Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ tags:
|
|
18 |
|
19 |
VIT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
20 |
|
21 |
-
This model is an implementation of VIT found [here](
|
22 |
This repository provides scripts to run VIT on Qualcomm® devices.
|
23 |
More details on model performance across various devices, can be found
|
24 |
[here](https://aihub.qualcomm.com/models/vit).
|
@@ -33,14 +33,23 @@ More details on model performance across various devices, can be found
|
|
33 |
- Number of parameters: 86.6M
|
34 |
- Model size: 330 MB
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
|
39 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
-
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 19.822 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
|
42 |
-
|
43 |
-
|
44 |
|
45 |
## Installation
|
46 |
|
@@ -95,7 +104,17 @@ device. This script does the following:
|
|
95 |
```bash
|
96 |
python -m qai_hub_models.models.vit.export
|
97 |
```
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
## How does this work?
|
@@ -193,15 +212,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
193 |
Get more details on VIT's performance across various devices [here](https://aihub.qualcomm.com/models/vit).
|
194 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
195 |
|
|
|
196 |
## License
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
200 |
|
201 |
## References
|
202 |
* [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
|
203 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py)
|
204 |
|
|
|
|
|
205 |
## Community
|
206 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
207 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
18 |
|
19 |
VIT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
20 |
|
21 |
+
This model is an implementation of VIT found [here]({source_repo}).
|
22 |
This repository provides scripts to run VIT on Qualcomm® devices.
|
23 |
More details on model performance across various devices, can be found
|
24 |
[here](https://aihub.qualcomm.com/models/vit).
|
|
|
33 |
- Number of parameters: 86.6M
|
34 |
- Model size: 330 MB
|
35 |
|
36 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
+
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| VIT | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 19.821 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
39 |
+
| VIT | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 15.505 ms | 0 - 193 MB | FP16 | NPU | [VIT.onnx](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx) |
|
40 |
+
| VIT | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 16.903 ms | 0 - 382 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
41 |
+
| VIT | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 11.372 ms | 0 - 149 MB | FP16 | NPU | [VIT.onnx](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx) |
|
42 |
+
| VIT | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 19.788 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
43 |
+
| VIT | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 19.83 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
44 |
+
| VIT | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 20.031 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
45 |
+
| VIT | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 20.358 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
46 |
+
| VIT | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 24.972 ms | 0 - 368 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
47 |
+
| VIT | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 11.489 ms | 0 - 207 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
|
48 |
+
| VIT | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.01 ms | 1 - 112 MB | FP16 | NPU | [VIT.onnx](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx) |
|
49 |
+
| VIT | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 21.624 ms | 171 - 171 MB | FP16 | NPU | [VIT.onnx](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx) |
|
50 |
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
## Installation
|
55 |
|
|
|
104 |
```bash
|
105 |
python -m qai_hub_models.models.vit.export
|
106 |
```
|
107 |
+
```
|
108 |
+
Profiling Results
|
109 |
+
------------------------------------------------------------
|
110 |
+
VIT
|
111 |
+
Device : Samsung Galaxy S23 (13)
|
112 |
+
Runtime : TFLITE
|
113 |
+
Estimated inference time (ms) : 19.8
|
114 |
+
Estimated peak memory usage (MB): [0, 3]
|
115 |
+
Total # Ops : 1579
|
116 |
+
Compute Unit(s) : NPU (1579 ops)
|
117 |
+
```
|
118 |
|
119 |
|
120 |
## How does this work?
|
|
|
212 |
Get more details on VIT's performance across various devices [here](https://aihub.qualcomm.com/models/vit).
|
213 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
214 |
|
215 |
+
|
216 |
## License
|
217 |
+
* The license for the original implementation of VIT can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
218 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
219 |
+
|
220 |
+
|
221 |
|
222 |
## References
|
223 |
* [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
|
224 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py)
|
225 |
|
226 |
+
|
227 |
+
|
228 |
## Community
|
229 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
230 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|