Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,6 +36,8 @@ More details on model performance across various devices, can be found
|
|
36 |
- Model size: 1.4GB
|
37 |
|
38 |
|
|
|
|
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 11.394 ms | 0 - 74 MB | UINT16 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin)
|
@@ -44,6 +46,7 @@ More details on model performance across various devices, can be found
|
|
44 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 100.33 ms | 2 - 68 MB | UINT16 | NPU | [ControlNet_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin)
|
45 |
|
46 |
|
|
|
47 |
## Installation
|
48 |
|
49 |
This model can be installed as a Python package via pip.
|
@@ -130,9 +133,11 @@ Compute Units: NPU (2406) | Total (2406)
|
|
130 |
|
131 |
|
132 |
```
|
|
|
|
|
133 |
## How does this work?
|
134 |
|
135 |
-
This [export script](https://
|
136 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
137 |
on-device. Lets go through each step below in detail:
|
138 |
|
@@ -231,6 +236,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
231 |
|
232 |
|
233 |
|
|
|
234 |
## Deploying compiled model to Android
|
235 |
|
236 |
|
@@ -252,7 +258,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
252 |
## License
|
253 |
- The license for the original implementation of ControlNet can be found
|
254 |
[here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
|
255 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
256 |
|
257 |
## References
|
258 |
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
|
|
|
36 |
- Model size: 1.4GB
|
37 |
|
38 |
|
39 |
+
|
40 |
+
|
41 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
42 |
| ---|---|---|---|---|---|---|---|
|
43 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 11.394 ms | 0 - 74 MB | UINT16 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin)
|
|
|
46 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 100.33 ms | 2 - 68 MB | UINT16 | NPU | [ControlNet_Quantized.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin)
|
47 |
|
48 |
|
49 |
+
|
50 |
## Installation
|
51 |
|
52 |
This model can be installed as a Python package via pip.
|
|
|
133 |
|
134 |
|
135 |
```
|
136 |
+
|
137 |
+
|
138 |
## How does this work?
|
139 |
|
140 |
+
This [export script](https://aihub.qualcomm.com/models/controlnet_quantized/qai_hub_models/models/ControlNet/export.py)
|
141 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
142 |
on-device. Lets go through each step below in detail:
|
143 |
|
|
|
236 |
|
237 |
|
238 |
|
239 |
+
|
240 |
## Deploying compiled model to Android
|
241 |
|
242 |
|
|
|
258 |
## License
|
259 |
- The license for the original implementation of ControlNet can be found
|
260 |
[here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
|
261 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE)
|
262 |
|
263 |
## References
|
264 |
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
|