPIALIASSCKEESASSVTPSSSTSSSFQVLANGAT AASKPLQPLGCVPQSVSPSEQALPPHLEPAWPQGLRHHSVPGRVGPTEYLSPDWQRQRKT KRKTKEQLAILKSFFLQCQWARREDYQKLEQITGLPRPEIIQWFGDTRYALKHGQLKWFR DNAVPGAPSFQOPAIPTPPSTRSLFRAETPPEPIPPPPDIQPLERYWAAHQQLRETD IPQLSQASRLSTQQVLDWFDSRLPQPAEVVVCLDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDOD DDDDDVIIQD

Figure 2c: Copying the sequence

	NIH National Library of Medicine National Center for Biotechnology Information			[Log in
	BLAST [®] » blastp suite	Home	Recent Results	Saved Strategies	Help
blastn	step blastx tblastn tblastx Standard Protein BLAST				
Enter Query S	BLASTP programs search protein databases using a protein query. more				Reset page Bookmark
QQLRETD	Inber(s), al(s), or FASTA sequence(s) & Clear Query subrange Clear				
Or, upload file	Choose File No file chosen				
Job Title					
Align two or mo	Enter a descriptive title for your BLAST search 😧				
Choose Searc	h Set				
Databases	Standard databases (nr etc.): Imm O Experimental databases For more info see What is clustered nr?				
Compare	Select to compare standard and experimental database ?				
Standard					back
Database	Protein Data Bank proteins(pdb) V				Feedback
Organism Optional	Enter organism name or id-completions will be suggested Add organism				
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown 😧				
Exclude	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmental sample sequences				

Figure 3: Pasting the sequence in BLASTp format

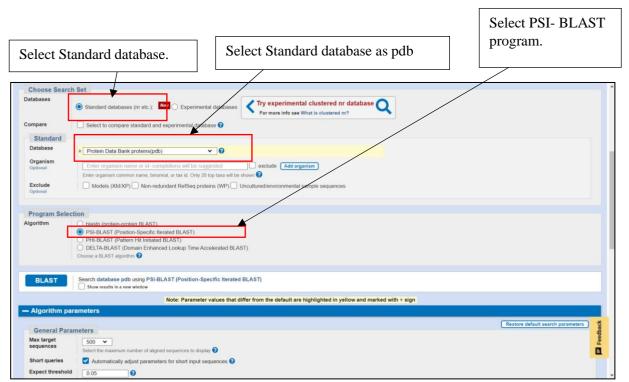


Figure 4: Selecting Standard database as pdb and program selection as PSI- BLAST

		Restore default search parameters
General Param	neters	
lax target equences	500 V Select the maximum number of aligned sequences to display D	
hort queries	Automatically adjust parameters for short input sequences ??	
xpect threshold	0.05	
/ord size	3 • 0	
lax matches in a		
uery range	0	
Scoring Param	natare	
latrix	BLOSUM62 V	
ap Costs	Existence: 11 Extension: 1 V	
ompositional djustments	Conditional compositional score matrix adjustment 🗸 🔇	
Filters and Ma		
Filters and Ma	Low complexity regions 🖗	
lask		
авк	Mask for lookup table only ? Mask lower case letters ?	
PSI/PHI/DELTA	BLAST	
pload PSSM	Choose File No file chosen 8	
SI-BLAST	0.001	
hreshold seudocount		
ordaocount	0	

Figure 5: Keeping PSI-BLAST threshold as 0.001 and running PSI - BLAST

BLAST [®] » bl	astp suite » results for RID-N9ERW6E1016	Home Recent Results Saved Strategies Help
< Edit Search	Save Search Search Summary • @	How to read this report? BLAST Help Videos DBack to Traditional Results Page
Job Title	sp Q8IX15 HOMEZ_HUMAN Homeobox and leucine	Filter Results
RID	N9ERW6E1016 Search expires on 11-16 19:35 pm Download All ~	
Program	PSI-BLAST Iteration 1 Citation >	Organism only top 20 will appear exclude
Database	pdb See details Y	Type common name, binomial, taxid or group name
Query ID	Icl Query_53057	+ Add organism
Description	sp Q8IX15 HOMEZ_HUMAN Homeobox and leucine zipp∈	Percent Identity E value Query Coverage
Molecule type	amino acid	to to to
Query Length	550	PSI-BLAST incl.
Other reports	Distance tree of results Multiple alignment MSA viewer	threshold 0.001 Filter Reset
		Run PSI-Blast iteration 2
Descriptions	Graphic Summary Alignments Taxonomy	Number of sequences 500 Run

Figure 6: Result shown for UniProt ID: Q8IX15 in BLASTp

							Cl	ick	run	to rı	ın 2	2 nd ite
			Kull F SI-Dias									
Descriptions Graphic Sur	nmary Alignments	Taxonomy	Number of s			500					R	un
Sequences producing signi	ficant alignments			Dowr	load	~ ;	Select c	olumn	s × S	how 50	• 00	0
8 sequences selected			GenPept G	raphics	Dista	ance tre	e of resu	its M	lultiple a	lignment	MSA	√iewer
Sequences with E-value BETTI	R than threshold											-
Select all 6 sequences selecte	1								PS	BI-BLAST	l iterat	tion 1
	Description	3	Scientific Name		Total Qu Score Co				Acces	sion for PSI	Used to build PSSM	Newly added
Chain A. Homeobox and leucine z	oper protein Homez [Homo sapiens]	Homo se	apiens	139	139 1	1% 26	-39 100	00%	6 <u>2ECC</u>			
and the second sec	oper protein Homez [Homo sapiens]	Homo se	apiens	116	116 1				0 <u>2YS9</u>	100		
Chain A. Zinc fingers and homeob		Homo sa							6 <u>3NAR</u>	1.0		
Chain A. Zinc fingers and homeob		Homo se							6 <u>3NAU</u>			
 Chain A. Zinc fingers and homeob Chain A. Zinc fingers and homeob 		Homo se		48.9 40.4			-07 50		4 21Y9			
				40.4	40.4 (370	1-04 37	50%	0 20190			
Run PSI-BLAST Iteration 2 v		ices 500	Run									
Sequences with E-value WORS select all 2 sequences selecte										BI-BLAST	literat	tion 1
Select all 2 sequences selecte	1								P	Select I		uon 1
De	cription	Scientific	Name Max Score	Total Score	Query Cover	E value	Per. Ident	Acc.	Accession	for PSI to blast F	build	Newly added
Chain A. DNA-binding protein SAT	31 [Homo sapiens]	Homo sapiens	36.2	36.2	11%	0.013	42.03%	71	2MW8_A			
Chain A. Zinc fingers and homeob	exes protein 1 [Homo sapiens]	Homo sapiens	35.8	35.8	11%	0.027	35.82%	89	2ECB_A			

Figure 6a: Result shown for sequence with E- value better and worse than threshold

Descriptions Graphic Summary Alignments Taxonomy	Number of s	seque	nces	500						Ru	n
Sequences producing significant alignments		Dow	nload	×	Sele	ct colur	nns	✓ Sho	w 50	00 🗸	0
62 sequences selected equences newly added this iteration ?	GenPept C	Graphic	s Di	stance	tree of	results	Mu	tiple aligr	ment	MSAV	<u>ewer</u>
Sequences with E-value BETTER than threshold											-
select all 37 sequences selected Skip to the first new sequence								PSI-	BLAST	T iterati	on 2
Description	Scientific Name	Max Score	Total Score		E value	Per. Ident	Acc. Len	Accession	PSI		Newly added
Chain A. Homeobox and leucine zipper protein Homez [Homo sapiens]	Homo sapiens	117	117	11%	3e-31	100.00%	76	2ECC_A		0	
Chain A. Zinc fingers and homeoboxes protein 1.[Homo sapiens]	Homo sapiens	113	113	12%	1e-29	49.28%	96	3NAR_A		0	
Chain A. Homeobox and leucine zipper protein Homez [Homo sapiens]	Homo sapiens	106	106	10%	26-27	100.00%	70	2YS9_A		0	
Chain A, Zinc, fingers and homeoboxes protein 2 [Homo sapiens]	Homo sapiens	97.9	97.9	9%	20-24	46.30%	66	3NAU_A		0	
Chain A. Zinc fingers and homeoboxes protein 3 [Homo sapiens]	Homo sapiens	90.2	90.2	11%	1e-21	33.85%	76	2DN0_A		0	
Chain A. Zinc fingers and homeoboxes protein 1.[Homo_sapiens]	Homo sapiens	87.5	87.5	9%	1e-20	44.44%	74	2LY9_A	✓	0	
Chain A. Zinc fingers and homeoboxes protein 2 [Homo sapiens]	Homo sapiens	55.9	55.9	10%	20-09	36.84%	89	2DMP_A			0
Chain A. Zinc fingers and homeoboxes protein 3. [Homo sapiens]	Homo sapiens	50.5	50.5	12%	1e-07	32.84%	75	2DA5_A			0
Chain A. Zinc fingers and homeoboxes protein 1.[Homo sapiens]	Homo sapiens	48.6	48.6	10%	10-06	38.60%	89	2ECB_A			0
Chain P. Pituitary homeobox 2 (Homo sapiens)	Homo sapiens	43.9	43.9	10%	20-05	22.03%	68	<u>21.7F_P</u>			0
Chain P. Pituitary homeobox 2 [Homo sapiens]	Homo sapiens	43.9	43.9	10%	3e-05	22.03%	68	21.7M_P			0
Chain A. Paired box protein Pax-3 [Homo sapiens]	Homo sapiens	42.8	42.8	10%	40-05	24.14%	61	3CMY_A			0
Chain A. PROTEIN (HOMEOBOX VENTRAL NERVOUS SYSTEM DEFECTIVE PROTEIN) (D	ro Drosophila mel	43.2	43.2	11%	5e-05	26.56%	80	1QRY_A			0
Chain A. LIM/homeobox protein Lhx9 [Homo sapiens]	Homo sapiens	43.2	43.2	13%	58-05	26.67%	80	2DMQ A			0

Figure 7: 2nd iterated result of UniProt ID: Q8IX15 organism

PSI BLAST was explored using query 'Leucine' (Q8IX15) in order to get putative homologs. The first iteration showed 8 new putative sequences and the addition of new sequences was carried till 5th iteration, but then the process if halted as further iteration would drop the result accuracy and the iteration showed that new putative homologs are available for query 'Leucine'.

CONCLUSION:

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) derives a position-specific scoring matrix (PSSM) or profile from the multiple sequence alignment of sequences detected above a given score threshold using protein–protein BLAST. This PSSM is used to further search the database for new matches and is updated for subsequent iterations with these newly detected sequences. Thus, PSI-BLAST provides a means of detecting distant relationships between proteins. PSI-BLAST (Position specific iterative – BLAST) algorithm program was used to view and explore best iterated results for query 'Leucine' (UniProt ID: Q8IX15).

- 1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.
- 2. PSI-BLAST. (n.d.). National Institutes of Health. https://www.ncbi.nlm.nih.gov/books/NBK2590/
- 3. Pruitt KD, Tatusova T, Ostell JM. McEntyre J, Ostell J, editors. The Reference Sequence (RefSeq) Project. National Library of Medicine (US), NCBI; Bethesda, MD: The NCBI Handbook. 2005 Chapter 18.
- 4. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. (1997 September 01) *Nucleic acids research* 25 (17):3389-3402
- Zhang, L., Li, F., Guo, Q., Duan, Y., Wang, W., Zhong, Y., Yang, Y., & Yin, Y. (2020). Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. *Nutrients*, 12(5), 1299. <u>https://doi.org/10.3390/nu12051299</u>

DATE: 01/11/2023

<u>WEBLEM 6(D)</u> <u>PATTERN HIT INITIATED BLAST (PHI-BLAST) TOOL</u> <u>(URL: https://blast.ncbi.nlm.nih.gov)</u>

<u>AIM:</u>

To perform iterative blast for query 'Flavodoxin' protein (UniProt ID: P53554) by exploring Pattern Hit Initiated BLAST (PHI-BLAST) Tool.

INTRODUCTION:

Pattern Hit Initiated BLAST (PHI-BLAST) Tool, represents a variant of the BLAST algorithm employed for searching a protein database to identify other instances of a specific pattern occurring at least once within the input sequence. It facilitates the alignment and construction of the Position-Specific Scoring Matrix (PSSM) around a motif present in the query sequence. PHI-BLAST was developed by Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David J. Lipmann at the National Institutes of Health (NIH).

PHI-BLAST finds application in the analysis of various protein sequences, including CED4like cell death regulators, HS90-type ATPase domains, archaeal tRNA nucleotidyltransferases, and archaeal proteins. It is utilized to identify protein sequences containing a specific pattern specified by the user and similar to the query sequence.

Compared to other BLAST tools, PHI-BLAST offers advantages such as increased speed and the ability for the user to express a rigid pattern occurrence requirement. This feature aids in reducing the number of hits that solely contain the pattern but lack true homology to the query sequence. However, PHI-BLAST may have a potential disadvantage in that it might be less sensitive than PSI-BLAST for detecting remote homologs. Additionally, the use of a specific pattern may restrict the search scope, potentially causing the omission of homologs lacking the specified pattern.

Flavodoxin:

Flavodoxins are small, soluble, electron-transfer proteins. Flavodoxins contains flavin mononucleotide as prosthetic group. The structure of flavodoxin is characterized by a five-stranded parallel beta sheet, surrounded by five alpha helices. They have been isolated from prokaryotes, cyanobacteria, and some eukaryotic algae. It functions in various metabolic processes, including photosynthesis, nitrogen and fatty acid metabolism. Flavodoxin is also involved in the detoxification of reactive oxygen species. The protein is reduced by flavodoxin reductase and transfers electrons to various redox enzymes. The semiquinone conformation of flavodoxin is stabilized by a hydrogen bond to the N-5 position of flavin, and a common tryptophan residue near the binding site aids in lowering SQ reactivity. The hydroquinone form is forced into a planar conformation, destabilizing it.

METHODOLOGY:

- 1. Open the homepage of UniProt database and search for the query 'Flavodoxin' protein.
- 2. Select any one entry from the results e.g., *Bacillus subtilis (strain 168)* (UniProt ID: P53554) and download its FASTA sequence in canonical format.
- 3. Open the homepage of BLAST and click on protein BLAST.
- 4. Paste the FASTA sequence in 'Enter query sequence' box and in program selection click on PHI-BLAST option.
- 5. Open the homepage of PROSITE database and search for the query 'Flavodoxin' protein.
- 6. Enter the FASTA sequence in 'Quick Scan mode of ScanProsite' box and scan it.
- 7. Copy the decoded pattern and paste it in the pattern in 'Enter a PHI pattern' box on PHI-BLAST portal and set the desired algorithm parameters.
- 8. Run the PHI-BLAST.
- 9. After each iteration, the new sequences are added to the results. These new sequences are highlighted using yellow color.
- 10. Run the PHI-BLAST iteration for 3-5 times, post which it starts generating garbage results, due to the decrease in sensitivity.
- 11. Interpret the results obtained.

OBSERVATIONS:

Figure 1: Homepage of the UniProt database

Status	BLA	ST Alian	Map ID	土 Download 쉽 Add	View: Cards 🔿 Table 💿 🚄 Customize columns	Share - 1 row selected of	out of 25	
Reviewed (Swiss-Prot) (16)		Entry .		Entry Name 🔺	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
Unreviewed (TrEMBL) (17)		P53554	а	BIOI_BACSU	Biotin biosynthesis cytochrome P450[]	biol, CYP107H, BSU30190	Bacillus subtilis (strain 168)	395 AA
Popular organisms				17000 01001				01111
B. subtilis (33) X		032224		AZOR2_BACSU	FMN-dependent NADH:quinone oxidoreductase 2[]	azoR2, yvaB, BSU33540	Bacillus subtilis (strain 168)	211 AA
Taxonomy Filter by taxonomy	0	032214	3	CYSJ_BACSU	Sulfite reductase [NADPH] flavoprotein alpha-component[]	cysJ, yvgR, BSU33440	Bacillus subtilis (strain 168)	605 AA
Group by Taxonomy	D	O35022	8	AZOR1_BACSU	FMN-dependent NADH:quinone oxidoreductase 1[]	azoR1, yocJ, BSU19230	Bacillus subtilis (strain 168)	208 AA
Keywords Gene Ontology		P54482	a	ISPG_BACSU	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin)[]	ispG, yqfY, BSU25070	Bacillus subtilis (strain 168)	377 AA
Enzyme Class		034453	a	NOSO_BACSU	Nitric oxide synthase oxygenase[]	nos, yflM, BSU07630	Bacillus subtilis (strain 168)	363 AA
Proteins with 3D structure (3)		O34737	a	FLAV_BACSU	Probable flavodoxin 1	ykuN, BSU14150	Bacillus subtilis (strain 168)	158 AA
Activity regulation (1) Beta strand (3)		O34589	a	FLAW_BACSU	Probable flavodoxin 2	ykuP, BSU14170	Bacillus subtilis (strain 168)	151 AA
Binding site (16)	D	P96674	8	YDEQ_BACSU	Uncharacterized NAD(P)H oxidoreductase YdeQ[]	ydeQ, BSU05300	Bacillus subtilis (strain 168)	197 AA

Figure 2: Query search for 'Flavodoxin' protein

UniProt BLAST Align P	eptide search ID mapping SPAR(QL UniProtKB •			Advanced	List Search	🏯 🔐 🗹 Help
Function	P53554 · BIOI_BA	CSU					
Names & Taxonomy Subcellular Location Phenotypes & Variants	Gene ⁱ biol Status ⁱ 🍓 UniProt	KB reviewed (Swiss-Prot))	Amino acids Protein existence [‡] Annotation score [‡]	395 (go to sequence) Evidence at protein level		
PTM/Processing Expression	1	eature viewer Genomic	coordinates F	ublications External	links History		_
Interaction Structure	BLAST & Download & Add	Add a publication Entry fee	lback				Feedback
Family & Domains Sequence Similar Proteins	Catalyzes the C-C bond cleava fatty acids with the greatest affi) to generate pimelic acid	for biotin biosynthesis. It has	high affinity for lo	ng-chain
	Catalytic activity ⁱ a C2-C8-saturated long-chain f [flavodoxin] 1 Publication EC:1.14.14.46 (UniProtKB E Source: Rhea 52852 C		luced [flavodoxin] =	6-carboxyhexanoyl-[ACP] + a fatty aldehyde + 3 H ⁺ + 3	3 H2O + 2 oxidize	d
						∧ Hide Rh	nea reaction
	a C ₂ -C ₈ -saturated	O ₂	reduced	6-carbo WhatsApp yl-	a fatty	H.	

Figure 2a: Downloading the FASTA sequence for selected UniProt ID: P53554

Download ×	Advanced List Search 😂 🖨 🏹 Help
Format Text Text FASTA (canonical & isoform) JSON XML RDF/XML GFF	Amino acids 395 (go to sequence) Protein existence ¹ Evidence at protein level Annotation score ¹ So
	to generate pimelic acid for biotin biosynthesis. It has high affinity for long-chain
	-carboxyhexanoyl-[ACP] + a fatty aldehyde + 3 H* + 3 H2O + 2 oxidized A Hide Rhea reaction 6-carboxyhexanoyl- a fatty H*

>sp|PS3554|BI0I_BACSU Biotin biosynthesis cytochrome P450 OS=Bacillus subtilis (strain 168) 0X=224308 GN=bioI PE=1 SV=1 MTIASSTASSEFLKNPYSFYDTLRAVHPIYKGSFLKYPGWYUTGYEETAATLKDARFKVR TPLPESSTKYQDLSHVQNQMMLFQNQPDHRRLRTLASGAFTPRTTESYQPYIIETVHHLL DQVQGKKKKEVISDFAFPLASFVIANIIGYPEEDREQLKEWAASLIQTIDFTRSRKALTE GNIMAVQAMAYFKELIQKRRHPQDUBTSNLLKGREKDKLTEELAASTCILLATAGHETT VNLISNSVLCLLQHPEQLLKLRENPDLIGTAVEECLRYESPTQMTARVASEDIDICGVTI RQGEQVYLLLGAANRDPSIFTMPDVFDITRSPNPHLSFGHGHHVCLGSSLARLEAQIAIN TLLQRMPSLNLADFEWRYRPLFGFRALEELPVTFE

Figure 2c: View of the downloaded FASTA sequence

	Search PROSITE Search
Database of protein domains	s, families and functional sites
SARS-CoV-2 relevant PROSITE motifs	
PROSITE consists of documentation entries describing protein domains, families and f	unctional sites as well as associated patterns and profiles to identify them [More /
References / Commercial users].	
PROSITE is complemented by ProRule , a collection of rules based on profiles and part	
additional information about functionally and/or structurally critical amino acids [More	
Release 2023_05 of 08-Nov-2023 contains 1938 documen	tation entries, 1311 patterns, 1379 profiles and 1397 ProRule.
Search PROSITE	Browse PROSITE
e.g. PDOC00022, PS50089, SH3, zinc finger	by documentation entry
Search add wildcard **	by ProRule description
	by taxonomic scope
	by number of positive hits
Quick Scan mode of ScanProsite	Other tools
	PRATT
Quickly find matches of your protein sequences to PROSITE signatures (max. 10	allows to interactively generate conserved patterns from a series of unaligned
sequences). [?] Examples	proteins.
	MyDomains - Image Creator
	allows to generate custom domain figures.
	Custon Inoges of DOMAINS
For UniProtKB/TrEMBL accessions/dentifiers, only those of entries belonging to reference	

Figure 3: Homepage of PROSITE Database

Search PROSITE e.g. PDOC00022, PS50089, SH3, zinc finger Search add wildcard ***	Browse PROSITE • by documentation entry • by ProRule description • by taxonomic scope • by number of positive hits
Quick Scan mode of ScanProsite Quickly find matches of your protein sequences to PROSITE signatures (max. 10 sequences). [?] Examples >splP53554]BIOI_BACSU Biotin biosynthesis cytochrome P450 OS=Bacillus subtilis (strain 168) OX=224308 GN=biol PE=1 SV=1 MTIASSTASSEFLKNPYSFYDTLRAVHPIYKGSFLKYPGWYVTGY EETAAILKDARFKVR TPLPESSTKYQDLSHVQNQMMLFQNQPDHRRLRTLASGAFTPRT TESYQPYIIETVHHLL DQVQGKKKMEVISDFAFPLASFVIANIIGVPEEDREQLKEWAASLI QTIDFTRSRKALTE For UniProtKB/TrEMBL accessions/identifiers, only those of entries belonging to reference proteomes are accepted. Scan Clear Clear Exclude motifs with a high probability of occurrence from the scan For more scanning options go to ScanProsite	Other tools PRATT allows to interactively generate conserved patterns from a series of unaligned proteins. MyDomains - Image Creator allows to generate custom domain figures.

Figure 3a: Paste the downloaded FASTA sequence for pattern

sp-P53554- BIOI_BACSU (sp-P53554-BIO _BACSU)			(395 aa)				
S00086 CYTOCHROM	_		heme-iron ligan	d signature :			
38 - 347: [confiden	ce level: (0)] FGh	HHVCLG					

Fig 3b: Results page for the Quick Scan of ScanProSite using the sequence and retrieving the decoded sequence

	Description	Technical continu	Deferences	Convright	Missellensous	
	Description	Technical section	References	Copyright	Miscellaneous	
chnical section						
OSITE method (with tools a	ad information)	covered by this docu	montation:			
	iu iniornation)	covered by this docu	nentation.			
CYTOCHROME_P450, PS0	0086; Cytochro	me P450 cysteine he	me-iron ligand si	gnature (PAT	ERN)	
		-	-			
Consensus pattern:						
[FW]-[SGNH]-x-[GD]-{F	}-[RKHPT]-{P}-	C-[LIVMFAP]-[GAD]				
C is the heme iron ligar	ıd					
 Sequences in UniProtK 	B/Swiss-Prot ki	nown to belong to this	class: 1580			
 detected by PS00 	086: <mark>1472</mark> (true	positives)				
 undetected by PS 	00086: 108 (98	false negatives and	10 'partials')			
 Other sequence(s) in U 	niProtKB/Swiss	-Prot detected by PS	00086:			
47 false positives and 1	unknown.					
Retrieve an alignment of	of UniProtKB/Sv	viss-Prot true positive	hits:			
Clustal format, color, co	ndensed view	/ Clustal format, colo	r / Clustal forma	at, plain text /	Fasta format	
Retrieve the sequence	logo from the a	ignment				
Taxonomic distribution	of all UniProtKE	(Swiss-Prot + TrEME	BL) entries match	ning PS00086		
Retrieve a list of all Uni	ProtKB (Swiss-	Prot + TrEMBL) entrie	s matching PS0	0086		
Coop UniDrott/D (Quing	Prot and/or Tr	EMBL) entries agains	PS00086			
 Scan UniProted (Swiss 	-FIOL anu/or Th	_MDL) chinos agains				
View ligand binding sta						

Figure 3c: Consensus pattern for the FASTA sequence

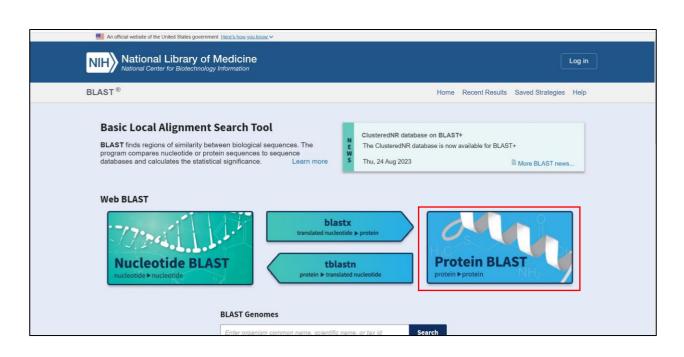


Figure 4: Homepage of Basic Local Alignment Search Tool (BLAST)

В	AST [®] » blastp suite	Home Recent Results Saved Strategies Help
blastn bl	stp blastx tblastn tblastx Standard Protein BLAST	
Enter Query S	BLASTP programs search protein databases using a protein query, mor	e Reset page Bookmark
Enter accession n >splP53554/BIOI_BA subtilis (strain 168) C	withber(e), gi(e), or FASTA coquence(e) Given Query subrange Query subrange CSU Biolin historynthesis cytochrome P450 OS=Bacillus From X=224308 GNE-biol PE-1 SV=1 To	
Or, upload file Job Title	Choose File No file chosen spIP53554/BIOI_BACSU Biotin biosynthesis cytochrome Enter a descriptive title for your BLAST search re sequences	
Choose Searc	h Set	
Databases	Standard databases (nr etc.): New O Experimental databases For more info see What is clustered nr database	°Q
Compare	Select to compare standard and experimental database 2	
Standard Database	Non-redundant protein sequences (nr)	
Organism Optional	Enter organism name or Id-completions will be suggested exclude Add organism	

Figure 5: Pasting the FASTA sequence in 'Enter query sequence' box

	Standard databases (nr etc.): I C Experimental databases	
	For more info see What is clustered nr?	
Standard		
Database	Non-redundant protein sequences (nr) V	
Organism	Enter organism name or id-completions will be suggested	
Optional	Enter organism common name, binomia, or tax id. Only 20 to tax avell be shown ?	
Exclude	Models (XM/XP) Non-redundant RefSeg proteins (WP) Uncultured/environmental sample sequences	
Optional	monore (Anisys 1) the incorrect intervent (Anisys 2) incorrect and an intervent (Anisys 2)	
	PHI-BLAST (Pattern Hit Initiated BLAST) FGhGHHVCLG Enter a PHI pattern	
	C DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm 😧	
BLAST		
BLAST - Algorithm pa	Choose a BLAST algorithm Search database nr using PHI-BLAST (Pattern Hit Initiated BLAST) Show results in a new window	E Taoritació

Fig 5a: Paste the decoded pattern from ProSite in 'Enter a PHI pattern' box

- Algorithm para	meters		
			Restore default search parameters
General Paran	eters		
Max target sequences	500 V Select the maximum number of aligned sequences to display 2		
Short queries	Automatically adjust parameters for short input sequences ?		
Expect threshold	0.05		
Word size	3 • 3		
Max matches in a query range	0		
Scoring Paran	eters		
Matrix	BLOSUM62 V		
Gap Costs	Existence: 11 Extension: 1 🗸		
Filters and Ma	sking		
Filter	Low complexity regions ?		
Mask	Mask for lookup table only Mask lower case letters		
PSI/PHI/DELTA	BLAST		
Upload PSSM Optional	Choose File No file chosen	0	
PSI-BLAST Threshold	0.005		ack
Pseudocount	0		Feedback
BLAST	Search database nr using PHI-BLAST (Pattern Hit Initiated BLAST) Show results in a new window		

Figure 5b: Setting the parameters for running BLAST Tool

NIH Nation	ional Library of Medicine	Log in
BLAST [®] » bl	astp suite » results for RID-NCNRZU34013	Home Recent Results Saved Strategies Help
< Edit Search	Save Search Search Summary • 😧	How to read this report? BLAST Help Videos DBack to Traditional Results Page
Job Title	sp P53554 BIOI_BACSU Biotin biosynthesis cytochrome	Filter Results
RID	NCNRZU34013 Search expires on 11-18 00:53 am Download All Y	
Program	PHI-BLAST Iteration 1 Citation ~	Organism only top 20 will appear exclude
Database	nr <u>See details</u> ~	Type common name, binomial, taxid or group name
Query ID	Icl Query_148430	+ Add organism
Description	sp P53554 BIOI_BACSU Biotin biosynthesis cytochrome F	Percent Identity E value Query Coverage
Molecule type	amino acid	to to to
Query Length	395	PSI-BLAST incl.
Other reports	Distance tree of results Multiple alignment MSA viewer @	threshold 0.005 Filter Reset
		Run PSI-Blast iteration 2
		Number of sequences 500 Run

Figure 6: Results obtained after running BLAST tool

Descriptions	Graphic Summary	Alignments Ta	ixonomy											
Sequences pro	oducing significant a	lignments with patte	ern at posit	ion: 338 🗸		Dow	nload	~	Selec	t coli	u mns ~ Sho	w 5	• 00	0
500 sequences sele	ected			GenPer	ot <u>Gr</u>	aphics	Dis	tance tr	ee of re	esults	Multiple align	ment	MSA V	<u>'iewer</u>
Sequences with	E-value BETTER than t	hreshold												-
select all 50	00 sequences selected										PSI-E	BLAST	l iterat	ion 1
Description				ntific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession	Select for PSI blast	to	Newly added
biotin biosynthesis cytochrome P450 [Bacillales]			Bacillales		759	759	100%	0.0	0.00%	395	WP_004398783.1			
cytochrome P4	50 [Bacillus subtilis]		Bacillus su	btilis	758	758	100%	0.0	0.00%	395	WP_213385756.1			
biotin biosynthe	biotin biosynthesis cytochrome P450 [Bacillus subtilis]		Bacillus su	btilis	758	758	100%	0.0	0.00%	410	WP_009968007.1			
Chain B, Biotin	biosynthesis cytochrome P450)-like enzyme [Bacillus subtilis	Bacillus su	btilis	757	757	99%	0.0	<mark>0.00%</mark>	404	<u>3EJB_B</u>			
biotin biosynthe	esis cytochrome P450 [Bacillus	1	Bacillus		757	757	100%	0.0	0.00%	395	WP_041520532.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	756	756	100%	0.0	0.00%	395	WP_257986148.1			
biotin biosynthe	esis cytochrome P450 [Bacillus]	Bacillus		755	755	100%	0.0	0.00%	395	WP_029318272.1			
 biotin biosynthesis cytochrome P450 [Bacillus subtilis] 		Bacillus su	btilis	755	755	100%	0.0	0.00%	395	WP_235120692.1				
biotin biosynthesis cytochrome P450 [Bacillus subtilis]		Bacillus su	btilis	755	755	100%	0.0	0.00%	410	WP_015714547.1				
biotin biosynthesis cytochrome P450 [Bacillota bacterium]		Bacillota ba	acterium	755	755	100%	0.0	0.00%	395	MDP4124600.1	<			
cytochrome P450 [Bacillus subtilis]		Bacillus su	btilis	754	754	100%	0.0	0.00%	395	MBR0007637.1				
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	754	754	100%	0.0	0.00%	395	WP_080529685.1			
biotin biosynthe	esis cytochrome P450 [Bacillus	subtilis]	Bacillus su	btilis	754	754	100%	0.0	0.00%	410	WP_003229201.1			
biotin biosynthe	esis cytochrome P450 [Bacillot	a bacterium]	Bacillota ba	acterium	753	753	100%	0.0	0.00%	395	MDP4112686.1			

Figure 7: Result for Description section of query

Figure 8: Result for Graphic Summary section

Alignment	view P	airwise		~ 0	Restore defaul	ts	Download ~
231 sequence	s selected	0					
🕹 Dow	nload 🗸	GenPept	Graphics				▼ Next ▲ Previous
MULT	ISPECIE	S: biotin bio	synthesis cytoch	rome P450 [Bacillal	esl		
			1 Length: 395 Nun	and a second			
See	7 more t	title(s) ¥ See	all Identical Protein	is(IPG)			
_					_		
	1: 1 to 3	95 GenPept G				tch A Previous Match	Related Information Gene - associated gene details
Score 759 bit	s(1971)	Expect 0.0	Identities 395/395(100%)	Positives 395/395(100%)	Gaps 0/395(0%)	AlphaFold Structure - 3D
Query	(2)			YKGSFLKYPGWYVTGYEETA	ann ar a thatachtain		structure displays
		MTIASSTASSE	LKNPYSFYDTLRAVHPI	YKGSFLKYPGWYVTGYEETA	AILKDARFKVR		Identical Proteins - Identical proteins to WP 004398783.1
Sbjct	5			YKGSFLKYPGWYVTGYEETA			proteina to wr_004556765.1
Query	61			RRLRTLASGAFTPRTTESYQ RRLRTLASGAFTPRTTESYQ		120	
Sbjct	61	TPLPESSTKYQ	DLSHVQNQMMLFQNQPDH	RRLRTLASGAFTPRTTESYQ	PYIIETVHHLL	120	
Query	121	DQVQGKKKMEV	ISDFAFPLASEVIANIIG	VPEEDREQLKEWAASLIQTI VPEEDREQLKEWAASLIQTI	DETRSRKALTE	180	
Sbjct	121	DQVQGKKKMEV	ISDFAFPLASFVIANIIG	VPEEDREQLKEWAASLIQTI	DFTRSRKALTE	180	
Query	181			MLLKGREKDKLTEEEAASTC		240	
Sbjct	181	GNIMAVQAMAY	FKELIQKRKRHPQQDMIS	MLLKGREKDKLTEEEAASTC MLLKGREKDKLTEEEAASTC	ILLAIAGHETT	240	
Query	241	VNLISNSVLCL	QHPEQLLKLRENPDLIG	TAVEECLRYESPTQMTARVA	SEDIDICGVTI	300	
Shict	241	VNLISNSVLCLI VNLISNSVLCLI	QHPEQLLKLRENPDLIG	TAVEECLRYESPTOMTARVA TAVEECLRYESPTOMTARVA	SEDIDICGVTI SEDIDICGVTI	300	
Patter Query		ROGEOVYLLLG	ANRDPSIFTNPDVFDIT	********* RSPNPHLSFGHGHHVCLGSS	LARLEAQIAIN	360	
Sbjct		RQGEQVYLLLGA	ANRDPSIFTNPDVFDIT	RSPNPHLSFGHGHHVCLGSS RSPNPHLSFGHGHHVCLGSS	LARLEAQIAIN	100000	
Query		TLLQRMPSLNLA	ADFEWRYRPLFGFRALEE	LPVTFE 395	-		
Sbjct	361		ADFEWRYRPLFGFRALEE ADFEWRYRPLFGFRALEE				

Figure 9: Result for Alignment Section

Descriptions Graphic Summ	nary Alignments	axonomy	1	
Reports Lineage Organ				
100 sequences selected				
Organism	Blast Name	Score	Number of Hits	Description
root			334	
. synthetic construct	other sequences	1244	13	synthetic construct hits
. <u>Homo sapiens</u>	primates	1239	236	Homo sapiens hits
. Pongo abelii	primates	1239	5	Pongo abelii hits
. Gorilla gorilla gorilla	primates	1229	1	Gorilla gorilla gorilla hits
. Pan paniscus	primates	1228	1	Pan paniscus hits
. Pan troglodytes	primates	1228	3	Pan troglodytes hits
. Pongo pygmaeus	primates	1219	1	Pongo pygmaeus hits
. Nomascus leucogenys	primates	1211	1	Nomascus leucogenys hits
. Hylobates moloch	primates	1211	1	Hylobates moloch hits
. Symphalangus syndactylus	primates	1206	1	Symphalangus syndactylus hits
. unidentified	unclassified sequences	1188	2	unidentified hits
. Macaca mulatta	primates	1175	4	Macaca mulatta hits
. Macaca fascicularis	primates	1175	5	Macaca fascicularis hits
. Macaca thibetana thibetana	primates	1174	1	Macaca thibetana thibetana hits
. Theropithecus gelada	primates	1173	1	Theropithecus gelada hits
. Macaca nemestrina	primates	1172	1	Macaca nemestrina hits

Figure 10: Result for Taxonomy section based on 'Lineage'

Descriptions Graphic Summary Alignments Taxonomy			
Reports Lineage Organism Taxonomy			
100 sequences selected 💡			
Description	Score	E value	Accession
synthetic construct [other sequences]	▼ Next	A Previo	ous ∢ First
serum albumin-interferon alpha 1 fusion protein, partial [synthetic construct]	1244	0.0	AGI02589
albumin, partial [synthetic construct]	1239	0.0	AAX36126
albumin [synthetic construct]	1239	0.0	ABM82340
serum albumin [synthetic construct]	1220	0.0	AIC32938
HSA-cIFN [synthetic construct]	1195	0.0	QCO95453
HSA-GGGGS-GH fusion protein, partial [synthetic construct]	1192	0.0	AF084000
IL-1Ra-GGGGS-HSA fusion protein, partial [synthetic construct]	1191	0.0	AEL88488
HSA-GGGGS-IL-1Ra fusion protein, partial [synthetic construct]	<mark>11</mark> 91	0.0	AEZ51871
human serum albumin and interferon-alpha2b fusion protein, partial [synthetic construct]	1190	0.0	QNI40628
HSA-GGGGS-PTH(1-34), partial [synthetic construct]	1189	0.0	AER13700
serum albumin, partial [synthetic construct]	1188	0.0	AIC32937
somatostatin (SST) doublet/albumin fusion protein [synthetic construct]	1186	0.0	<u>UTT97830</u>
human serum albumin mutein, partial [synthetic construct]	1185	0.0	QNI40627
Homo sapiens (human) [primates]	▼ Next	A Previo	ous ≪First
albumin preproprotein [Homo sapiens]	1239	0.0	NP_000468
RecName: Full=Albumin; Flags: Precursor [Homo sapiens]	1239	0.0	P02768
Chain A, SERUM ALBUMIN [Homo sapiens]	1239	0.0	4BKE A

Figure 11: Result for Taxonomy section based on 'Organism'

Descriptions Graphic Summary Alignmen	nts Taxonomy			
Reports Lineage Organism Taxonom	y			
100 sequences selected 👔	unnud -			
Taxonomy	Number of hits	Number of Organisms	Description	
Broot	334	67		
<u>synthetic construct</u>	13	1	synthetic construct hits	
. ⊟ <u>cellular organisms</u>	<u>319</u>	65		
⊟ <u>Boreoeutheria</u>	317	64		
Euarchontoglires	284	35		
B <u>Primates</u>	283	34		
□ <u>Haplorrhini</u>	278	29		
B <u>Simiiformes</u>	277	28		
	271	23		
⊟ <u>Hominoidea</u>	250	9		
⊟ <u>Hominidae</u>	247	6		
⊟ <u>Homininae</u>	241	4		
<u>Homo sapiens</u>	236	1	Homo sapiens hits	
Gorilla gorilla gorilla	1	1	Gorilla gorilla gorilla hits	
	4	2		
Pan paniscus	1	1	Pan paniscus hits	
Pan troglodytes	3	1	Pan troglodytes hits	

Figure 12: Result for Taxonomy section based on 'Taxonomy'

Pattern-Hit Initiated BLAST (PHI-BLAST) tool is a variant of the Basic Local Alignment Search Tool (BLAST) algorithm, specifically designed for detecting distant relationships between protein sequences and identifying domains of potential functional significance within sequences. The tool was used to studied query where it is able to detect the pattern in the organisms which confirms the identification of remote homologs or conserved domains for the query protein sequences.

CONCLUSION:

PHI-BLAST is widely used in bioinformatics, particularly for analyzing protein sequences to identify conserved domains, motifs, or functional signatures. It aids in understanding evolutionary relationships between proteins and assists in annotating sequences with functional information based on conserved patterns. Its ability to focus the alignment and construction of the PSSM around a motif provides a valuable approach for researchers and bioinformaticians working in the field of protein analysis.

- 1. ResearchGate. (2023). BLAST Algorithm. https://www.reseatchgate.net/publication/230503487
- Zheng Zhang, Webb Miller, Alejandro A. Schäffer, Thomas L. Madden, David J. Lipman, Eugene V. Koonin, Stephen F. Altschul, Protein sequence similarity searches using patterns as seeds, Nucleic Acids Research, Volume 26, Issue 17, 1 September 1998, Pages 3986–3990, <u>https://doi.org/10.1093/nar/26.17.3986</u>
- Sancho J. Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci. 2006 Apr;63(7-8):855-64. doi: 10.1007/s00018-005-5514-4. PMID: 16465441. <u>https://pubmed.ncbi.nlm.nih.gov/16465441</u>

DATE: 01/11/23

<u>WEBLEM 6(E)</u> <u>EMBOSS NEEDLE – GLOBAL PAIRWISE SEQUENCE ALIGNMENT</u> (URL: https://www.ebi.ac.uk/Tools/psa/emboss_needle/)

<u>AIM:</u>

To explore and compare the protein sequences of 'Myosin' from two organisms *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6) by performing global pairwise sequence alignment using EMBOSS Needle Tool.

INTRODUCTION:

The European Molecular Biology Open Software Suite, or EMBOSS, is a part of the European Bioinformatics Institute (EBI). One of the prominent tools of EMBOSS is EMBOSS Needle, which is based on the Needleman-Wunsch algorithm. The Needleman-Wunsch algorithm was developed by Saul B. Needleman and Christian D. Wunsch in 1970 for global sequence alignment. It works on the principle of dividing the large problem into a series of smaller problems and uses the solutions to the smaller problems to find an optimal solution to the larger problem, assigning a score to every possible alignment and finding all possible alignments having the highest score.

The unique feature of the EMBOSS Needle tool is that it finds the alignment with the maximum possible score where the score of an alignment is equal to the sum of the matches taken from the scoring matrix, minus penalties arising from opening and extending gaps in the aligned sequences. The substitution matrix and gap opening and extension penalties are user-specified. A penalty is subtracted from the score for each gap opened (Gap insertion penalty) and a penalty is subtracted from the score for the extension of the inserted gaps (Gap extension penalty). Typically, the cost of extending a gap is set to be 5-10 times lower than the cost for opening a gap.

Penalty for a gap of n positions is calculated using the following formula:

Gap at n^{th} position = gap opening penalty + (n - 1) * gap extension penalty

Myosin:

Myosin is a motor protein with a primary role in muscle contraction, interacting with actin filaments to generate force and movement. Beyond muscles, myosin participates in cell motility, cell division, intracellular transport, and maintenance of cell shape, making it a crucial component in various cellular processes. The need to analyze myosin with the EMBOSS Needle tool arises from the diverse functions of myosin, which contribute to the dynamic behavior and structural integrity of cells. By analyzing the sequence and structure of myosin, researchers can gain insights into its mechanisms and interactions, which can help develop a deeper understanding of its role in various cellular processes and potentially lead to new therapeutic strategies for muscle and non-muscle related disorders.

METHODOLOGY:

- 1. Open the UniProt database and search for the query of 'Myosin'.
- 2. From the results page, open the proteins of interest. Here, *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6).
- 3. Download the myosin protein sequences of both the organisms in FASTA file format.
- 4. Open the homepage of EMBOSS Needle tool and paste the sequences in the query box and set the desired parameters. Select the 'SUBMIT' to submit the query.
- 5. The results page of EMBOSS Needle tool displays the Alignment, Submission Details and View Alignment File. Interpret the results.

OBSERVATIONS:

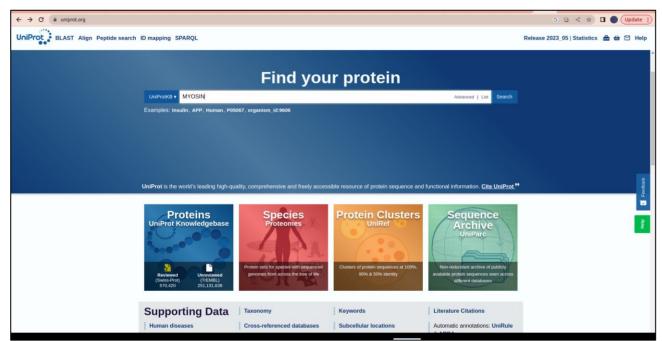


Figure 1: Homepage of the UniProt Database

- → C	otkb?query=MYOSIN		_			G ╚ < ☆	
DiProt BLAST Align F	Peptide search ID	mappin	ng SPARQI. U	IniProtKB • MYOSIN		Advanced List Search	🏯 ᡠ 🖸 Help
Status	BLAST Align	Map II	Ds ± Download	📾 Add View: Cards 🔿 Table 🖲 💆 Customize	columns 📽 Share 🔻 2 rows s	selected out of 75	
Reviewed (Swiss-Prot) (2,617)	E Entry .	E	Entry Name 🗼	Protein Names	Gene Names 🔒	Organism 🔒	Length 🗼
Unreviewed (TrEMBL)	P35579	8 N	MYH9_HUMAN	Myosin-9[]	МҮН9	Homo sapiens (Human)	1,960 AA
(505,853)	□ <u>096H55</u>	<u>a</u> N	YO19_HUMAN	Unconventional myosin-XIX[]	MYO19. MYOHD1	Homo sapiens (Human)	970 AA
Popular organisms Human (1,362)	Q90623	a N	VYPT1_CHICK	Protein phosphatase 1 regulatory subunit 12A $\left[\right]$	PPP1R12A, MBS, MYPT1	Gallus gallus (Chicken)	1,004 AA
A. thaliana (1,171) Mouse (1,049)	P08964	a N	MYO1_YEAST	Myosin-1[]	MYO1, YHR023W	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	1,928 AA
Rat (998)	E7EZG2	8 N	MY9AA_DANRE	Unconventional myosin-IXAa[]	myo9aa, myo9al1	Danio rerio (Zebrafish) (Brachydanio rerio)	2,522 AA
Zebrafish (755)	D3Z3P6	<u>a</u> h	AYO10_RAT	Unconventional myosin-X[]	Myo10	Rattus norvegicus (Rat)	2,060 AA
Taxonomy	F8VQB6	a N	YO10_MOUSE	Unconventional myosin-X[]	Myo10	Mus musculus (Mouse)	2,062 AA
Filter by taxonomy			AYO6_BOVIN	Unconventional myosin-W[]	MYOS	Bos taurus (Bovine)	1,295 AA
Group by	O43795	a N	YO1B_HUMAN	Unconventional myosin-lb[]	MYO1B	Homo sapiens (Human)	1,136 AA
Taxonomy	D P08590	a N	MYL3_HUMAN	Myosin light chain 3[]	MYL3	Homo sapiens (Human)	195 AA
Keywords	Q96A32	a N	MYL11_HUMAN	Myosin regulatory light chain 11[]	MYL11, HSRLC, MYLPF	Homo sapiens (Human)	169 AA
Gene Ontology Enzyme Class	O94832	a N	WYO1D_HUMAN	Unconventional myosin-Id	MYO1D, KIAA0727	Homo sapiens (Human)	1,006 AA
Enzyme Glass	Q13402	a N	YO7A_HUMAN	Unconventional myosin-VIIa	MYO7A, USH1B	Homo sapiens (Human)	2,215 AA
roteins with		a N	YO5B_HUMAN	Unconventional myosin-Vb	MYO5B, KIAA1119	Homo sapiens (Human)	1,848 AA
3D structure (632) Active site (8,671)	P36006	8 N	MYO3_YEAST	Myosin-3[]	MYO3, YKL129C	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	1,272 AA
Activity regulation (595)	Q63356	a N	YO1E RAT	Unconventional myosin-le[]	Myo1e, Myr3	Rattus norvegicus (Rat)	1.107 AA

Figure 2: Results page of the UniProt Database for the query of Myosin with selected entries

Tools > Pairwise Sequence Alignment > EMBOSS Needle Service Announcement The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher . We'd love to hear your feedback about the new webpages! Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	EMBL-EBI Services Research Training Industry About us Q	EMBL-EBI 💓 Hinxton •
Tools > Pairwise Sequence Alignment > EMBOSS Needle Service Announcement The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpagest Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	EMBOSS Needle	
Service Announcement The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpagest Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	Input form Web services Help & Documentation Bioinformatics Tools FAQ	Seedback
The new Job Dispatcher Services beta website is now available at https://wwwdev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear your feedback about the new webpagest Pairwise Sequence Alignment EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	ools > Pairwise Sequence Alignment > EMBOSS Needle	
EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file. STEP 1 - Enter your protein sequences Enter a pair of PROTEIN	webpages!	cher. We'd love to hear your <u>feedback</u> about the new
STEP 1 - Enter your protein sequences Enter a pair of PROTEIN v	Pairwise Sequence Alignment	
Enter a pair of PROTEIN	EMBOSS Needle reads two input sequences and writes their optimal global sequence alignment to file.	
PROTEIN	STEP 1 - Enter your protein sequences	
	Enter a pair of	
sequences. Enter or paste your first protein sequence in any supported format:	PROTEIN	Ŧ
	sequences. Enter or paste your first protein sequence in any supported format:	

Figure 3: Homepage of EMBOSS Needle Tool

Input form Web services Help & Documentation Bioinformatics Tools	s FAQ 🗣 Feedback
Pairwise Sequence Alignment	
EMBOSS Needle reads two input sequences and writes their optimal globa	
STEP 1 - Enter your protein sequences	
STEP 1 - Enter your protein sequences	
Enter a pair of	
PROTEIN	Υ.
sequences. Enter or paste your first protein sequence in any supported for	mat
>sp0290523IMYPTI_CHICK Protein phosphatase 1 regulatory subunit MKMADAKQKRNEQLKRWIGSETDLEPPVVKKKTKVKFDDGAVFLAV ERGADINYANVOGITALIQACIDDNVDMVKFLVEINGANINQPDNEGW IAEYUSQGAHVGANVSEGOTPLDIAEEEAMEELLQNEVNRQGVDIA ARQWLINSGKINDVRHAKSGGTALIHVAAGKYTEVLKLUQARYDVNIK HWGKEEACRILVENLCDMEAVIRKVSQTAFDVADEDILGYLEELQKKQ LIESTANLDNNQTQKTFKNKETLIMEQEKNASSIESLEHEKADEEEEEGH EDDDCECE AETDVALT AMMITTETGASAMMADEVACOCOTOTOM	ACSSGOTEFVLRLL INFLHAAASGVD ARKEEERIMLRD KDYDGWTPLHAAA NULHSEKREKSP
Or, upload a file: Choose file No file chosen	Use a example sequence Clear sequence See more example inputs
AND	
Enter or paste your second protein sequence in any supported format:	
>spjFavQBdjMYOL0_MOUSE Unconventional myosin-X OS=Mus mus MDSFPEGARWUR,ERGQHFPSTVNSCAECVVVECT0Y2QVFTYK HEEGVDDMASLAELHGGSIMYALEQRYKRNQIYTYIGSILASVNPYQP YSRCHLGELPHIFANARCVPCNULABACAGAKTEST TLDLGLQEKTSSVEQAILQSSPIMEAFGNAKTVYNNNSSRFGKFVQL VDYLLEKRYVRQNQFGRYNHFVALLAGUGEREEFYLSJPENYH SDQESFRQVTAMEVMQFSKESYRFURLAGUALGONEFFTSGGAQU LAGUPTET STANGORMWEDFELT TRULAGUHLGNIEFTSGGAQU	QSTITNQKVTAMHPL IAGLYERATIMEE KILIKFLSVISQQ NICQQGNIQGGRI YLNQSGCTEDKTI IPKYTALGRSAD

Figure 4: Submission of the protein sequences retrieved from the UniProt Database in the EMBOSS Needle Tool

← → C	veb/toolresult.ebi?job/d=emboss_needle420231113-113648-0200-10615023-p1m		G Q < ☆
	♠ EMBL-EBI Services Research Training Industry About us Q.	EMBL-EBI 💮 Hinxton 🗸	
	EMBOSS Needle		
	Input form Web services Help & Documentation Bioinformatics Tools FAQ	🗢 Feedback	
	Tools > Pairwise Sequence Alignment > EMBOSS Needle		
	Service Announcement The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We'd love to hear y webpages!	your <u>feedback</u> about the new	
	Results for job emboss_needle-l20231113-113648-0200-10615023-p1m		
	# # Aligned sequences: 2 # 1: Wr01_CNICK # 2: Wr01_NOIS # Componenty: 10.0 # Extend penalty: 0.5 # Length: 236 # Length		

Figure 5: Results page of the submitted query with Alignment option

MYPT1_CHICK	1	Θ
MY010_MOUSE	1 MDSFFPEGARVWLRENGQHFPSTVNSCAEGVVVFQTDYGQVFTYKQSTIT	50
MYPT1_CHICK	1	0
MY010_MOUSE	51 NQKVTAMHPLHEEGVDDMASLAELHGGSIMYNLFQRYKRNQIYTYIGSII	100
MYPT1_CHICK	1	Θ
MY010_MOUSE	101 ASVNPYQPIAGLYERATMEEYSRCHLGELPPHIFAIANECYRCLWKRHDN	150
MYPT1_CHICK	1	Θ
MY010_MOUSE	151 QCVLISGESGAGKTESTKLILKFLSVISQQTLDLGLQEKTSSVEQAILQS	200
MYPT1_CHICK	1	Θ
MY010_MOUSE	201 SPIMEAFGNAKTVYNNNSSRFGKFVQLNICQQGNIQGGRIVDYLLEKNRV	250
MYPT1_CHICK	1МКМ	3
MY010_MOUSE	251 VRQNPGERNYHIFYALLAGLDQGEREEFYLSLPENYHYLNQSGCTEDKTI	300
MYPT1_CHICK	4 ADAKQKRNEQLKRWIGSETDLEPPVVKRKKTKVKFDDGAVFLAACSSGDT	53
MY010_MOUSE	: . .::. .: :: : 301 SDQESFRQVITAMEVMQFSKEEVR	324
MYPT1_CHICK	54 EEVLRLLERGADINYANVDGLTALHQACIDDNVDMV	89
MY010_MOUSE	IIIIII:III:IIIIIIIIII 325 -EVLRLLAGILHLGNIEFITAGGAQIPFKTALGRSADLLGLDPTQLTD	371
MYPT1_CHICK	90KFLVENGANINQPDNEGWIPLHAAASC	116
MY010_MOUSE	:.:: :: . 372 ALTQRSMILRGEEILTPLSVQQAVDSRDSLAMALYARCFEWVIKKINSRI	421
MYPT1_CHICK	117GYLDIAEYLISQGAHVGAVNSEGDTPLDIAEEEAMEELLQN	157
MY010_MOUSE	. .: ::. .: . 422 KGKDDFKSIGILDIFGFENFEVNHFEQFNINYANEKLQE	460
MYPT1_CHICK	158 EVNRQGVDIEAARKEEERIMLRDARQWLNSGHINDVRHAKSGGTAL	203
MY010 MOUSE	: . . 461 YFNKHIFSLEQLEYSREGLVWEDI-DWIDNGECLDLIEKKLGLLALINEE	509
MYPT1_CHICK	204 -HVAAAKGYTEVLKLLIQARYDVNIKDYDGWTPLHAAAHWGKEEACRILV	252
MY010_MOUSE	 510 SHFPQATDSTLLEKLHSQ	541
MYPT1_CHICK	253 ENLCDMEAVNKVGQTAFDVADEDILGYLEELQKKQNLLHSEKREK	297
MY010 MOUSE	. :. : . . :.: : 542 NNFGVKHYAGEVQYDVRGILEKNRDTFRDDLLNLLRESRFDF	583
MYPT1 CHICK	298 KSPLIESTANLDNNQTQKTFKNK	320
MY010 MOUSE	.:.:::::::::::::::::::::::::::::::	633
		242

Figure 5a: Results page of the submitted query with Alignment option

Input form Web ser	vices Help & Documentation	Bioinformatics Tools FAQ		
Results for job	emboss_needle-I202	31113-093824-09	180-97302898-p1m	
Alignment Submissio	n Details		-	
Program	Launched Date	First Inp	ut Sequence	
needle	Mon, Nov 13, 2023	at 09:38:26 emboss	_needle-I20231113-093824-0980-97302898-p1m.inputA	
Version	End Date	Second	Input Sequence	
6.6.0	Mon, Nov 13, 2023	at 09:38:31 emboss	_needle-I20231113-093824-0980-97302898-p1m.inputB	
		Output F	Result	
		emboss	needle-l20231113-093824-0980-97302898-p1m.output	

Figure 6: View of submission details

By exploring global pairwise sequence alignment using the EMBOSS Needle tool, the results were observed and studied for the protein query 'Myosin' in organisms *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6). It was found that in the pairwise alignment of the two organisms, they were not identical upon comparison, as the sequence identity is only 8.9%.

Length	2346
Identity	209/2346 (8.9%)
Similarity	359/2346 (15.3%)
Gaps	1626/2346 (69.3%)
Score	154.5

CONCLUSION:

EMBOSS Needle tool, for Global Pairwise Sequence Alignment, was explored by comparative study of protein 'Myosin' of two different organisms, namely, *Gallus gallus* (UniProt ID: Q90623) and *Mus musculus* (UniProt ID: F8VQB6).

- 1. Needleman, S. B. and Wunsch, C. D. (1970) *J. Mol. Biol.* 48, 443-453. https://www.bioinformatics.nl/cgi-bin/emboss/help/needle
- Robert S. Adelstein, James R. Sellers, in *Biochemistry of Smooth Muscle Contraction*, 1996. <u>https://doi.org/10.1016/B978-0-12-801387-8.00003-X</u>

DATE: 01/11/23

WEBLEM 6(F)

EMBOSS WATER – LOCAL PAIRWISE SEQUENCE ALIGNMENT

(URL: https://www.ebi.ac.uk/Tools/psa/emboss_water/)

AIM:

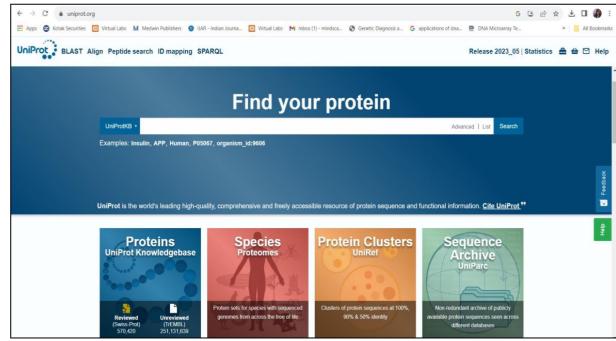
To explore and compare the protein sequences of 'collagen' in two organisms, *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572), by performing local pairwise sequence alignment using the EMBOSS Water tool.

INTRODUCTION:

The European Molecular Biology Open Software Suite, or EMBOSS, is a part of the European Bioinformatics Institute (EBI). One of the prominent tools of EMBOSS is EMBOSS Water, which is based on the Smith-Waterman algorithm. Smith-Waterman algorithm was developed by Temple F. Smith and Michael S. Waterman in 1981 and is used for local sequence alignment, which finds the best subsequence match between two sequences by comparing all possible pairs of subsequences. The unique aspect of the EMBOSS Water tool is that it uses a speed-accelerated version of the Smith-Waterman method to determine the local alignment of a sequence with one or more other sequences. By examining every potential alignment and choosing the best one, dynamic programming techniques guarantee the best possible local alignment. To do this, a scoring matrix with values for each potential residue or nucleotide match is incorporated.

The EMBOSS Water tool employs a modified Smith-Waterman algorithm with speed enhancements to compute the local alignment of one or more sequences. Users have the flexibility to specify the gap insertion penalty, gap extension penalty, and substitution matrix for calculating alignments. The output is a standard EMBOSS alignment file. Identity refers to the percentage of identical matches between two sequences over the entire reported aligned region, inclusive of any length gaps. Similarly, similarity represents the percentage of matches between the two sequences over the length of the reported aligned region, considering any gaps.

Collagen:


The most prevalent protein in the body, collagen, is found in various connective tissues such as the skin, tendons, bones, and ligaments. Its inherent stiffness and resistance to stretching contribute significantly to providing structural support within the extracellular space of connective tissues. Understanding collagen's structure, function, and its implications in various diseases and conditions, including autoimmune disorders like rheumatoid arthritis, lupus, dermatomyositis, and scleroderma, is crucial. These conditions can adversely affect collagen, highlighting the importance of in-depth research.

The EMBOSS Water tool serves as a valuable resource in this pursuit. It is a pairwise sequence alignment program designed to determine the local alignment of one or more sequences. The tool utilizes a modified version of the Smith-Waterman technique, offering faster results for

researchers. By employing the EMBOSS Water tool to analyze collagen, researchers can gain deeper insights into its molecular makeup and its role in health and disease.

METHODOLOGY:

- 1. Open the UniProt database and search for the query of 'Collagen'.
- 2. From the results page, open the proteins of interest. Here, *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572).
- 3. Download the collagen protein sequences of both the organisms in FASTA canonical file format.
- 4. Open the homepage of EMBOSS Water tool and paste the sequences in the query box and set the desired parameters. Select the 'SUBMIT' to submit the query.
- 5. The results page of EMBOSS Water tool displays the Alignment, Submission Details and View Alignment File. Interpret the results.

OBSERVATIONS:

Figure 1: Homepage of the UniProt database

🗄 Apps 🕝 Kotak Securities 🔝 Virtu	ial Labs 🚺	Medwin Pul	blisher	s 🧿 IJAR - Indian Journ	a 🔀 Virtual Labs M Inbox (1) - mindsca		cations of dna 🔮 DNA Microarray Te	» 📔 All Books
UniProt BLAST Align F	eptide s	earch ID	map	ping SPARQL	IniProtKB • collagen		Advanced List Search	🖴 🕁 🖸 He
Status	BLA	ST Align	Map	p IDs 🛓 Download	⇔ Add View: Cards ○ Table ●	🖉 Customize columns 👒 Sh	are • 2 rows selected out of 100	
Reviewed (Swiss-Prot)	-	Entry 🔺		Entry Name	Protein Names 🔺	Gene Names 🔺	Organism 🔺	Length 🔺
(2,837)		P12109		CO6A1_HUMAN	Collagen alpha-1(VI) chain	COL6A1	Homo sapiens (Human)	1,028 AA
Unreviewed (TrEMBL) (282,263)	0	Q03692	8	COAA1_HUMAN	Collagen alpha-1(X) chain	COL10A1	Homo sapiens (Human)	680 AA
		P02465		CO1A2_BOVIN	Collagen alpha-2(I) chain[]	COL1A2	Bos taurus (Bovine)	1,364 AA
Popular organisms Human (1,256)	0	P28481	a	CO2A1_MOUSE	Collagen alpha-1(II) chain[]	Col2a1	Mus musculus (Mouse)	1,487 AA
Mouse (1,121)		P05539	a	CO2A1_RAT	Collagen alpha-1(II) chain[]	Col2a1	Rattus norvegicus (Rat)	1,419 AA
Rat (1,043)		P08572	a	CO4A2_HUMAN	Collagen alpha-2(IV) chain[]	COL4A2	Homo sapiens (Human)	1,712 AA
Zebrafish (652)	0	Q5TAT6	3	CODA1_HUMAN	Collagen alpha-1(XIII) chain[]	COL13A1	Homo sapiens (Human)	717 AA
Bovine (611)	0	Q8IZC6	а	CORA1_HUMAN	Collagen alpha-1(XXVII) chain	COL27A1, KIAA1870	Homo sapiens (Human)	1,860 AA
Taxonomy		P02462	8	CO4A1_HUMAN	Collagen alpha-1(IV) chain[]	COL4A1	Homo sapiens (Human)	1,669 AA
Filter by taxonomy	0	P12107	a	COBA1_HUMAN	Collagen alpha-1(XI) chain	COL11A1, COLL6	Homo sapiens (Human)	1,806 AA
Group by	0	Q99715	a	COCA1_HUMAN	Collagen alpha-1(XII) chain	COL12A1, COL12A1L	Homo sapiens (Human)	3,063 AA
Taxonomy	0	Q9P218	8	COKA1_HUMAN	Collagen alpha-1(XX) chain	COL20A1, KIAA1510	Homo sapiens (Human)	1,284 AA
Keywords	0	Q07092		COGA1 HUMAN	Collagen alpha-1(XVI) chain	COL16A1, FP1572	Homo sapiens (Human)	1,604 AA
Gene Ontology				1000 C	2		•	

Figure 2: Results page of the UniProt Database for the query of collagen with selected entries

- > C I	ebi.ac.uk/Tools/psa/emboss_water/	<mark>6 년 ☆ 초</mark> 🛛
Apps 🐼 Kot	ak Securities 🔯 Virtual Labs 📕 Medwin Publishers 🥝 IJAR - Indian Journa 🔯 Virtual Labs 🎽 Inbox (1) - mindsca 🗞 Genetic Diagnosis a	G applications of dna 🔮 DNA Microarray Te » 🥛 All Br
		EMBL-EBI 💭 Hinxton +
	EMBOSS Water	
	Input form Web services Help & Documentation Bioinformatics Tools FAQ	🗣 Feedback
	Tools > Pairwise Sequence Alignment > EMBOSS Water	
	Service Announcement The new Job Dispatcher Services beta website is now available at https://www.dev.ebi.ac.uk/Tools/jdispatcher. We'd i webpages!	ove to hear your <u>feedback</u> about the new
	Pairwise Sequence Alignment	
	Pairwise Sequence Alignment EMBOSS Water uses the Smith-Waterman algorithm (modified for speed enhancements) to calculate the local alignme	nt of two sequences.
	· · · · · · · · · · · · · · · · · · ·	nt of two sequences.
	EMBOSS Water uses the Smith-Waterman algorithm (modified for speed enhancements) to calculate the local alignme	nt of two sequences.

Figure 3: Homepage of EMBOSS Water Tool

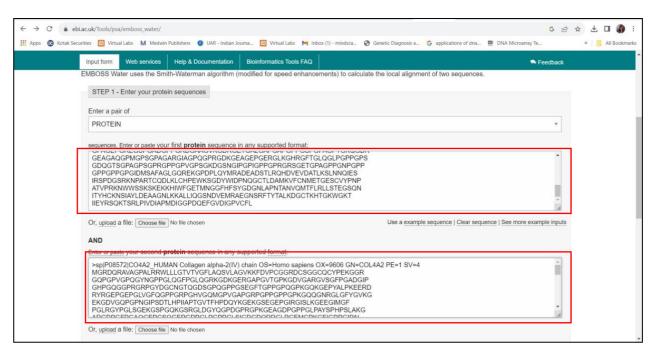


Figure 4: Submission of the protein sequences retrieved from the UniProt Database in the EMBOSS Water Tool

Input form Web services	Help & Documentation	Bioinformatics Tools FAQ		🗣 F	eedback
PGLRGYPGLSGEKGSF	GQKGSRGLDGYQGPDG	KGEKGSEGEPGIRGISLKGEEGIMGF PRGPKGEAGDPGPPGLPAYSPHPSL			•
Or, upload a file: Choose file	e No file chosen				
STEP 2 - Set your pairwi	ise alignment options				
OUTPUT FORMAT					
pair					
STEP 3 - Submit your jol	b	change the default settings.) notified by email when the results are a	vailable)		
			analysis tools services from		

Figure 5: Submission of the query to the EMBOSS Water Tool

Input form Web services Help & Documentation	Bioinformatics Tools FAQ	🗣 Feedback
Results for job emboss water-1202	31114-053621-0214-83062705-p1m	
Alignment Submission Details		
View Alignment File		
<pre># Program: suter # Commadize: twe 14 Nov 2023 05:36:24 # Commadize: suter </pre>	-plm.asequence -plm.bsequence	
<pre># # Aligned_sequences: 2 # Aligned_sequences: 2 # 1: COAL_PAT # 2: COAL_PAT # 2: COAL_PANN # Vartix: EUGSM04 # Gap_monlty: 10.0 # Extend_penalty: 0.5</pre>		
H Langth: 1483 # Identity: 587/1483 (39.5%) # Similarity: 681/1483 (45.5%) # Gaps: 681/1483 (24.0%) # Score: 2455.0 #		

Figure 6: Results page of the submitted query with Alignment option

20	and f				
Inpi	out form	Web services	Help & Documentation	Bioinformatics Tools FAQ	Peedback
C02A1	1_RAT		LQCQGQDARKLG		
C04A2	2_HUMAN	:. 17 LLLGTVTVGFLAQS	:. . : .: VLAGVKKFDVPCGGRDCSGGCQCYPI	EKGGRGQPGP- 65	
C02A1	1_RAT		PAGEQGPRGDRGDKGERGAP		
C04A2	2_HUMAN	: : . 66VGPQGYNGPPG		. (GDVGARGV5G 112	
C02A1	1_RAT	85 EPGTPGNPGPPGPP	GPPGPPGLGGGNFAAQMAGGFDEKA	GGAQMGVMQGP 134	
C04A2	2_HUMAN	113 FPGADGIPGHPGQG	. . . [GPRGRPGYDGCN-GTQGDSGPQGPPI	SSEGFTGPPGP 161	
C02A1	I_RAT		GPAGAPGPQGFQGNPGEI		
C04A2	2_HUMAN	. . .: . 162 QGPKGQKGEPYALP	.		
CO2A1	L_RAT	172GPRGPPGPA	GK PGDDGEAGKPGK		
C04A2	2_HUMAN	. . 212 APGRPGPPGPPGPK	: . :. : . GQQGNRGLGFYGVKGEKGDVGQPGPI	GIPSDTLHPI 261	
C02A1	L_RAT		GERGLPGPQGARGFI		
C04A2	2_HUMAN		: . .: GEKGSEGEPGIRGISLKGEEGIMGF	PGLRGYPGLSG 311	
CO2A1	L_RAT			GA 230	
C04A2	2_HUMAN	.: . 312 EKGSPGQKGSRGLD	GYQGPDGPRGPKGEAGDPGPPGLPA	/SPHPSLAKGA 361	
CO2A1	L_RAT		SPGENGSPGPMGPR		
C04A2	2_HUMAN	: :. . .: . 362 RGDPGFPGAQGEPG	. . . SQGEPGDPGLPGPPGLSIGDGDQRR	. GLPGEMGPKGF 411	
CO2A1	1_RAT		GNDGQPGPAGPPGPVGPAGGPGFL-		
C04A2	2_HUMAN		GPDGKRGPPGPPGLPGPPGPDGFLF		
CO2A1	L_RAT		AQGSRGEPGNPGSPGI		
C04A2	2_HUMAN	: 462 PGLPGSPGARGPKG	.: WKGDAGECRCTEGDEAIKGLPGLPG	. .: .: PKGFAGIN 508	
CO2A1	1_RAT		AGAPGFPGPRGPPGPQGATGPLGPK		
C04A2	2_HUMAN	509 GEPGRKGDRGDPGQ		GDSRTITTKGE 558	
C02A1	L_RAT	385 -GQTGEPGIAGFKG	EQGPKGETGPAGPQGAPGPAGE E	GKRGARGEPGG 431	
00402	HIMAN	559 RCOPCVPCVPCVPC	:		

Figure 6a: Results page of the submitted query with Alignment option

Alignment Submission	n Details		
Program	Launched Date	First Input Sequence	
water Version	Tue, Nov 14, 2023 at 05:36:22 End Date	emboss_water-I20231114-053621-0214-83062705-p1m.inputA Second Input Sequence	
6.6.0	Tue, Nov 14, 2023 at 05:36:24	emboss_water-I20231114-053621-0214-83062705-p1m.inputB Output Result	

By exploring local pairwise sequence alignment using EMBOSS Water Tool, the results were observed and studied for query for protein query 'collagen' for organism *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572) and it was observed that the local pairwise sequence alignments of the two organisms were found to be identical upon comparison, as the sequence identity is 39.6%.

Length	1483
Identity	587/14683 (39.6%)
Similarity	681/1483 (45.9%)
Gaps	356/1483 (69.3%)
Score	2455.0

CONCLUSION:

EMBOSS Water tool, for Local Pairwise Sequence Alignment, was explored by comparative study of protein collagen of two different organisms, namely, *Rattus norvegicus* (UniProt ID: P05539) and *Homo sapiens* (UniProt ID: P08572).

- 1. Smith TF, Waterman MS (1981) *J. Mol. Biol* 147(1). https://emboss.sourceforge.net/apps/release/6.6/emboss/apps/water.html
- 2. H. Jawad, R.A. Brown, in *Comprehensive Biotechnology*, 2011. <u>https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/collagen</u>