ra-XOr's picture
Upload DQN LunarLander-v2 trained agent
c0609cc
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
"__module__": "stable_baselines3.dqn.policies",
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function DQNPolicy.__init__ at 0x000001FDA70E4828>",
"_build": "<function DQNPolicy._build at 0x000001FDA70E48B8>",
"make_q_net": "<function DQNPolicy.make_q_net at 0x000001FDA70E4948>",
"forward": "<function DQNPolicy.forward at 0x000001FDA70E49D8>",
"_predict": "<function DQNPolicy._predict at 0x000001FDA70E4A68>",
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001FDA70E4AF8>",
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001FDA70E4B88>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x000001FDA70CAE40>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAY3J/7s9nOwE7+Bs6Xk8TG9hh/VkouM4q1p4g4tOB6IPFvoodchur3kt4bO5syVzj21TqoIJ5ycNRSOO37BwL6TMBv4opisVp6IxNykdFtEmICKFf0CrJGtDGOKJLhH8ml/VLSdUO8WJ+CFNVpZOw0OUFAmOHqcnVH7fNzNCxP7mjrdvXvXzPs04S5nSFZkz8gVkFBKwsNZvNdjIDYBTiepKw+vRoHJ8T/lEfGrCKOyYhx96cYDAbJTG6fczB+bgAd32tHr0YMrOsrmNza+9Aob7e/bxqoiIxx5JywNNXDbGGYfY2EMwrsx3aS6VGBwGN1s29CzHZmlit9QBbLbcXxy+VQGoQmHDeN/X7G8yAtFBAgvMasYlCoZ8B6CENElyGn1erX/qkpcCJaHaSnnIhW90q737ozI/Ux8Oc1kvXtF4P8nz1TLntGUGj1BE3Ust8PU1+N+TZeVJvb8oi2wgcLL2+PuKU9kY0Or/TpZorcTsodWOxyzTZ1o8N1zM67/T34zRA5OaknFSPXu53Gjv/xHN2pZ7iCLaLvPInGigmB31dWCcpoJzeRN6vsEmLghwtguFafZuT9BSsi2NnwcDxDF9VBxP2IZmMxoM6fPcPE9CPH2CQg3BdoUsWG0mPnRbSt+zIE6EqwPReD7bRj2XMjrzFuVJxed8B3AvYTfgjT+KgNxfNldtrIiMnSqF3VN+jpRSUmFam7BODyyFdfdKNfVmH9KEdE563bgQxxo4eqo1vdCtf/SLr/tjQoa2X3pZrxmHn9cGTZOFDMdAu26qH+MsIxfV5XvYGUlgGu8w4mEpCqvAjgwEIs0yltXkkPjLL2IawKIjXUc/Fwv47iovVLMedg5yyMaWQ2kI4o3MyydTy++fRzpkWEhCTPBm43OtIR7e3S3iaINboNzcPx5Mr1JXdaEZTrZLuKGfDcmfKxLaBnkcznH7XNJ/UMjr1Jp/oEF1Z8rdy6RSUb5tQsw3JQ/rKr1k3V5nx53Z3ZzQLd8ATjC+2hrU+q+t+vA9m465tznSjXokpuIAPWeW4kWTjxrpTjmokS1zWiF4inzp4pl2TxZJ84HpN3sIXhxcRn326KXGtLuTbBpWpbYvpBCCoGoGLGAHoOnLQ7Sh4YkEGSTfHsFvVMIRfederBSnHHYBilFxhMtV3sraM3uAY86Cq13M+to1n3KcrJ99M2s79BZaI4lXun/RaAGLcnBsdO+9H2CT/lTtzD3zwh2LZ9d7GgfoVUcOP0KiCq+1YPM0sAu1QM4CdPTPiyKlm+fSWexWmlqXx3oBlxOpKKYF7KWtSjIYyfcdFHjXudU8KxtpR3T+bPt5w4vg+eYnF2ASI1gcR8ydOVdwdC/vJebYgQnOWAX4ilS7HVNdcXeMHc9HeKQzAbP8yrhCubH8qef60eE1Jcqak9oc8GOnPdY6TBl4UrL84Xk234d40bm7+LcL6IkWgiMV8ppwQdIsTF3rc66wpGCjSHBpDYlYIeLlu51izLcaw3BibSGzzQaPXOZWY3Xmb6a7AOkzV7Xm1LSVEVwIR6mLgK1Rc13FzNhc2t9EN1Zxf6eosm/6b79pORy72PrWW50PErWmw/3r+6kEx8WoX/ugPsgiqbL305IsIOM9biKqEZQRGK5lM8+MdHnu6UntOjdliQWtcf96CE5GjDhmsNczeTb7cphY8zOEf7kb7RTKe7g975qVzlpPaiZtNq53m0J3S5XyrsB/J4ochYqdxm/lu85pbsbqm8hriM2IcTIF2w/hvxJQvEaHMXj3cvEJSJTfR8OcD/cf6+1T16Uc+QYmQ2Rp5/fxPvbTaHbRHLouAv+CZ9ioCEC97hjdtCNuXrlV9ypORkZnoZ0m8ItgU+OoWNzZHvJ4TrT0Lg9ruWTRuq6kYDwLonQY1gGoNnHQKmXZQPe5mB2jiDXHL/MP2tDV926vZY9gw+zHfFbkpl6xzuZZVQFkkMB5HhusDTX3BOUhGBUcQvctsrIiXuE6FIU7wC4Z+KOoYrkSfm1GWUOoblGaCcgUKjUCZIHoxG5zQg7lh0nAPUEM/ph43gEEMBuRQZqFREjPP+bRnRgXxcRIHmNHoWWW+fQk3pKJoBlnROe7PlnB8DEX+ZbvSC58j8xTlq4Fflfc2YZbl1dZW1Lfq+L1FMlQAi6yMggEOZvC2DIR+vu5di4+dhQYkDZaOHgoa8FCiqFkwKZRE1LgXH+095+O+y/JaFDnztqpZ25o9zoncPVA3M1SQj6PYPVBrbTLryCfe+reBYk2qThdDE4jr0hXOQdtYIEgVtSxMELQk+44ibtusqXcAhJVsJijeln5hxOFBUcgNp4d9QKbNImNF2XDqOIMva50O32KQTelxkAIADr9A2PGEn3wrQIpyVvT8jaU5f0mqbCWI0U/u0XyCOk5tVIkORrhwpKUlaVzcJ3b9S5gRPsQO4gDyVfiGeTVSC+hnBIz0EVL8lObd6ZTMedTn3RRyRWzf+1VaOBFE2FrYc0LdRiQLcFSYqSSf+PGIwrAlkXjgcUSzEElUHcz/cLmt+qtAB+GJhKLyqYbfknN0ITUXp9maqpHCl/0CLb/sy4b3QHxYKJIuUQkyYVjaEjx2YzqzDzyzrEVdNktJx1wj1X+aS0MuJwq+lBzysLRJRlj/orfkqDMOqXEUsytZKSLqNgk2Mef/1LrTiK0ARNEKLIlICoxjaOtnIjjcvx2bmRIDR7MQRcC6/sEiFS81sLJK39uPHsUxPofyToYedE3MyPHneH+KFvDaa5/CKlpRmzLhU9ewLjFBwO/z7oLllteIKdbIxtk6ZOACxr+pHWOSYam4holFLeq/9y3RQtpGLHdAIFcuOuKhcRwNszTc/0QZEHjmKH4P4sSnIDLv4vZnOrGZ+q88JVQ+29V/kKXIpcVNJvKv3FVc4T1JYFWvySAEsH5WzhCJbK2W2K0hxnmi0L+6wR8IWSSC9oZ2EFvYI0yTKt1CY33/t1PNNMmyNORfM7t+vWb/jWVsjov6e+U44uvxOcPKfJ+InLPKG6uDIL1AfNQOB2Da4NViP12/ZbMDHhx1vbykZUxbKN4maf5mPO4B50a1RFbg3YQn1+jy0xhRvkA1lLAlK8mNytjoOuoQAaQxPDO3qFlydRsUXeEjPGBSUTI7qu0gEjvD/WmDwzm+Ip8jOgwTYhNSGn8tLsu95BbL5U4lMMaIRPFfjz0rW6rZuX8uqymJVADwO6MNYR9xYo4Ow+gE5/v/vMzG5zq+brUOJ48I+/Mmx7MgknnB/8jX5Dd5XEPt7Y8uTI81G3WSWhtbqBGmCbQy/KLObXcIIxEWLdPaKlFbWctLtmt07dliWW1K+hYdHdJFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNUAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 16,
"num_timesteps": 500032,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652254421.9657829,
"learning_rate": 0.0001,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVkgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxkQzpcVXNlcnNccmFfWE9yXGFuYWNvbmRhM1xlbnZzXEh1Z2dpbmdGYWNlRGVlcFJMXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbcJT75RCg/bqsyPQuSk72mygs9PsqIvQAAAAAAAAAAmkX8u/+wrT/7Wdi8mwnbvdlkH73xsrG9AAAAAAAAAAAtib8+4wZ9P8U69rz+wou9VlKsvbxvsbwAAAAAAAAAAHBitT5s+Zg8vICDPEOgA74Feho99h1DvQAAAAAAAAAAk8ZRPs19gz+kQ5c9usclvfL8xjmluc68AAAAAAAAAAAaV7A9roOTuhsJj7tAeHg2t4TwOvhBoDoAAAAAAACAP3M8az75LKo/YE3lPSEZRr1P/Ay9XEkIPQAAAAAAAAAAM3O0ObGQtT/6wg49h/yrPhOTzbmtWQG8AAAAAAAAAAAAKN4+LV8oP3a8jj1Rg9q9JhSSPQqCnbwAAAAAAAAAAPP1jz0kshM/zY+sPWcOw70otDs8SvKzPQAAAAAAAAAAGh+6PY8+O7rhFaa9ez1GtgOvjTrSGbM1AAAAAAAAgD/w7sI+ysAuP9uGUD3MAzK9hb63PHIPz7wAAAAAAAAAAD1lsD6imXQ+Ypm8uytAsL0f+bg8MEL3PAAAAAAAAAAAOnZNPiy4/D7eQJc7OmY2vR45IzrKVCe9AAAAAAAAAADAmp4+UupAP2Cj5j0DGa29SK8PPVbrdT0AAAAAAAAAAN0Z2j4AmjA/JrmIveck273STnS8TkDAuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZzJT5Vryg/XqsyPRTpOb15eBk9QsqIvQAAAAAAAAAAZi7yu8X/rT83qIG82rWlvSegDb1IiQS+AAAAAAAAAAADsr8+bGt9P7469rzeSyq9ixqqvbZvsbwAAAAAAAAAAJBQtT6srbA8rICDPEGj0L2GOyQ9Ah5DvQAAAAAAAAAATQhRPqSbgz/WXqk9/dN0vXUg1zoeRIm8AAAAAAAAAACAbbA9FIaTuksqNTuO/RC250XoOq/cArUAAAAAAACAP40Saj6pUKo//ontPSpvnr3LzBO9DS4kPQAAAAAAAAAAZgPLPuvM6D00taG9NPwSvocJFD87xLQ+AACAPwAAgD/qzd0+k/woP3W8jj1D5qO9LQyUPQaCnbwAAAAAAAAAANokjj2LPhQ/w1XDPdsNjL1Mc+c7j20xPQAAAAAAAAAATci7PcM5O7rs7sS9JTfuNpGsjTqi8Vm2AAAAAAAAgD/mrcI+6gAvP+hjGj3JO5K94hjCPAXII70AAAAAAAAAAMpqsD4alXY+ASkWO4VZc70xnKw8QnkFuwAAAAAAAAAAjW9NPoI7/T7Vqm48js1lvcWrLjuyWAC9AAAAAAAAAAAmA54+2WZBP2rl9j15mGy9hWMDPf5R5zwAAAAAAAAAAMBx2j7GNzE/aFNivWR0pL1egG+82rlUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 1364,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -6.4000000000064e-05,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwd5PZjETsCUhpRSlIwBbJRN6AOMAXSUR0CAF8whW5pbdX2UKGgGaAloD0MI+b1Nf/bjSMCUhpRSlGgVTegDaBZHQIAo0JhOP/91fZQoaAZoCWgPQwhPWU3XE0NSwJSGlFKUaBVN6ANoFkdAgCvKAavRq3V9lChoBmgJaA9DCCqpE9BEbkvAlIaUUpRoFU3oA2gWR0CALudIXj2jdX2UKGgGaAloD0MItFvLZDgYU8CUhpRSlGgVTegDaBZHQIA86DdxhlV1fZQoaAZoCWgPQwi5xfzc0FhKwJSGlFKUaBVN6ANoFkdAgEyhBAv+O3V9lChoBmgJaA9DCMjuAiUFhj1AlIaUUpRoFU3oA2gWR0CATSxPfsNUdX2UKGgGaAloD0MIpgwc0NKLVMCUhpRSlGgVTegDaBZHQIBTksSTQmh1fZQoaAZoCWgPQwj0GVBvRr9GQJSGlFKUaBVN6ANoFkdAgFQ+1rqMWHV9lChoBmgJaA9DCC+jWG5pnUjAlIaUUpRoFU3oA2gWR0CAVa+PikwfdX2UKGgGaAloD0MI++jUlc9mS8CUhpRSlGgVTegDaBZHQIBaqmj0tiB1fZQoaAZoCWgPQwgx7Zv7q8e5v5SGlFKUaBVN6ANoFkdAgF5xSP2f03V9lChoBmgJaA9DCLKEtTF27FnAlIaUUpRoFU3oA2gWR0CAXuYLsruqdX2UKGgGaAloD0MIexaE8j7+RsCUhpRSlGgVTegDaBZHQIBsuRaHKwJ1fZQoaAZoCWgPQwiZu5aQD/o5wJSGlFKUaBVN6ANoFkdAgHW55iVjZ3V9lChoBmgJaA9DCCI4LuOmLkbAlIaUUpRoFU3oA2gWR0CAgVLEDQqqdX2UKGgGaAloD0MIdT48S5C+VMCUhpRSlGgVTegDaBZHQICLnUc4o7V1fZQoaAZoCWgPQwhmaDwRxEVLwJSGlFKUaBVN6ANoFkdAgJrIznA6+3V9lChoBmgJaA9DCFGFP8Obx1PAlIaUUpRoFU3oA2gWR0CAnZtAs053dX2UKGgGaAloD0MIiEZ3EDs9QsCUhpRSlGgVTegDaBZHQICgsfV7QcB1fZQoaAZoCWgPQwiyn8VSJLlKwJSGlFKUaBVNHANoFkdAgKtYdhiLEXV9lChoBmgJaA9DCAn+t5IdIzzAlIaUUpRoFU3oA2gWR0CArd26ClJpdX2UKGgGaAloD0MIYw0XuacRRMCUhpRSlGgVTegDaBZHQIC6wGpuMuR1fZQoaAZoCWgPQwheSfJc3wdCwJSGlFKUaBVLlWgWR0CAut8k2P1ddX2UKGgGaAloD0MIgV1NnrKKTMCUhpRSlGgVTegDaBZHQIC7Ir1/UfB1fZQoaAZoCWgPQwgHX5hMFdhEwJSGlFKUaBVN6ANoFkdAgL/noHLRr3V9lChoBmgJaA9DCDJYcaq1GEDAlIaUUpRoFU3oA2gWR0CAwQ6asp5NdX2UKGgGaAloD0MII2qiz0cxLsCUhpRSlGgVTegDaBZHQIDE5VhkRSR1fZQoaAZoCWgPQwivITgu43owwJSGlFKUaBVN6ANoFkdAgMgCMo+fRXV9lChoBmgJaA9DCKg1zTtOgRnAlIaUUpRoFU3oA2gWR0CAyGJ53TuwdX2UKGgGaAloD0MIVOOlm0S6Z8CUhpRSlGgVTd0DaBZHQIDSpJoTPB11fZQoaAZoCWgPQwi8d9SYEPJhwJSGlFKUaBVNaANoFkdAgNjDrRjSX3V9lChoBmgJaA9DCEypS8Yxkui/lIaUUpRoFUvRaBZHQIDZqya/h2p1fZQoaAZoCWgPQwjvVwG+2zz/v5SGlFKUaBVN6ANoFkdAgNrF1r6+FnV9lChoBmgJaA9DCFSp2QOtYD5AlIaUUpRoFUveaBZHQIDnFsUIsy11fZQoaAZoCWgPQwiBWgwepi9HwJSGlFKUaBVN6ANoFkdAgO4SdvsJIHV9lChoBmgJaA9DCK4Mqg1ODVdAlIaUUpRoFU13A2gWR0CA8g5lvqC6dX2UKGgGaAloD0MIuVLPglCQS8CUhpRSlGgVTegDaBZHQID70XgtOEd1fZQoaAZoCWgPQwigGcQHdnwgQJSGlFKUaBVN6ANoFkdAgQFY9X9zfnV9lChoBmgJaA9DCOzdH+9VSVjAlIaUUpRoFUvcaBZHQIEGiFwkxAV1fZQoaAZoCWgPQwiNfcnGA9llwJSGlFKUaBVNyANoFkdAgQqtdzGPxXV9lChoBmgJaA9DCDIiUWhZ9UpAlIaUUpRoFU3oA2gWR0CBHXcGkep5dX2UKGgGaAloD0MIPlsHB3tjKcCUhpRSlGgVTegDaBZHQIEdpiRW9151fZQoaAZoCWgPQwgj+UogJWRWQJSGlFKUaBVN6ANoFkdAgR3z+3pfQnV9lChoBmgJaA9DCO5brROXf0FAlIaUUpRoFU3oA2gWR0CBJBMOf/WEdX2UKGgGaAloD0MIzxWlhGA5RkCUhpRSlGgVTegDaBZHQIElnFxXGOx1fZQoaAZoCWgPQwjl795RY6ZBQJSGlFKUaBVN6ANoFkdAgSqHeBQN1HV9lChoBmgJaA9DCOXQItv5CEDAlIaUUpRoFU3oA2gWR0CBLm8dxQzldX2UKGgGaAloD0MIy/W2mQppL8CUhpRSlGgVTegDaBZHQIFGCISDh991fZQoaAZoCWgPQwhM/id/98I2QJSGlFKUaBVN6ANoFkdAgUcrZrYXf3V9lChoBmgJaA9DCH+/mC1Z9TrAlIaUUpRoFU3oA2gWR0CBSFfNzKcNdX2UKGgGaAloD0MIqWvtfaqxUcCUhpRSlGgVS+xoFkdAgUlFbNbC8HV9lChoBmgJaA9DCO0RaoZU8Q7AlIaUUpRoFU3oA2gWR0CBVj37k4m1dX2UKGgGaAloD0MIIenTKvqsXMCUhpRSlGgVTcsDaBZHQIFeSmqHXVd1fZQoaAZoCWgPQwh7hJohVYhEQJSGlFKUaBVN6ANoFkdAgW0V8Ti84HV9lChoBmgJaA9DCLqe6Lrwg8M/lIaUUpRoFU3oA2gWR0CBcz8rqdH2dX2UKGgGaAloD0MIkiVzLO8qIsCUhpRSlGgVTegDaBZHQIF458c+7lJ1fZQoaAZoCWgPQwhyqN+FrYk8QJSGlFKUaBVN6ANoFkdAgX1EMTewcHV9lChoBmgJaA9DCIv5uaEpZ0BAlIaUUpRoFU3oA2gWR0CBkagZjx0/dX2UKGgGaAloD0MIGT230JXAKUCUhpRSlGgVTegDaBZHQIGR21Bt1p11fZQoaAZoCWgPQwit+lxtxXJEwJSGlFKUaBVN6ANoFkdAgZItQCSzPnV9lChoBmgJaA9DCBTnqKPjqvg/lIaUUpRoFU3oA2gWR0CBmRMGorFwdX2UKGgGaAloD0MI/DiaIytFQUCUhpRSlGgVTegDaBZHQIGa5AbADaJ1fZQoaAZoCWgPQwgHexNDcrRuwJSGlFKUaBVLWWgWR0CBnI4axX4kdX2UKGgGaAloD0MIGoo73uTvPkCUhpRSlGgVTegDaBZHQIGf7IJZ4fR1fZQoaAZoCWgPQwhqbK8FPSlnwJSGlFKUaBVNpwNoFkdAgbOAZjx0+3V9lChoBmgJaA9DCMMuih74I1pAlIaUUpRoFU3oA2gWR0CBvHQXQ+lkdX2UKGgGaAloD0MIG9e/6zMmWMCUhpRSlGgVTUcCaBZHQIG+Cl1r6+F1fZQoaAZoCWgPQwhiLqnabjRQQJSGlFKUaBVN6ANoFkdAgb4Um+j/MnV9lChoBmgJaA9DCGQGKuPfqz9AlIaUUpRoFU3oA2gWR0CBvxKeTV2BdX2UKGgGaAloD0MIRn79EBvdYMCUhpRSlGgVS25oFkdAgcA1gH/tIHV9lChoBmgJaA9DCIY8ghspdzDAlIaUUpRoFU3oA2gWR0CBy4bwz+FUdX2UKGgGaAloD0MIrHE2HQELXECUhpRSlGgVTV4DaBZHQIHQnmV7hNx1fZQoaAZoCWgPQwhYVMTppDhnQJSGlFKUaBVN3gJoFkdAgdCsvIwM6XV9lChoBmgJaA9DCILn3sMlVyVAlIaUUpRoFU3oA2gWR0CB0jwvxpcpdX2UKGgGaAloD0MIHvzEAfSQWMCUhpRSlGgVS59oFkdAgd4lAeJYT3V9lChoBmgJaA9DCN+l1CXjeljAlIaUUpRoFU3iAmgWR0CB3pOfNA1OdX2UKGgGaAloD0MI5x2n6EjhYECUhpRSlGgVTegDaBZHQIHgxj6N2kl1fZQoaAZoCWgPQwihurn42xBBQJSGlFKUaBVN6ANoFkdAgfs8ifQKKHV9lChoBmgJaA9DCBuEud3LQFlAlIaUUpRoFU2YA2gWR0CCAGfZElVtdX2UKGgGaAloD0MIuK8D54xEMkCUhpRSlGgVTegDaBZHQIICfck+otN1fZQoaAZoCWgPQwho5sk1BWJEwJSGlFKUaBVN6ANoFkdAggQC/oJRfnV9lChoBmgJaA9DCDQQy2YO/0VAlIaUUpRoFU3oA2gWR0CCBcC/47A+dX2UKGgGaAloD0MI6l4n9eUrYMCUhpRSlGgVTewCaBZHQIILalgtvn91fZQoaAZoCWgPQwh/MPDce9pgQJSGlFKUaBVNKQNoFkdAghB4+KTB7HV9lChoBmgJaA9DCBfxnZj15WZAlIaUUpRoFU0+A2gWR0CCEUv24/eMdX2UKGgGaAloD0MIW5pbIazNUsCUhpRSlGgVS4NoFkdAghK8ry1/lXV9lChoBmgJaA9DCOxsyD8zuFNAlIaUUpRoFU3oA2gWR0CCIl4Fiay9dX2UKGgGaAloD0MInQ5kPbUWQ0CUhpRSlGgVTegDaBZHQIIkxhnanJl1fZQoaAZoCWgPQwhxkBDlC8VcwJSGlFKUaBVNzwJoFkdAgildTxXnyXV9lChoBmgJaA9DCMR7DixHCV3AlIaUUpRoFU3rAmgWR0CCLnGYrrgPdX2UKGgGaAloD0MItLCnHf46UECUhpRSlGgVTegDaBZHQIIvwYvWYnh1fZQoaAZoCWgPQwjhfVUuVH7wP5SGlFKUaBVN6ANoFkdAgjSW0JF9a3V9lChoBmgJaA9DCGR3gZICtzVAlIaUUpRoFU3oA2gWR0CCNjKOktVadX2UKGgGaAloD0MIW0OpvYivU0CUhpRSlGgVTWIDaBZHQII2sQwsXi11fZQoaAZoCWgPQwjZmNcRh+RbwJSGlFKUaBVNkAJoFkdAgjqOc+aBqnV9lChoBmgJaA9DCAnCFVAojGDAlIaUUpRoFU10AmgWR0CCPSACGN70dX2UKGgGaAloD0MIICQLmMCtXMCUhpRSlGgVTfECaBZHQIJGZN9H+ZR1fZQoaAZoCWgPQwjMQ6Z8CIJOwJSGlFKUaBVNnwJoFkdAglEGZuyeI3V9lChoBmgJaA9DCDmzXaEPUmHAlIaUUpRoFU3BAmgWR0CCUu3wTdtVdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 7033,
"buffer_size": 1000000,
"batch_size": 64,
"learning_starts": 50000,
"tau": 1.0,
"gamma": 0.999,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x000001FDA70B9678>",
"add": "<function ReplayBuffer.add at 0x000001FDA70B9708>",
"sample": "<function ReplayBuffer.sample at 0x000001FDA70B9798>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x000001FDA70B9828>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x000001FDA709BA50>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"actor": null,
"use_sde_at_warmup": false,
"exploration_initial_eps": 1.0,
"exploration_final_eps": 0.05,
"exploration_fraction": 0.1,
"target_update_interval": 625,
"_n_calls": 34380,
"max_grad_norm": 10,
"exploration_rate": 0.05,
"exploration_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVNgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGRDOlxVc2Vyc1xyYV9YT3JcYW5hY29uZGEzXGVudnNcSHVnZ2luZ0ZhY2VEZWVwUkxcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLbkMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHSlSlGgdKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgvdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDdHP7mZmZmZmZqFlFKUaDdHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
}
}