Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ tags:
|
|
9 |
|
10 |
---
|
11 |
|
12 |
-
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_quantized/web-assets/
|
13 |
|
14 |
# ControlNet: Optimized for Mobile Deployment
|
15 |
## Generating visual arts from text prompt and input guiding image
|
@@ -37,10 +37,10 @@ More details on model performance across various devices, can be found
|
|
37 |
|
38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
| ---|---|---|---|---|---|---|---|
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN
|
43 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN
|
44 |
|
45 |
|
46 |
## Installation
|
@@ -67,7 +67,7 @@ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
|
|
67 |
|
68 |
|
69 |
|
70 |
-
## Demo
|
71 |
|
72 |
The package contains a simple end-to-end demo that downloads pre-trained
|
73 |
weights and runs this model on a sample input.
|
@@ -135,11 +135,9 @@ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_mod
|
|
135 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
136 |
on-device. Lets go through each step below in detail:
|
137 |
|
138 |
-
Step 1: **
|
139 |
-
|
140 |
-
To compile a PyTorch model for on-device deployment, we first trace the model
|
141 |
-
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
142 |
|
|
|
143 |
```python
|
144 |
import torch
|
145 |
|
@@ -147,40 +145,39 @@ import qai_hub as hub
|
|
147 |
from qai_hub_models.models.controlnet_quantized import Model
|
148 |
|
149 |
# Load the model
|
150 |
-
|
151 |
-
torch_model.eval()
|
152 |
-
|
153 |
-
# Device
|
154 |
-
device = hub.Device("Samsung Galaxy S23")
|
155 |
-
|
156 |
-
# Trace model
|
157 |
-
input_shape = torch_model.get_input_spec()
|
158 |
-
sample_inputs = torch_model.sample_inputs()
|
159 |
-
|
160 |
-
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
161 |
-
|
162 |
-
# Compile model on a specific device
|
163 |
-
compile_job = hub.submit_compile_job(
|
164 |
-
model=pt_model,
|
165 |
-
device=device,
|
166 |
-
input_specs=torch_model.get_input_spec(),
|
167 |
-
)
|
168 |
-
|
169 |
-
# Get target model to run on-device
|
170 |
-
target_model = compile_job.get_target_model()
|
171 |
|
|
|
|
|
|
|
|
|
172 |
```
|
173 |
|
174 |
|
175 |
Step 2: **Performance profiling on cloud-hosted device**
|
176 |
|
177 |
-
After
|
178 |
`target_model`. Note that this scripts runs the model on a device automatically
|
179 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
180 |
provided job URL to view a variety of on-device performance metrics.
|
181 |
```python
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
device=device,
|
185 |
)
|
186 |
|
@@ -191,14 +188,38 @@ Step 3: **Verify on-device accuracy**
|
|
191 |
To verify the accuracy of the model on-device, you can run on-device inference
|
192 |
on sample input data on the same cloud hosted device.
|
193 |
```python
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
197 |
device=device,
|
198 |
-
inputs=
|
199 |
)
|
|
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
```
|
204 |
With the output of the model, you can compute like PSNR, relative errors or
|
@@ -218,9 +239,9 @@ The models can be deployed using multiple runtimes:
|
|
218 |
guide to deploy the .tflite model in an Android application.
|
219 |
|
220 |
|
221 |
-
- QNN (`.so` export ): This [sample
|
222 |
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
223 |
-
provides instructions on how to use the `.so` shared library
|
224 |
|
225 |
|
226 |
## View on Qualcomm® AI Hub
|
@@ -241,3 +262,25 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
241 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
242 |
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
---
|
11 |
|
12 |
+
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_quantized/web-assets/model_demo.png)
|
13 |
|
14 |
# ControlNet: Optimized for Mobile Deployment
|
15 |
## Generating visual arts from text prompt and input guiding image
|
|
|
37 |
|
38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
| ---|---|---|---|---|---|---|---|
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 11.369 ms | 0 - 33 MB | UINT16 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin)
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 386.746 ms | 0 - 4 MB | UINT16 | NPU | [VAEDecoder_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin)
|
42 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 259.981 ms | 12 - 14 MB | UINT16 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin)
|
43 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 103.748 ms | 0 - 22 MB | UINT16 | NPU | [ControlNet_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin)
|
44 |
|
45 |
|
46 |
## Installation
|
|
|
67 |
|
68 |
|
69 |
|
70 |
+
## Demo on-device
|
71 |
|
72 |
The package contains a simple end-to-end demo that downloads pre-trained
|
73 |
weights and runs this model on a sample input.
|
|
|
135 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
136 |
on-device. Lets go through each step below in detail:
|
137 |
|
138 |
+
Step 1: **Upload compiled model**
|
|
|
|
|
|
|
139 |
|
140 |
+
Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
|
141 |
```python
|
142 |
import torch
|
143 |
|
|
|
145 |
from qai_hub_models.models.controlnet_quantized import Model
|
146 |
|
147 |
# Load the model
|
148 |
+
model = Model.from_precompiled()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
|
151 |
+
model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
|
152 |
+
model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
|
153 |
+
model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
|
154 |
```
|
155 |
|
156 |
|
157 |
Step 2: **Performance profiling on cloud-hosted device**
|
158 |
|
159 |
+
After uploading compiled models from step 1. Models can be profiled model on-device using the
|
160 |
`target_model`. Note that this scripts runs the model on a device automatically
|
161 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
162 |
provided job URL to view a variety of on-device performance metrics.
|
163 |
```python
|
164 |
+
|
165 |
+
# Device
|
166 |
+
device = hub.Device("Samsung Galaxy S23")
|
167 |
+
profile_job_textencoder_quantized = hub.submit_profile_job(
|
168 |
+
model=model_textencoder_quantized,
|
169 |
+
device=device,
|
170 |
+
)
|
171 |
+
profile_job_unet_quantized = hub.submit_profile_job(
|
172 |
+
model=model_unet_quantized,
|
173 |
+
device=device,
|
174 |
+
)
|
175 |
+
profile_job_vaedecoder_quantized = hub.submit_profile_job(
|
176 |
+
model=model_vaedecoder_quantized,
|
177 |
+
device=device,
|
178 |
+
)
|
179 |
+
profile_job_controlnet_quantized = hub.submit_profile_job(
|
180 |
+
model=model_controlnet_quantized,
|
181 |
device=device,
|
182 |
)
|
183 |
|
|
|
188 |
To verify the accuracy of the model on-device, you can run on-device inference
|
189 |
on sample input data on the same cloud hosted device.
|
190 |
```python
|
191 |
+
|
192 |
+
input_data_textencoder_quantized = model.text_encoder.sample_inputs()
|
193 |
+
inference_job_textencoder_quantized = hub.submit_inference_job(
|
194 |
+
model=model_textencoder_quantized,
|
195 |
device=device,
|
196 |
+
inputs=input_data_textencoder_quantized,
|
197 |
)
|
198 |
+
on_device_output_textencoder_quantized = inference_job_textencoder_quantized.download_output_data()
|
199 |
|
200 |
+
input_data_unet_quantized = model.unet.sample_inputs()
|
201 |
+
inference_job_unet_quantized = hub.submit_inference_job(
|
202 |
+
model=model_unet_quantized,
|
203 |
+
device=device,
|
204 |
+
inputs=input_data_unet_quantized,
|
205 |
+
)
|
206 |
+
on_device_output_unet_quantized = inference_job_unet_quantized.download_output_data()
|
207 |
+
|
208 |
+
input_data_vaedecoder_quantized = model.vae_decoder.sample_inputs()
|
209 |
+
inference_job_vaedecoder_quantized = hub.submit_inference_job(
|
210 |
+
model=model_vaedecoder_quantized,
|
211 |
+
device=device,
|
212 |
+
inputs=input_data_vaedecoder_quantized,
|
213 |
+
)
|
214 |
+
on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
|
215 |
+
|
216 |
+
input_data_controlnet_quantized = model.controlnet.sample_inputs()
|
217 |
+
inference_job_controlnet_quantized = hub.submit_inference_job(
|
218 |
+
model=model_controlnet_quantized,
|
219 |
+
device=device,
|
220 |
+
inputs=input_data_controlnet_quantized,
|
221 |
+
)
|
222 |
+
on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()
|
223 |
|
224 |
```
|
225 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
239 |
guide to deploy the .tflite model in an Android application.
|
240 |
|
241 |
|
242 |
+
- QNN ( `.so` / `.bin` export ): This [sample
|
243 |
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
244 |
+
provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
|
245 |
|
246 |
|
247 |
## View on Qualcomm® AI Hub
|
|
|
262 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
263 |
|
264 |
|
265 |
+
## Usage and Limitations
|
266 |
+
|
267 |
+
Model may not be used for or in connection with any of the following applications:
|
268 |
+
|
269 |
+
- Accessing essential private and public services and benefits;
|
270 |
+
- Administration of justice and democratic processes;
|
271 |
+
- Assessing or recognizing the emotional state of a person;
|
272 |
+
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
|
273 |
+
- Education and vocational training;
|
274 |
+
- Employment and workers management;
|
275 |
+
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
|
276 |
+
- General purpose social scoring;
|
277 |
+
- Law enforcement;
|
278 |
+
- Management and operation of critical infrastructure;
|
279 |
+
- Migration, asylum and border control management;
|
280 |
+
- Predictive policing;
|
281 |
+
- Real-time remote biometric identification in public spaces;
|
282 |
+
- Recommender systems of social media platforms;
|
283 |
+
- Scraping of facial images (from the internet or otherwise); and/or
|
284 |
+
- Subliminal manipulation
|
285 |
+
|
286 |
+
|