qaihm-bot commited on
Commit
327ab4e
·
verified ·
1 Parent(s): a22fc4e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +267 -0
README.md ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: other
4
+ tags:
5
+ - real_time
6
+ - android
7
+ pipeline_tag: image-segmentation
8
+
9
+ ---
10
+
11
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/bisenet/web-assets/model_demo.png)
12
+
13
+ # BiseNet: Optimized for Mobile Deployment
14
+ ## Segment images or video by class in real-time on device
15
+
16
+
17
+ BiSeNet (Bilateral Segmentation Network) is a novel architecture designed for real-time semantic segmentation. It addresses the challenge of balancing spatial resolution and receptive field by employing a Spatial Path to preserve high-resolution features and a context path to capture sufficient receptive field.
18
+
19
+ This model is an implementation of BiseNet found [here](https://github.com/ooooverflow/BiSeNet).
20
+
21
+
22
+ This repository provides scripts to run BiseNet on Qualcomm® devices.
23
+ More details on model performance across various devices, can be found
24
+ [here](https://aihub.qualcomm.com/models/bisenet).
25
+
26
+
27
+ ### Model Details
28
+
29
+ - **Model Type:** Semantic segmentation
30
+ - **Model Stats:**
31
+ - Model checkpoint: best_dice_loss_miou_0.655.pth
32
+ - Inference latency: RealTime
33
+ - Input resolution: 720x960
34
+ - Number of parameters: 12.0M
35
+ - Model size: 45.7 MB
36
+
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ |---|---|---|---|---|---|---|---|---|
39
+ | BiseNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 28.162 ms | 12 - 46 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
40
+ | BiseNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 26.93 ms | 8 - 11 MB | FP16 | NPU | [BiseNet.so](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.so) |
41
+ | BiseNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 37.632 ms | 63 - 124 MB | FP16 | NPU | [BiseNet.onnx](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.onnx) |
42
+ | BiseNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 21.228 ms | 31 - 78 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
43
+ | BiseNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 20.423 ms | 8 - 26 MB | FP16 | NPU | [BiseNet.so](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.so) |
44
+ | BiseNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 27.205 ms | 65 - 98 MB | FP16 | NPU | [BiseNet.onnx](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.onnx) |
45
+ | BiseNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 19.018 ms | 30 - 58 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
46
+ | BiseNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 19.088 ms | 8 - 34 MB | FP16 | NPU | Use Export Script |
47
+ | BiseNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 25.844 ms | 73 - 103 MB | FP16 | NPU | [BiseNet.onnx](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.onnx) |
48
+ | BiseNet | SA7255P ADP | SA7255P | TFLITE | 485.254 ms | 30 - 56 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
49
+ | BiseNet | SA7255P ADP | SA7255P | QNN | 484.503 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
50
+ | BiseNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 28.306 ms | 32 - 109 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
51
+ | BiseNet | SA8255 (Proxy) | SA8255P Proxy | QNN | 26.505 ms | 8 - 10 MB | FP16 | NPU | Use Export Script |
52
+ | BiseNet | SA8295P ADP | SA8295P | TFLITE | 37.834 ms | 32 - 58 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
53
+ | BiseNet | SA8295P ADP | SA8295P | QNN | 35.674 ms | 3 - 20 MB | FP16 | NPU | Use Export Script |
54
+ | BiseNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 28.145 ms | 7 - 27 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
55
+ | BiseNet | SA8650 (Proxy) | SA8650P Proxy | QNN | 27.056 ms | 8 - 10 MB | FP16 | NPU | Use Export Script |
56
+ | BiseNet | SA8775P ADP | SA8775P | TFLITE | 41.242 ms | 32 - 58 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
57
+ | BiseNet | SA8775P ADP | SA8775P | QNN | 39.463 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
58
+ | BiseNet | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 485.254 ms | 30 - 56 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
59
+ | BiseNet | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 484.503 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
60
+ | BiseNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 27.951 ms | 13 - 72 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
61
+ | BiseNet | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 26.856 ms | 8 - 10 MB | FP16 | NPU | Use Export Script |
62
+ | BiseNet | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 41.242 ms | 32 - 58 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
63
+ | BiseNet | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 39.463 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
64
+ | BiseNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 35.572 ms | 32 - 80 MB | FP16 | NPU | [BiseNet.tflite](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.tflite) |
65
+ | BiseNet | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 35.517 ms | 8 - 40 MB | FP16 | NPU | Use Export Script |
66
+ | BiseNet | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 25.281 ms | 8 - 8 MB | FP16 | NPU | Use Export Script |
67
+ | BiseNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 36.024 ms | 66 - 66 MB | FP16 | NPU | [BiseNet.onnx](https://huggingface.co/qualcomm/BiseNet/blob/main/BiseNet.onnx) |
68
+
69
+
70
+
71
+
72
+ ## Installation
73
+
74
+
75
+ Install the package via pip:
76
+ ```bash
77
+ pip install qai-hub-models
78
+ ```
79
+
80
+
81
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
82
+
83
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
84
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
85
+
86
+ With this API token, you can configure your client to run models on the cloud
87
+ hosted devices.
88
+ ```bash
89
+ qai-hub configure --api_token API_TOKEN
90
+ ```
91
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
92
+
93
+
94
+
95
+ ## Demo off target
96
+
97
+ The package contains a simple end-to-end demo that downloads pre-trained
98
+ weights and runs this model on a sample input.
99
+
100
+ ```bash
101
+ python -m qai_hub_models.models.bisenet.demo
102
+ ```
103
+
104
+ The above demo runs a reference implementation of pre-processing, model
105
+ inference, and post processing.
106
+
107
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
108
+ environment, please add the following to your cell (instead of the above).
109
+ ```
110
+ %run -m qai_hub_models.models.bisenet.demo
111
+ ```
112
+
113
+
114
+ ### Run model on a cloud-hosted device
115
+
116
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
117
+ device. This script does the following:
118
+ * Performance check on-device on a cloud-hosted device
119
+ * Downloads compiled assets that can be deployed on-device for Android.
120
+ * Accuracy check between PyTorch and on-device outputs.
121
+
122
+ ```bash
123
+ python -m qai_hub_models.models.bisenet.export
124
+ ```
125
+ ```
126
+ Profiling Results
127
+ ------------------------------------------------------------
128
+ BiseNet
129
+ Device : Samsung Galaxy S23 (13)
130
+ Runtime : TFLITE
131
+ Estimated inference time (ms) : 28.2
132
+ Estimated peak memory usage (MB): [12, 46]
133
+ Total # Ops : 63
134
+ Compute Unit(s) : NPU (63 ops)
135
+ ```
136
+
137
+
138
+ ## How does this work?
139
+
140
+ This [export script](https://aihub.qualcomm.com/models/bisenet/qai_hub_models/models/BiseNet/export.py)
141
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
142
+ on-device. Lets go through each step below in detail:
143
+
144
+ Step 1: **Compile model for on-device deployment**
145
+
146
+ To compile a PyTorch model for on-device deployment, we first trace the model
147
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
148
+
149
+ ```python
150
+ import torch
151
+
152
+ import qai_hub as hub
153
+ from qai_hub_models.models.bisenet import Model
154
+
155
+ # Load the model
156
+ torch_model = Model.from_pretrained()
157
+
158
+ # Device
159
+ device = hub.Device("Samsung Galaxy S24")
160
+
161
+ # Trace model
162
+ input_shape = torch_model.get_input_spec()
163
+ sample_inputs = torch_model.sample_inputs()
164
+
165
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
166
+
167
+ # Compile model on a specific device
168
+ compile_job = hub.submit_compile_job(
169
+ model=pt_model,
170
+ device=device,
171
+ input_specs=torch_model.get_input_spec(),
172
+ )
173
+
174
+ # Get target model to run on-device
175
+ target_model = compile_job.get_target_model()
176
+
177
+ ```
178
+
179
+
180
+ Step 2: **Performance profiling on cloud-hosted device**
181
+
182
+ After compiling models from step 1. Models can be profiled model on-device using the
183
+ `target_model`. Note that this scripts runs the model on a device automatically
184
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
185
+ provided job URL to view a variety of on-device performance metrics.
186
+ ```python
187
+ profile_job = hub.submit_profile_job(
188
+ model=target_model,
189
+ device=device,
190
+ )
191
+
192
+ ```
193
+
194
+ Step 3: **Verify on-device accuracy**
195
+
196
+ To verify the accuracy of the model on-device, you can run on-device inference
197
+ on sample input data on the same cloud hosted device.
198
+ ```python
199
+ input_data = torch_model.sample_inputs()
200
+ inference_job = hub.submit_inference_job(
201
+ model=target_model,
202
+ device=device,
203
+ inputs=input_data,
204
+ )
205
+ on_device_output = inference_job.download_output_data()
206
+
207
+ ```
208
+ With the output of the model, you can compute like PSNR, relative errors or
209
+ spot check the output with expected output.
210
+
211
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
212
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
213
+
214
+
215
+
216
+ ## Run demo on a cloud-hosted device
217
+
218
+ You can also run the demo on-device.
219
+
220
+ ```bash
221
+ python -m qai_hub_models.models.bisenet.demo --on-device
222
+ ```
223
+
224
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
225
+ environment, please add the following to your cell (instead of the above).
226
+ ```
227
+ %run -m qai_hub_models.models.bisenet.demo -- --on-device
228
+ ```
229
+
230
+
231
+ ## Deploying compiled model to Android
232
+
233
+
234
+ The models can be deployed using multiple runtimes:
235
+ - TensorFlow Lite (`.tflite` export): [This
236
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
237
+ guide to deploy the .tflite model in an Android application.
238
+
239
+
240
+ - QNN (`.so` export ): This [sample
241
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
242
+ provides instructions on how to use the `.so` shared library in an Android application.
243
+
244
+
245
+ ## View on Qualcomm® AI Hub
246
+ Get more details on BiseNet's performance across various devices [here](https://aihub.qualcomm.com/models/bisenet).
247
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
248
+
249
+
250
+ ## License
251
+ * The license for the original implementation of BiseNet can be found
252
+ [here](This model's original implementation does not provide a LICENSE.).
253
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
254
+
255
+
256
+
257
+ ## References
258
+ * [BiSeNet Bilateral Segmentation Network for Real-time Semantic Segmentation](https://arxiv.org/abs/1808.00897)
259
+ * [Source Model Implementation](https://github.com/ooooverflow/BiSeNet)
260
+
261
+
262
+
263
+ ## Community
264
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
265
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
266
+
267
+