{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0a51278400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0a512784a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0a51278540>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0a512785e0>", "_build": "<function ActorCriticPolicy._build at 0x7a0a51278680>", "forward": "<function ActorCriticPolicy.forward at 0x7a0a51278720>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0a512787c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0a51278860>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0a51278900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0a512789a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0a51278a40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0a51278ae0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0a513d5dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739542152049462526, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqV7Duf/Vg/BRVzPbYkAb/a4lU93f5LvAAAAAAAAAAAABMnPUifhLqIKfEzC1P9LsUYprnizruzAACAPwAAgD/AkQq+0wVKP/Y/cr45Ayu/OeovvsKVVL0AAAAAAAAAACKNlb5Ng1Y/ltbtvnsBS79p9L6+Gh+gvQAAAAAAAAAAZuOyPKm1ILyeD069G0tsPfvtbz3Y7ve7AACAPwAAgD+DwLO+DqPKPqbQaj5QJ+O+7v6Tvq59Ij4AAAAAAAAAAADkADyuaae6E0mLPHCAKzlsqDg6SMUfOAAAgD8AAIA/QHUVvhaNZz8bE5C+VxE0v0K0Qb74e/27AAAAAAAAAACzBY69/XKlPyL5Cr/13xW/JFUUvQLuQL4AAAAAAAAAADOs1b3UCk4+qDpiPmf2kr5JWHK9Nip7PQAAAAAAAAAAEwo1PqQ0GT+Fvc69mrzuvuHK6T0zwuS9AAAAAAAAAADN0V49BOFfPlicOL1iIrW+uURqvKKIt7wAAAAAAAAAACBIlz4jLDY/52o6vneM+b4FGGI+egoavgAAAAAAAAAAIjOWvjqChb1YN06+SwMqPU0T6j4am6U+AACAPwAAgD9AKqG9XCsjurblGT2HDYW0iVGGOtZQgrMAAAAAAACAPwCxTT2u05S6ISGztVO7y7B50g+7hijwNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGMQJw84gmMAWyUS72MAXSUR0CjkpOVgQYldX2UKGgGR0Bxrv2f029+aAdL3mgIR0CjkqoAGSpzdX2UKGgGR0BxNyJLuhK2aAdLuWgIR0Cjkr+gL7XQdX2UKGgGR0BvcgR/ViF1aAdL1GgIR0CjkvTch1TzdX2UKGgGR0BxCfDFZPl/aAdL62gIR0CjkxelsP8RdX2UKGgGR0Bw6ZELH+6zaAdL42gIR0Cjk21JL/S6dX2UKGgGR0BznHmFJxvOaAdL0WgIR0Cjk/JI+W4WdX2UKGgGR0BlBNi4J/oaaAdN6ANoCEdAo5P5A8jiXXV9lChoBkdAcUYlwLmZE2gHS65oCEdAo5P9C9h7V3V9lChoBkdAcVooE0SAY2gHS/5oCEdAo5R0QwsXi3V9lChoBkdAcwL82aUiZGgHS9RoCEdAo5R0MmWt2nV9lChoBkdAUB6/tY0VJ2gHS8poCEdAo5SXCMxXXHV9lChoBkdAcR3y2x6fJ2gHS9doCEdAo5Sjej2zwHV9lChoBkdAbvirS3LFGWgHS8toCEdAo5TPXGwRoXV9lChoBkdAbwfNMXaakWgHS89oCEdAo5TyW3Sa3XV9lChoBkdAb4CJoCdSVGgHS85oCEdAo5UEkY4yXXV9lChoBkdAcrEuoP07KmgHTRABaAhHQKOVEoVEd/91fZQoaAZHQGeeRm9QGfRoB03oA2gIR0CjlWycbzbwdX2UKGgGR0ByxlsrNGExaAdLz2gIR0CjlXG/N7jUdX2UKGgGR0ByLJvtMPBjaAdL9GgIR0CjlYDqfOD8dX2UKGgGR0Bw9gY64lQeaAdL8GgIR0CjlaXSKFZgdX2UKGgGR0BybrizcAR1aAdLyWgIR0CjlawRoRI0dX2UKGgGR0A/CCAMDwH8aAdLfGgIR0Cjlb4y44IbdX2UKGgGR0Bx0AHzH0btaAdLuGgIR0Cjlemff4yodX2UKGgGR0Bu2Mxyn1nNaAdLymgIR0Cjlh1kUbkwdX2UKGgGR0BxNdQCSzPbaAdL0WgIR0CjlimALApKdX2UKGgGR0Bx1Ev6CUX6aAdLsGgIR0CjlmWAXl8xdX2UKGgGR0Bw9XOQhfShaAdL12gIR0CjlqCEQGwBdX2UKGgGR0BzNxthuwX7aAdLzmgIR0CjlqbWEsasdX2UKGgGR0Bwe75ylvZRaAdL02gIR0CjluiPp6hQdX2UKGgGR0Bwz20ojOcEaAdLzmgIR0Cjlvw6ZH/cdX2UKGgGR0By7tl+Vkc0aAdL0GgIR0CjoF2T5ftydX2UKGgGR0Bwuj1PFefJaAdLsmgIR0CjoHEfcN6PdX2UKGgGR0BxsXBzmwJPaAdL6mgIR0CjoKuiN83NdX2UKGgGR0Byvv8HfMwDaAdL9mgIR0CjoSq0MPSVdX2UKGgGR0BzvU+hXbM5aAdL9GgIR0CjoWIRAbADdX2UKGgGR0BypvWJ79hraAdL6mgIR0CjoWWv8qFzdX2UKGgGR0Bw5Vt4zJp4aAdL2GgIR0CjoWjIJZ4fdX2UKGgGR0ByJoPhAGB4aAdNFgFoCEdAo6GV1yNn5HV9lChoBkdAb2CGWUr08WgHS/RoCEdAo6H0078vVXV9lChoBkdAcrnz7/GVA2gHS/loCEdAo6H2xUvPC3V9lChoBkdAcT8cXm/34GgHS99oCEdAo6JRdnkDIXV9lChoBkdAciZS8J2MbWgHS9hoCEdAo6KggDA8CHV9lChoBkdAcUwKzRhMJ2gHS/1oCEdAo6Kjm0VrRHV9lChoBkdAclRIeHSF5GgHTRsBaAhHQKOit7NSqER1fZQoaAZHQHFuM/hVENRoB0vpaAhHQKOivGecx0x1fZQoaAZHQHPItSydFv1oB0vjaAhHQKOi1sGgSOB1fZQoaAZHQHJnWS2Yv39oB0vnaAhHQKOi9TefqX51fZQoaAZHQHRteRs/IKdoB0vlaAhHQKOjKZy+6Ah1fZQoaAZHQFHZQO4G2ThoB0ulaAhHQKOjXzmwJPZ1fZQoaAZHQG53j6FdszloB0u+aAhHQKOjc0elsP91fZQoaAZHQHKOwco6S1VoB0vcaAhHQKOjjQhOgxt1fZQoaAZHQHM6HmaH9FZoB0vNaAhHQKOjnNu+AVh1fZQoaAZHQHGcGx+rlvJoB0uxaAhHQKOj2rqdH2B1fZQoaAZHQHG2yncclw9oB0vraAhHQKOj5YQrc0t1fZQoaAZHQHBMC57PY4BoB0vNaAhHQKOkfRE4Nqh1fZQoaAZHQHIti2UjcEhoB0vyaAhHQKOkkObRWtF1fZQoaAZHQHDqdD2JzkpoB0uyaAhHQKOkkufVZs91fZQoaAZHQG+EoDgZTAFoB0vLaAhHQKOk3zmOlwd1fZQoaAZHQHIq6U3XI2hoB0vWaAhHQKOk5zg/C691fZQoaAZHQHJSYQvpQk5oB0vTaAhHQKOlE94eLeh1fZQoaAZHQHGo3fuTibVoB0u+aAhHQKOlQt/WlM11fZQoaAZHQHHg9Gus90RoB0u+aAhHQKOlmVuaWop1fZQoaAZHQHIVVRDTjNpoB0vmaAhHQKOma7Wd3B51fZQoaAZHQHKyTrmhdt5oB0vdaAhHQKOmjpr1uix1fZQoaAZHQFCGdadMCcRoB0uLaAhHQKOmj17IDHR1fZQoaAZHQG8lBGx2SuBoB0vLaAhHQKOmuLl3hXN1fZQoaAZHQG4tSHVPN3ZoB0vOaAhHQKOmt9MK1G91fZQoaAZHQHJvLoGIKtxoB00tAWgIR0CjptAMMI/rdX2UKGgGR0Bxe+F49ovjaAdNZwFoCEdAo6c5yhi9ZnV9lChoBkdAcJ4N3GGVRmgHS7hoCEdAo6df0se4kXV9lChoBkdAcLXmJ3xFzGgHS8xoCEdAo6eu0AtFrnV9lChoBkdAcTFXGff4y2gHS71oCEdAo6fcxh2GI3V9lChoBkdAcgmqu8scyWgHS89oCEdAo6g6FfzBh3V9lChoBkdAcuN4MWoFV2gHS7VoCEdAo6ik+s5n13V9lChoBkdAcep3QD3dsWgHS9toCEdAo6j4dhiLEXV9lChoBkdAcGrUgB91EGgHS/hoCEdAo6lIuRLbpXV9lChoBkdAcU7LqUu+RGgHS69oCEdAo6lnzJ6ppHV9lChoBkdAcsDkOI68x2gHTUwDaAhHQKOpfSn+AEt1fZQoaAZHQHI2P6sQumJoB0u5aAhHQKOptbRF7Up1fZQoaAZHQHC73dXT3IxoB0vDaAhHQKOptfwZwXJ1fZQoaAZHQHFMMOXmeUZoB0vVaAhHQKOqBbNbC791fZQoaAZHQHI5JxBE8aJoB0vwaAhHQKOqOuIyj591fZQoaAZHQHJ+cY2sJY1oB0vTaAhHQKOqXqOcUdt1fZQoaAZHQHGurD63y7RoB0vRaAhHQKOqdkf9xZN1fZQoaAZHQHL21tO2y9poB0vLaAhHQKOqpDQ7cO91fZQoaAZHQHKE0fxMFlloB0vCaAhHQKOqq2ycCo11fZQoaAZHQG80WszVMEloB0vIaAhHQKOrORPoFFF1fZQoaAZHQHIryjUNKAdoB0u/aAhHQKOrUkE9t/F1fZQoaAZHQHFv1NUOuq5oB0vpaAhHQKOrWMMI/qx1fZQoaAZHQHLvh/y5I6NoB0u3aAhHQKOr1CBPKuB1fZQoaAZHQHJgsCDEm6ZoB0viaAhHQKOr8ggX/HZ1fZQoaAZHQHLjxBNVR1poB0vaaAhHQKOsBhGYrrh1fZQoaAZHQHLfzsMRYihoB02CAWgIR0CjrCHpr1ujdX2UKGgGR0BzbQAq/dqMaAdL7GgIR0CjrCqsU7CBdX2UKGgGR0Bw8FvFWGRFaAdL4GgIR0CjrFWP91lodX2UKGgGR0BwAh0q6OHWaAdLw2gIR0CjrLkl3QlbdX2UKGgGR0BwGWVnmJWOaAdL4mgIR0CjrMA/1QIldX2UKGgGR0BwsXSjQAuJaAdLwGgIR0CjrNbtiQT3dX2UKGgGR0BvGSya/h2oaAdLzWgIR0CjrUC2+fyxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |