Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -19,7 +19,7 @@ tags:
|
|
19 |
|
20 |
MobileNet-v3-Large is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
21 |
|
22 |
-
This model is an implementation of MobileNet-v3-Large found [here](
|
23 |
This repository provides scripts to run MobileNet-v3-Large on Qualcomm® devices.
|
24 |
More details on model performance across various devices, can be found
|
25 |
[here](https://aihub.qualcomm.com/models/mobilenet_v3_large).
|
@@ -34,15 +34,32 @@ More details on model performance across various devices, can be found
|
|
34 |
- Number of parameters: 5.47M
|
35 |
- Model size: 20.9 MB
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
|
40 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
41 |
-
| ---|---|---|---|---|---|---|---|
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.996 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite)
|
43 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.044 ms | 1 - 274 MB | FP16 | NPU | [MobileNet-v3-Large.so](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.so)
|
44 |
-
|
45 |
-
|
46 |
|
47 |
## Installation
|
48 |
|
@@ -97,16 +114,16 @@ device. This script does the following:
|
|
97 |
```bash
|
98 |
python -m qai_hub_models.models.mobilenet_v3_large.export
|
99 |
```
|
100 |
-
|
101 |
```
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
```
|
111 |
|
112 |
|
@@ -205,15 +222,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
205 |
Get more details on MobileNet-v3-Large's performance across various devices [here](https://aihub.qualcomm.com/models/mobilenet_v3_large).
|
206 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
207 |
|
|
|
208 |
## License
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
212 |
|
213 |
## References
|
214 |
* [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244)
|
215 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py)
|
216 |
|
|
|
|
|
217 |
## Community
|
218 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
219 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
19 |
|
20 |
MobileNet-v3-Large is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
21 |
|
22 |
+
This model is an implementation of MobileNet-v3-Large found [here]({source_repo}).
|
23 |
This repository provides scripts to run MobileNet-v3-Large on Qualcomm® devices.
|
24 |
More details on model performance across various devices, can be found
|
25 |
[here](https://aihub.qualcomm.com/models/mobilenet_v3_large).
|
|
|
34 |
- Number of parameters: 5.47M
|
35 |
- Model size: 20.9 MB
|
36 |
|
37 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
+
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| MobileNet-v3-Large | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.987 ms | 0 - 37 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
40 |
+
| MobileNet-v3-Large | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.051 ms | 1 - 5 MB | FP16 | NPU | [MobileNet-v3-Large.so](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.so) |
|
41 |
+
| MobileNet-v3-Large | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.993 ms | 1 - 2 MB | FP16 | NPU | [MobileNet-v3-Large.onnx](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.onnx) |
|
42 |
+
| MobileNet-v3-Large | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.698 ms | 0 - 65 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
43 |
+
| MobileNet-v3-Large | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.732 ms | 1 - 19 MB | FP16 | NPU | [MobileNet-v3-Large.so](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.so) |
|
44 |
+
| MobileNet-v3-Large | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.722 ms | 0 - 66 MB | FP16 | NPU | [MobileNet-v3-Large.onnx](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.onnx) |
|
45 |
+
| MobileNet-v3-Large | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.987 ms | 0 - 1 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
46 |
+
| MobileNet-v3-Large | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.001 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| MobileNet-v3-Large | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.986 ms | 0 - 242 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
48 |
+
| MobileNet-v3-Large | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.003 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| MobileNet-v3-Large | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.991 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
50 |
+
| MobileNet-v3-Large | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.994 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| MobileNet-v3-Large | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.989 ms | 0 - 246 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
52 |
+
| MobileNet-v3-Large | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.0 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| MobileNet-v3-Large | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.385 ms | 0 - 67 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
54 |
+
| MobileNet-v3-Large | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.473 ms | 1 - 23 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| MobileNet-v3-Large | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.679 ms | 0 - 25 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite) |
|
56 |
+
| MobileNet-v3-Large | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.71 ms | 1 - 15 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| MobileNet-v3-Large | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.734 ms | 0 - 27 MB | FP16 | NPU | [MobileNet-v3-Large.onnx](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.onnx) |
|
58 |
+
| MobileNet-v3-Large | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.166 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
59 |
+
| MobileNet-v3-Large | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.072 ms | 13 - 13 MB | FP16 | NPU | [MobileNet-v3-Large.onnx](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.onnx) |
|
60 |
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
## Installation
|
65 |
|
|
|
114 |
```bash
|
115 |
python -m qai_hub_models.models.mobilenet_v3_large.export
|
116 |
```
|
|
|
117 |
```
|
118 |
+
Profiling Results
|
119 |
+
------------------------------------------------------------
|
120 |
+
MobileNet-v3-Large
|
121 |
+
Device : Samsung Galaxy S23 (13)
|
122 |
+
Runtime : TFLITE
|
123 |
+
Estimated inference time (ms) : 1.0
|
124 |
+
Estimated peak memory usage (MB): [0, 37]
|
125 |
+
Total # Ops : 128
|
126 |
+
Compute Unit(s) : NPU (128 ops)
|
127 |
```
|
128 |
|
129 |
|
|
|
222 |
Get more details on MobileNet-v3-Large's performance across various devices [here](https://aihub.qualcomm.com/models/mobilenet_v3_large).
|
223 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
224 |
|
225 |
+
|
226 |
## License
|
227 |
+
* The license for the original implementation of MobileNet-v3-Large can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
228 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
229 |
+
|
230 |
+
|
231 |
|
232 |
## References
|
233 |
* [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244)
|
234 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py)
|
235 |
|
236 |
+
|
237 |
+
|
238 |
## Community
|
239 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
240 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|