File size: 11,513 Bytes
101f643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
library_name: pytorch
license: cc-by-4.0
tags:
- backbone
- android
pipeline_tag: video-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/video_mae/web-assets/model_demo.png)

# Video-MAE: Optimized for Mobile Deployment
## Sports and human action recognition in videos


Video MAE (Masked Auto Encoder) is a network for doing video classification that uses the ViT (Vision Transformer) backbone.

This model is an implementation of Video-MAE found [here](https://github.com/MCG-NJU/VideoMAE).


This repository provides scripts to run Video-MAE on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/video_mae).


### Model Details

- **Model Type:** Video classification
- **Model Stats:**
  - Model checkpoint: Kinectics-400
  - Input resolution: 224x224
  - Number of parameters: 87.7M
  - Model size: 335 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Video-MAE | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 208.803 ms | 0 - 40 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 449.531 ms | 9 - 12 MB | FP16 | NPU | [Video-MAE.so](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.so) |
| Video-MAE | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 688.074 ms | 0 - 374 MB | FP16 | NPU | [Video-MAE.onnx](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.onnx) |
| Video-MAE | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 152.411 ms | 0 - 484 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 370.594 ms | 9 - 29 MB | FP16 | NPU | [Video-MAE.so](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.so) |
| Video-MAE | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 520.976 ms | 9 - 294 MB | FP16 | NPU | [Video-MAE.onnx](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.onnx) |
| Video-MAE | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 140.087 ms | 0 - 486 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 363.831 ms | 9 - 424 MB | FP16 | NPU | Use Export Script |
| Video-MAE | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 625.199 ms | 9 - 300 MB | FP16 | NPU | [Video-MAE.onnx](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.onnx) |
| Video-MAE | SA7255P ADP | SA7255P | TFLITE | 2612.002 ms | 0 - 486 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | SA7255P ADP | SA7255P | QNN | 3186.456 ms | 3 - 13 MB | FP16 | NPU | Use Export Script |
| Video-MAE | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 206.797 ms | 0 - 39 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | SA8255 (Proxy) | SA8255P Proxy | QNN | 450.019 ms | 9 - 12 MB | FP16 | NPU | Use Export Script |
| Video-MAE | SA8295P ADP | SA8295P | TFLITE | 351.185 ms | 0 - 495 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | SA8295P ADP | SA8295P | QNN | 668.586 ms | 0 - 17 MB | FP16 | NPU | Use Export Script |
| Video-MAE | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 208.932 ms | 0 - 38 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | SA8650 (Proxy) | SA8650P Proxy | QNN | 449.795 ms | 9 - 12 MB | FP16 | NPU | Use Export Script |
| Video-MAE | SA8775P ADP | SA8775P | TFLITE | 282.557 ms | 0 - 486 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | SA8775P ADP | SA8775P | QNN | 605.641 ms | 9 - 19 MB | FP16 | NPU | Use Export Script |
| Video-MAE | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 2612.002 ms | 0 - 486 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 3186.456 ms | 3 - 13 MB | FP16 | NPU | Use Export Script |
| Video-MAE | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 208.693 ms | 0 - 42 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 449.8 ms | 9 - 12 MB | FP16 | NPU | Use Export Script |
| Video-MAE | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 282.557 ms | 0 - 486 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 605.641 ms | 9 - 19 MB | FP16 | NPU | Use Export Script |
| Video-MAE | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 315.69 ms | 0 - 494 MB | FP16 | NPU | [Video-MAE.tflite](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.tflite) |
| Video-MAE | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 630.074 ms | 9 - 434 MB | FP16 | NPU | Use Export Script |
| Video-MAE | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 472.11 ms | 9 - 9 MB | FP16 | NPU | Use Export Script |
| Video-MAE | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 720.056 ms | 187 - 187 MB | FP16 | NPU | [Video-MAE.onnx](https://huggingface.co/qualcomm/Video-MAE/blob/main/Video-MAE.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[video-mae]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.video_mae.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.video_mae.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.video_mae.export
```
```
Profiling Results
------------------------------------------------------------
Video-MAE
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 208.8                  
Estimated peak memory usage (MB): [0, 40]                
Total # Ops                     : 558                    
Compute Unit(s)                 : NPU (558 ops)          
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/video_mae/qai_hub_models/models/Video-MAE/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.video_mae import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Video-MAE's performance across various devices [here](https://aihub.qualcomm.com/models/video_mae).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Video-MAE can be found
  [here](https://github.com/MCG-NJU/VideoMAE/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602)
* [Source Model Implementation](https://github.com/MCG-NJU/VideoMAE)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).