Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,130 @@
|
|
| 1 |
---
|
| 2 |
pipeline_tag: image-segmentation
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
pipeline_tag: image-segmentation
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
<!---
|
| 6 |
+
Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 7 |
+
|
| 8 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 9 |
+
you may not use this file except in compliance with the License.
|
| 10 |
+
You may obtain a copy of the License at
|
| 11 |
+
|
| 12 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 13 |
+
|
| 14 |
+
Unless required by applicable law or agreed to in writing, software
|
| 15 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 16 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 17 |
+
See the License for the specific language governing permissions and
|
| 18 |
+
limitations under the License.
|
| 19 |
+
-->
|
| 20 |
+
|
| 21 |
+
# Instance Segmentation Example
|
| 22 |
+
|
| 23 |
+
Content:
|
| 24 |
+
- [PyTorch Version with Accelerate](#pytorch-version-with-accelerate)
|
| 25 |
+
- [Reload and Perform Inference](#reload-and-perform-inference)
|
| 26 |
+
|
| 27 |
+
## PyTorch Version with Accelerate
|
| 28 |
+
|
| 29 |
+
This model is based on the script [`run_instance_segmentation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py).
|
| 30 |
+
The script uses [🤗 Accelerate](https://github.com/huggingface/accelerate) to write your own training loop in PyTorch and run it on various environments, including CPU, multi-CPU, GPU, multi-GPU, and TPU, with support for mixed precision.
|
| 31 |
+
|
| 32 |
+
First, configure the environment:
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
accelerate config
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
Answer the questions regarding your training environment. Then, run:
|
| 39 |
+
|
| 40 |
+
```bash
|
| 41 |
+
accelerate test
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
This command ensures everything is ready for training. Finally, launch training with:
|
| 45 |
+
|
| 46 |
+
```bash
|
| 47 |
+
accelerate launch run_instance_segmentation_no_trainer.py \
|
| 48 |
+
--model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
|
| 49 |
+
--output_dir finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer \
|
| 50 |
+
--dataset_name qubvel-hf/ade20k-mini \
|
| 51 |
+
--do_reduce_labels \
|
| 52 |
+
--image_height 256 \
|
| 53 |
+
--image_width 256 \
|
| 54 |
+
--num_train_epochs 40 \
|
| 55 |
+
--learning_rate 1e-5 \
|
| 56 |
+
--lr_scheduler_type constant \
|
| 57 |
+
--per_device_train_batch_size 8 \
|
| 58 |
+
--gradient_accumulation_steps 2 \
|
| 59 |
+
--dataloader_num_workers 8 \
|
| 60 |
+
--push_to_hub
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Reload and Perform Inference
|
| 65 |
+
|
| 66 |
+
You can easily load this trained model and perform inference as follows:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
import torch
|
| 70 |
+
import requests
|
| 71 |
+
import matplotlib.pyplot as plt
|
| 72 |
+
|
| 73 |
+
from PIL import Image
|
| 74 |
+
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor
|
| 75 |
+
|
| 76 |
+
# Load image
|
| 77 |
+
image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw)
|
| 78 |
+
|
| 79 |
+
# Load model and image processor
|
| 80 |
+
device = "cuda"
|
| 81 |
+
checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer"
|
| 82 |
+
|
| 83 |
+
model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device)
|
| 84 |
+
image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint)
|
| 85 |
+
|
| 86 |
+
# Run inference on image
|
| 87 |
+
inputs = image_processor(images=[image], return_tensors="pt").to(device)
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
outputs = model(**inputs)
|
| 90 |
+
|
| 91 |
+
# Post-process outputs
|
| 92 |
+
outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])
|
| 93 |
+
|
| 94 |
+
print("Mask shape: ", outputs[0]["segmentation"].shape)
|
| 95 |
+
print("Mask values: ", outputs[0]["segmentation"].unique())
|
| 96 |
+
for segment in outputs[0]["segments_info"]:
|
| 97 |
+
print("Segment: ", segment)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
```
|
| 101 |
+
Mask shape: torch.Size([427, 640])
|
| 102 |
+
Mask values: tensor([-1., 0., 1., 2., 3., 4., 5., 6.])
|
| 103 |
+
Segment: {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127}
|
| 104 |
+
Segment: {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582}
|
| 105 |
+
Segment: {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367}
|
| 106 |
+
Segment: {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527}
|
| 107 |
+
Segment: {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761}
|
| 108 |
+
Segment: {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299}
|
| 109 |
+
Segment: {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477}
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
Use the following code to visualize the results:
|
| 113 |
+
|
| 114 |
+
```python
|
| 115 |
+
import numpy as np
|
| 116 |
+
import matplotlib.pyplot as plt
|
| 117 |
+
|
| 118 |
+
segmentation = outputs[0]["segmentation"].numpy()
|
| 119 |
+
|
| 120 |
+
plt.figure(figsize=(10, 10))
|
| 121 |
+
plt.subplot(1, 2, 1)
|
| 122 |
+
plt.imshow(np.array(image))
|
| 123 |
+
plt.axis("off")
|
| 124 |
+
plt.subplot(1, 2, 2)
|
| 125 |
+
plt.imshow(segmentation)
|
| 126 |
+
plt.axis("off")
|
| 127 |
+
plt.show()
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+

|