File size: 5,747 Bytes
c4a0871 14a2205 c4a0871 77ef360 c4a0871 71b79a7 c4a0871 bc5b14e 71b79a7 33aef2b c4a0871 9a166ad c5c9ba7 c4a0871 06bc26e c4a0871 9a166ad 0ed66f4 9a166ad c4a0871 a19ae97 c4a0871 9a166ad c4a0871 9a166ad c4a0871 9a166ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection
---

# Yolo-NAS: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge
YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-NAS found [here](https://github.com/Deci-AI/super-gradients).
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolonas).
### Model Details
- **Model Type:** Object detection
- **Model Stats:**
- Model checkpoint: YoloNAS Small
- Input resolution: 640x640
- Number of parameters: 12.2M
- Model size: 46.6 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.9 ms | 0 - 19 MB | FP16 | NPU | -- |
| Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 8.291 ms | 5 - 7 MB | FP16 | NPU | -- |
| Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 8.833 ms | 0 - 77 MB | FP16 | NPU | -- |
| Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.345 ms | 0 - 62 MB | FP16 | NPU | -- |
| Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 5.44 ms | 5 - 23 MB | FP16 | NPU | -- |
| Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.971 ms | 2 - 55 MB | FP16 | NPU | -- |
| Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.431 ms | 0 - 46 MB | FP16 | NPU | -- |
| Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 5.288 ms | 5 - 31 MB | FP16 | NPU | -- |
| Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 5.985 ms | 5 - 39 MB | FP16 | NPU | -- |
| Yolo-NAS | SA7255P ADP | SA7255P | TFLITE | 220.694 ms | 0 - 43 MB | FP16 | NPU | -- |
| Yolo-NAS | SA7255P ADP | SA7255P | QNN | 218.0 ms | 1 - 10 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.877 ms | 0 - 21 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8255 (Proxy) | SA8255P Proxy | QNN | 8.341 ms | 5 - 7 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8295P ADP | SA8295P | TFLITE | 12.74 ms | 0 - 42 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8295P ADP | SA8295P | QNN | 12.799 ms | 0 - 18 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.973 ms | 0 - 20 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8650 (Proxy) | SA8650P Proxy | QNN | 8.335 ms | 5 - 7 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8775P ADP | SA8775P | TFLITE | 14.238 ms | 0 - 42 MB | FP16 | NPU | -- |
| Yolo-NAS | SA8775P ADP | SA8775P | QNN | 14.008 ms | 0 - 10 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 220.694 ms | 0 - 43 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 218.0 ms | 1 - 10 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.893 ms | 0 - 19 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 8.248 ms | 3 - 6 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 14.238 ms | 0 - 42 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 14.008 ms | 0 - 10 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 11.039 ms | 0 - 58 MB | FP16 | NPU | -- |
| Yolo-NAS | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 12.474 ms | 5 - 38 MB | FP16 | NPU | -- |
| Yolo-NAS | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 8.542 ms | 5 - 5 MB | FP16 | NPU | -- |
| Yolo-NAS | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.049 ms | 20 - 20 MB | FP16 | NPU | -- |
## License
* The license for the original implementation of Yolo-NAS can be found
[here](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md#license).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md)
## References
* [A Next-Generation, Object Detection Foundational Model generated by Deci’s Neural Architecture Search Technology](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md)
* [Source Model Implementation](https://github.com/Deci-AI/super-gradients)
## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
## Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
|