Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -38,7 +38,7 @@ More details on model performance across various devices, can be found
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
42 |
|
43 |
|
44 |
|
@@ -113,29 +113,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
113 |
import torch
|
114 |
|
115 |
import qai_hub as hub
|
116 |
-
from qai_hub_models.models.vit import
|
117 |
|
118 |
# Load the model
|
119 |
-
torch_model = Model.from_pretrained()
|
120 |
|
121 |
# Device
|
122 |
device = hub.Device("Samsung Galaxy S23")
|
123 |
|
124 |
-
# Trace model
|
125 |
-
input_shape = torch_model.get_input_spec()
|
126 |
-
sample_inputs = torch_model.sample_inputs()
|
127 |
-
|
128 |
-
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
129 |
-
|
130 |
-
# Compile model on a specific device
|
131 |
-
compile_job = hub.submit_compile_job(
|
132 |
-
model=pt_model,
|
133 |
-
device=device,
|
134 |
-
input_specs=torch_model.get_input_spec(),
|
135 |
-
)
|
136 |
-
|
137 |
-
# Get target model to run on-device
|
138 |
-
target_model = compile_job.get_target_model()
|
139 |
|
140 |
```
|
141 |
|
@@ -148,10 +132,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
|
|
148 |
provided job URL to view a variety of on-device performance metrics.
|
149 |
```python
|
150 |
profile_job = hub.submit_profile_job(
|
151 |
-
|
152 |
-
|
153 |
-
)
|
154 |
-
|
155 |
```
|
156 |
|
157 |
Step 3: **Verify on-device accuracy**
|
@@ -161,12 +145,11 @@ on sample input data on the same cloud hosted device.
|
|
161 |
```python
|
162 |
input_data = torch_model.sample_inputs()
|
163 |
inference_job = hub.submit_inference_job(
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
)
|
168 |
-
|
169 |
-
on_device_output = inference_job.download_output_data()
|
170 |
|
171 |
```
|
172 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 139.311 ms | 4 - 7 MB | FP16 | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite)
|
42 |
|
43 |
|
44 |
|
|
|
113 |
import torch
|
114 |
|
115 |
import qai_hub as hub
|
116 |
+
from qai_hub_models.models.vit import
|
117 |
|
118 |
# Load the model
|
|
|
119 |
|
120 |
# Device
|
121 |
device = hub.Device("Samsung Galaxy S23")
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
```
|
125 |
|
|
|
132 |
provided job URL to view a variety of on-device performance metrics.
|
133 |
```python
|
134 |
profile_job = hub.submit_profile_job(
|
135 |
+
model=target_model,
|
136 |
+
device=device,
|
137 |
+
)
|
138 |
+
|
139 |
```
|
140 |
|
141 |
Step 3: **Verify on-device accuracy**
|
|
|
145 |
```python
|
146 |
input_data = torch_model.sample_inputs()
|
147 |
inference_job = hub.submit_inference_job(
|
148 |
+
model=target_model,
|
149 |
+
device=device,
|
150 |
+
inputs=input_data,
|
151 |
+
)
|
152 |
+
on_device_output = inference_job.download_output_data()
|
|
|
153 |
|
154 |
```
|
155 |
With the output of the model, you can compute like PSNR, relative errors or
|