qaihm-bot commited on
Commit
488f76a
·
verified ·
1 Parent(s): f3d5edf

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -12
README.md CHANGED
@@ -34,10 +34,12 @@ More details on model performance across various devices, can be found
34
  - Model size: 330 MB
35
 
36
 
 
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 79.254 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 67.155 ms | 0 - 43 MB | FP16 | NPU | [VIT.so](https://huggingface.co/qualcomm/VIT/blob/main/VIT.so)
41
 
42
 
43
  ## Installation
@@ -94,19 +96,11 @@ device. This script does the following:
94
  python -m qai_hub_models.models.vit.export
95
  ```
96
 
97
- ```
98
- Profile Job summary of VIT
99
- --------------------------------------------------
100
- Device: Snapdragon X Elite CRD (11)
101
- Estimated Inference Time: 65.94 ms
102
- Estimated Peak Memory Range: 0.57-0.57 MB
103
- Compute Units: NPU (385) | Total (385)
104
 
105
 
106
- ```
107
  ## How does this work?
108
 
109
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/VIT/export.py)
110
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
111
  on-device. Lets go through each step below in detail:
112
 
@@ -183,6 +177,7 @@ spot check the output with expected output.
183
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
184
 
185
 
 
186
  ## Run demo on a cloud-hosted device
187
 
188
  You can also run the demo on-device.
@@ -219,7 +214,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
219
  ## License
220
  - The license for the original implementation of VIT can be found
221
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
222
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
223
 
224
  ## References
225
  * [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
 
34
  - Model size: 330 MB
35
 
36
 
37
+
38
+
39
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
40
  | ---|---|---|---|---|---|---|---|
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 78.496 ms | 0 - 3 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
42
+
43
 
44
 
45
  ## Installation
 
96
  python -m qai_hub_models.models.vit.export
97
  ```
98
 
 
 
 
 
 
 
 
99
 
100
 
 
101
  ## How does this work?
102
 
103
+ This [export script](https://aihub.qualcomm.com/models/vit/qai_hub_models/models/VIT/export.py)
104
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
105
  on-device. Lets go through each step below in detail:
106
 
 
177
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
178
 
179
 
180
+
181
  ## Run demo on a cloud-hosted device
182
 
183
  You can also run the demo on-device.
 
214
  ## License
215
  - The license for the original implementation of VIT can be found
216
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
217
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
218
 
219
  ## References
220
  * [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)