Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,10 +35,13 @@ More details on model performance across various devices, can be found
|
|
35 |
- Model size: 20.9 MB
|
36 |
|
37 |
|
|
|
|
|
38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
| ---|---|---|---|---|---|---|---|
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.
|
|
|
42 |
|
43 |
|
44 |
## Installation
|
@@ -99,15 +102,17 @@ python -m qai_hub_models.models.mobilenet_v3_large.export
|
|
99 |
Profile Job summary of MobileNet-v3-Large
|
100 |
--------------------------------------------------
|
101 |
Device: Snapdragon X Elite CRD (11)
|
102 |
-
Estimated Inference Time: 1.
|
103 |
Estimated Peak Memory Range: 0.57-0.57 MB
|
104 |
Compute Units: NPU (144) | Total (144)
|
105 |
|
106 |
|
107 |
```
|
|
|
|
|
108 |
## How does this work?
|
109 |
|
110 |
-
This [export script](https://
|
111 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
112 |
on-device. Lets go through each step below in detail:
|
113 |
|
@@ -184,6 +189,7 @@ spot check the output with expected output.
|
|
184 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
185 |
|
186 |
|
|
|
187 |
## Run demo on a cloud-hosted device
|
188 |
|
189 |
You can also run the demo on-device.
|
@@ -220,7 +226,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
220 |
## License
|
221 |
- The license for the original implementation of MobileNet-v3-Large can be found
|
222 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
223 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
224 |
|
225 |
## References
|
226 |
* [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244)
|
|
|
35 |
- Model size: 20.9 MB
|
36 |
|
37 |
|
38 |
+
|
39 |
+
|
40 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
41 |
| ---|---|---|---|---|---|---|---|
|
42 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.999 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v3-Large.tflite](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.tflite)
|
43 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.048 ms | 1 - 46 MB | FP16 | NPU | [MobileNet-v3-Large.so](https://huggingface.co/qualcomm/MobileNet-v3-Large/blob/main/MobileNet-v3-Large.so)
|
44 |
+
|
45 |
|
46 |
|
47 |
## Installation
|
|
|
102 |
Profile Job summary of MobileNet-v3-Large
|
103 |
--------------------------------------------------
|
104 |
Device: Snapdragon X Elite CRD (11)
|
105 |
+
Estimated Inference Time: 1.20 ms
|
106 |
Estimated Peak Memory Range: 0.57-0.57 MB
|
107 |
Compute Units: NPU (144) | Total (144)
|
108 |
|
109 |
|
110 |
```
|
111 |
+
|
112 |
+
|
113 |
## How does this work?
|
114 |
|
115 |
+
This [export script](https://aihub.qualcomm.com/models/mobilenet_v3_large/qai_hub_models/models/MobileNet-v3-Large/export.py)
|
116 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
117 |
on-device. Lets go through each step below in detail:
|
118 |
|
|
|
189 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
190 |
|
191 |
|
192 |
+
|
193 |
## Run demo on a cloud-hosted device
|
194 |
|
195 |
You can also run the demo on-device.
|
|
|
226 |
## License
|
227 |
- The license for the original implementation of MobileNet-v3-Large can be found
|
228 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
229 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
230 |
|
231 |
## References
|
232 |
* [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244)
|