img2img-turbo / src /train_pix2pix_turbo.py
qninhdt's picture
Upload 53 files
0f9e661 verified
import os
import gc
import lpips
import clip
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
import diffusers
from diffusers.utils.import_utils import is_xformers_available
from diffusers.optimization import get_scheduler
import wandb
from cleanfid.fid import get_folder_features, build_feature_extractor, fid_from_feats
from pix2pix_turbo import Pix2Pix_Turbo
from my_utils.training_utils import parse_args_paired_training, PairedDataset
def main(args):
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True)
if args.pretrained_model_name_or_path == "stabilityai/sd-turbo":
net_pix2pix = Pix2Pix_Turbo(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae)
net_pix2pix.set_train()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
net_pix2pix.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available, please install it by running `pip install xformers`")
if args.gradient_checkpointing:
net_pix2pix.unet.enable_gradient_checkpointing()
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.gan_disc_type == "vagan_clip":
import vision_aided_loss
net_disc = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
else:
raise NotImplementedError(f"Discriminator type {args.gan_disc_type} not implemented")
net_disc = net_disc.cuda()
net_disc.requires_grad_(True)
net_disc.cv_ensemble.requires_grad_(False)
net_disc.train()
net_lpips = lpips.LPIPS(net='vgg').cuda()
net_clip, _ = clip.load("ViT-B/32", device="cuda")
net_clip.requires_grad_(False)
net_clip.eval()
net_lpips.requires_grad_(False)
# make the optimizer
layers_to_opt = []
for n, _p in net_pix2pix.unet.named_parameters():
if "lora" in n:
assert _p.requires_grad
layers_to_opt.append(_p)
layers_to_opt += list(net_pix2pix.unet.conv_in.parameters())
for n, _p in net_pix2pix.vae.named_parameters():
if "lora" in n and "vae_skip" in n:
assert _p.requires_grad
layers_to_opt.append(_p)
layers_to_opt = layers_to_opt + list(net_pix2pix.vae.decoder.skip_conv_1.parameters()) + \
list(net_pix2pix.vae.decoder.skip_conv_2.parameters()) + \
list(net_pix2pix.vae.decoder.skip_conv_3.parameters()) + \
list(net_pix2pix.vae.decoder.skip_conv_4.parameters())
optimizer = torch.optim.AdamW(layers_to_opt, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,)
lr_scheduler = get_scheduler(args.lr_scheduler, optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles, power=args.lr_power,)
optimizer_disc = torch.optim.AdamW(net_disc.parameters(), lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,)
lr_scheduler_disc = get_scheduler(args.lr_scheduler, optimizer=optimizer_disc,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles, power=args.lr_power)
dataset_train = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.train_image_prep, split="train", tokenizer=net_pix2pix.tokenizer)
dl_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers)
dataset_val = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.test_image_prep, split="test", tokenizer=net_pix2pix.tokenizer)
dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0)
# Prepare everything with our `accelerator`.
net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc = accelerator.prepare(
net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc
)
net_clip, net_lpips = accelerator.prepare(net_clip, net_lpips)
# renorm with image net statistics
t_clip_renorm = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move al networksr to device and cast to weight_dtype
net_pix2pix.to(accelerator.device, dtype=weight_dtype)
net_disc.to(accelerator.device, dtype=weight_dtype)
net_lpips.to(accelerator.device, dtype=weight_dtype)
net_clip.to(accelerator.device, dtype=weight_dtype)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
progress_bar = tqdm(range(0, args.max_train_steps), initial=0, desc="Steps",
disable=not accelerator.is_local_main_process,)
# turn off eff. attn for the discriminator
for name, module in net_disc.named_modules():
if "attn" in name:
module.fused_attn = False
# compute the reference stats for FID tracking
if accelerator.is_main_process and args.track_val_fid:
feat_model = build_feature_extractor("clean", "cuda", use_dataparallel=False)
def fn_transform(x):
x_pil = Image.fromarray(x)
out_pil = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.LANCZOS)(x_pil)
return np.array(out_pil)
ref_stats = get_folder_features(os.path.join(args.dataset_folder, "test_B"), model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_image_tranform=fn_transform, description="", verbose=True)
# start the training loop
global_step = 0
for epoch in range(0, args.num_training_epochs):
for step, batch in enumerate(dl_train):
l_acc = [net_pix2pix, net_disc]
with accelerator.accumulate(*l_acc):
x_src = batch["conditioning_pixel_values"]
x_tgt = batch["output_pixel_values"]
B, C, H, W = x_src.shape
# forward pass
x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True)
# Reconstruction loss
loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean") * args.lambda_l2
loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean() * args.lambda_lpips
loss = loss_l2 + loss_lpips
# CLIP similarity loss
if args.lambda_clipsim > 0:
x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5)
x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False)
caption_tokens = clip.tokenize(batch["caption"], truncate=True).to(x_tgt_pred.device)
clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens)
loss_clipsim = (1 - clipsim.mean() / 100)
loss += loss_clipsim * args.lambda_clipsim
accelerator.backward(loss, retain_graph=False)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
"""
Generator loss: fool the discriminator
"""
x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True)
lossG = net_disc(x_tgt_pred, for_G=True).mean() * args.lambda_gan
accelerator.backward(lossG)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
"""
Discriminator loss: fake image vs real image
"""
# real image
lossD_real = net_disc(x_tgt.detach(), for_real=True).mean() * args.lambda_gan
accelerator.backward(lossD_real.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm)
optimizer_disc.step()
lr_scheduler_disc.step()
optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
# fake image
lossD_fake = net_disc(x_tgt_pred.detach(), for_real=False).mean() * args.lambda_gan
accelerator.backward(lossD_fake.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm)
optimizer_disc.step()
optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
lossD = lossD_real + lossD_fake
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
logs = {}
# log all the losses
logs["lossG"] = lossG.detach().item()
logs["lossD"] = lossD.detach().item()
logs["loss_l2"] = loss_l2.detach().item()
logs["loss_lpips"] = loss_lpips.detach().item()
if args.lambda_clipsim > 0:
logs["loss_clipsim"] = loss_clipsim.detach().item()
progress_bar.set_postfix(**logs)
# viz some images
if global_step % args.viz_freq == 1:
log_dict = {
"train/source": [wandb.Image(x_src[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
"train/target": [wandb.Image(x_tgt[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
"train/model_output": [wandb.Image(x_tgt_pred[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)],
}
for k in log_dict:
logs[k] = log_dict[k]
# checkpoint the model
if global_step % args.checkpointing_steps == 1:
outf = os.path.join(args.output_dir, "checkpoints", f"model_{global_step}.pkl")
accelerator.unwrap_model(net_pix2pix).save_model(outf)
# compute validation set FID, L2, LPIPS, CLIP-SIM
if global_step % args.eval_freq == 1:
l_l2, l_lpips, l_clipsim = [], [], []
if args.track_val_fid:
os.makedirs(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), exist_ok=True)
for step, batch_val in enumerate(dl_val):
if step >= args.num_samples_eval:
break
x_src = batch_val["conditioning_pixel_values"].cuda()
x_tgt = batch_val["output_pixel_values"].cuda()
B, C, H, W = x_src.shape
assert B == 1, "Use batch size 1 for eval."
with torch.no_grad():
# forward pass
x_tgt_pred = accelerator.unwrap_model(net_pix2pix)(x_src, prompt_tokens=batch_val["input_ids"].cuda(), deterministic=True)
# compute the reconstruction losses
loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean")
loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean()
# compute clip similarity loss
x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5)
x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False)
caption_tokens = clip.tokenize(batch_val["caption"], truncate=True).to(x_tgt_pred.device)
clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens)
clipsim = clipsim.mean()
l_l2.append(loss_l2.item())
l_lpips.append(loss_lpips.item())
l_clipsim.append(clipsim.item())
# save output images to file for FID evaluation
if args.track_val_fid:
output_pil = transforms.ToPILImage()(x_tgt_pred[0].cpu() * 0.5 + 0.5)
outf = os.path.join(args.output_dir, "eval", f"fid_{global_step}", f"val_{step}.png")
output_pil.save(outf)
if args.track_val_fid:
curr_stats = get_folder_features(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_image_tranform=fn_transform, description="", verbose=True)
fid_score = fid_from_feats(ref_stats, curr_stats)
logs["val/clean_fid"] = fid_score
logs["val/l2"] = np.mean(l_l2)
logs["val/lpips"] = np.mean(l_lpips)
logs["val/clipsim"] = np.mean(l_clipsim)
gc.collect()
torch.cuda.empty_cache()
accelerator.log(logs, step=global_step)
if __name__ == "__main__":
args = parse_args_paired_training()
main(args)