|
import os |
|
import gc |
|
import lpips |
|
import clip |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.utils import set_seed |
|
from PIL import Image |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
|
|
import diffusers |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.optimization import get_scheduler |
|
|
|
import wandb |
|
from cleanfid.fid import get_folder_features, build_feature_extractor, fid_from_feats |
|
|
|
from pix2pix_turbo import Pix2Pix_Turbo |
|
from my_utils.training_utils import parse_args_paired_training, PairedDataset |
|
|
|
|
|
def main(args): |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
) |
|
|
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
if accelerator.is_main_process: |
|
os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True) |
|
os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True) |
|
|
|
if args.pretrained_model_name_or_path == "stabilityai/sd-turbo": |
|
net_pix2pix = Pix2Pix_Turbo(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae) |
|
net_pix2pix.set_train() |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
net_pix2pix.unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available, please install it by running `pip install xformers`") |
|
|
|
if args.gradient_checkpointing: |
|
net_pix2pix.unet.enable_gradient_checkpointing() |
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.gan_disc_type == "vagan_clip": |
|
import vision_aided_loss |
|
net_disc = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda") |
|
else: |
|
raise NotImplementedError(f"Discriminator type {args.gan_disc_type} not implemented") |
|
|
|
net_disc = net_disc.cuda() |
|
net_disc.requires_grad_(True) |
|
net_disc.cv_ensemble.requires_grad_(False) |
|
net_disc.train() |
|
|
|
net_lpips = lpips.LPIPS(net='vgg').cuda() |
|
net_clip, _ = clip.load("ViT-B/32", device="cuda") |
|
net_clip.requires_grad_(False) |
|
net_clip.eval() |
|
|
|
net_lpips.requires_grad_(False) |
|
|
|
|
|
layers_to_opt = [] |
|
for n, _p in net_pix2pix.unet.named_parameters(): |
|
if "lora" in n: |
|
assert _p.requires_grad |
|
layers_to_opt.append(_p) |
|
layers_to_opt += list(net_pix2pix.unet.conv_in.parameters()) |
|
for n, _p in net_pix2pix.vae.named_parameters(): |
|
if "lora" in n and "vae_skip" in n: |
|
assert _p.requires_grad |
|
layers_to_opt.append(_p) |
|
layers_to_opt = layers_to_opt + list(net_pix2pix.vae.decoder.skip_conv_1.parameters()) + \ |
|
list(net_pix2pix.vae.decoder.skip_conv_2.parameters()) + \ |
|
list(net_pix2pix.vae.decoder.skip_conv_3.parameters()) + \ |
|
list(net_pix2pix.vae.decoder.skip_conv_4.parameters()) |
|
|
|
optimizer = torch.optim.AdamW(layers_to_opt, lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon,) |
|
lr_scheduler = get_scheduler(args.lr_scheduler, optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, power=args.lr_power,) |
|
|
|
optimizer_disc = torch.optim.AdamW(net_disc.parameters(), lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon,) |
|
lr_scheduler_disc = get_scheduler(args.lr_scheduler, optimizer=optimizer_disc, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, power=args.lr_power) |
|
|
|
dataset_train = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.train_image_prep, split="train", tokenizer=net_pix2pix.tokenizer) |
|
dl_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers) |
|
dataset_val = PairedDataset(dataset_folder=args.dataset_folder, image_prep=args.test_image_prep, split="test", tokenizer=net_pix2pix.tokenizer) |
|
dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0) |
|
|
|
|
|
net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc = accelerator.prepare( |
|
net_pix2pix, net_disc, optimizer, optimizer_disc, dl_train, lr_scheduler, lr_scheduler_disc |
|
) |
|
net_clip, net_lpips = accelerator.prepare(net_clip, net_lpips) |
|
|
|
t_clip_renorm = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) |
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
net_pix2pix.to(accelerator.device, dtype=weight_dtype) |
|
net_disc.to(accelerator.device, dtype=weight_dtype) |
|
net_lpips.to(accelerator.device, dtype=weight_dtype) |
|
net_clip.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
progress_bar = tqdm(range(0, args.max_train_steps), initial=0, desc="Steps", |
|
disable=not accelerator.is_local_main_process,) |
|
|
|
|
|
for name, module in net_disc.named_modules(): |
|
if "attn" in name: |
|
module.fused_attn = False |
|
|
|
|
|
if accelerator.is_main_process and args.track_val_fid: |
|
feat_model = build_feature_extractor("clean", "cuda", use_dataparallel=False) |
|
|
|
def fn_transform(x): |
|
x_pil = Image.fromarray(x) |
|
out_pil = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.LANCZOS)(x_pil) |
|
return np.array(out_pil) |
|
|
|
ref_stats = get_folder_features(os.path.join(args.dataset_folder, "test_B"), model=feat_model, num_workers=0, num=None, |
|
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"), |
|
mode="clean", custom_image_tranform=fn_transform, description="", verbose=True) |
|
|
|
|
|
global_step = 0 |
|
for epoch in range(0, args.num_training_epochs): |
|
for step, batch in enumerate(dl_train): |
|
l_acc = [net_pix2pix, net_disc] |
|
with accelerator.accumulate(*l_acc): |
|
x_src = batch["conditioning_pixel_values"] |
|
x_tgt = batch["output_pixel_values"] |
|
B, C, H, W = x_src.shape |
|
|
|
x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True) |
|
|
|
loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean") * args.lambda_l2 |
|
loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean() * args.lambda_lpips |
|
loss = loss_l2 + loss_lpips |
|
|
|
if args.lambda_clipsim > 0: |
|
x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5) |
|
x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False) |
|
caption_tokens = clip.tokenize(batch["caption"], truncate=True).to(x_tgt_pred.device) |
|
clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens) |
|
loss_clipsim = (1 - clipsim.mean() / 100) |
|
loss += loss_clipsim * args.lambda_clipsim |
|
accelerator.backward(loss, retain_graph=False) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
""" |
|
Generator loss: fool the discriminator |
|
""" |
|
x_tgt_pred = net_pix2pix(x_src, prompt_tokens=batch["input_ids"], deterministic=True) |
|
lossG = net_disc(x_tgt_pred, for_G=True).mean() * args.lambda_gan |
|
accelerator.backward(lossG) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(layers_to_opt, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
""" |
|
Discriminator loss: fake image vs real image |
|
""" |
|
|
|
lossD_real = net_disc(x_tgt.detach(), for_real=True).mean() * args.lambda_gan |
|
accelerator.backward(lossD_real.mean()) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm) |
|
optimizer_disc.step() |
|
lr_scheduler_disc.step() |
|
optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
lossD_fake = net_disc(x_tgt_pred.detach(), for_real=False).mean() * args.lambda_gan |
|
accelerator.backward(lossD_fake.mean()) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(net_disc.parameters(), args.max_grad_norm) |
|
optimizer_disc.step() |
|
optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none) |
|
lossD = lossD_real + lossD_fake |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
logs = {} |
|
|
|
logs["lossG"] = lossG.detach().item() |
|
logs["lossD"] = lossD.detach().item() |
|
logs["loss_l2"] = loss_l2.detach().item() |
|
logs["loss_lpips"] = loss_lpips.detach().item() |
|
if args.lambda_clipsim > 0: |
|
logs["loss_clipsim"] = loss_clipsim.detach().item() |
|
progress_bar.set_postfix(**logs) |
|
|
|
|
|
if global_step % args.viz_freq == 1: |
|
log_dict = { |
|
"train/source": [wandb.Image(x_src[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)], |
|
"train/target": [wandb.Image(x_tgt[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)], |
|
"train/model_output": [wandb.Image(x_tgt_pred[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(B)], |
|
} |
|
for k in log_dict: |
|
logs[k] = log_dict[k] |
|
|
|
|
|
if global_step % args.checkpointing_steps == 1: |
|
outf = os.path.join(args.output_dir, "checkpoints", f"model_{global_step}.pkl") |
|
accelerator.unwrap_model(net_pix2pix).save_model(outf) |
|
|
|
|
|
if global_step % args.eval_freq == 1: |
|
l_l2, l_lpips, l_clipsim = [], [], [] |
|
if args.track_val_fid: |
|
os.makedirs(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), exist_ok=True) |
|
for step, batch_val in enumerate(dl_val): |
|
if step >= args.num_samples_eval: |
|
break |
|
x_src = batch_val["conditioning_pixel_values"].cuda() |
|
x_tgt = batch_val["output_pixel_values"].cuda() |
|
B, C, H, W = x_src.shape |
|
assert B == 1, "Use batch size 1 for eval." |
|
with torch.no_grad(): |
|
|
|
x_tgt_pred = accelerator.unwrap_model(net_pix2pix)(x_src, prompt_tokens=batch_val["input_ids"].cuda(), deterministic=True) |
|
|
|
loss_l2 = F.mse_loss(x_tgt_pred.float(), x_tgt.float(), reduction="mean") |
|
loss_lpips = net_lpips(x_tgt_pred.float(), x_tgt.float()).mean() |
|
|
|
x_tgt_pred_renorm = t_clip_renorm(x_tgt_pred * 0.5 + 0.5) |
|
x_tgt_pred_renorm = F.interpolate(x_tgt_pred_renorm, (224, 224), mode="bilinear", align_corners=False) |
|
caption_tokens = clip.tokenize(batch_val["caption"], truncate=True).to(x_tgt_pred.device) |
|
clipsim, _ = net_clip(x_tgt_pred_renorm, caption_tokens) |
|
clipsim = clipsim.mean() |
|
|
|
l_l2.append(loss_l2.item()) |
|
l_lpips.append(loss_lpips.item()) |
|
l_clipsim.append(clipsim.item()) |
|
|
|
if args.track_val_fid: |
|
output_pil = transforms.ToPILImage()(x_tgt_pred[0].cpu() * 0.5 + 0.5) |
|
outf = os.path.join(args.output_dir, "eval", f"fid_{global_step}", f"val_{step}.png") |
|
output_pil.save(outf) |
|
if args.track_val_fid: |
|
curr_stats = get_folder_features(os.path.join(args.output_dir, "eval", f"fid_{global_step}"), model=feat_model, num_workers=0, num=None, |
|
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"), |
|
mode="clean", custom_image_tranform=fn_transform, description="", verbose=True) |
|
fid_score = fid_from_feats(ref_stats, curr_stats) |
|
logs["val/clean_fid"] = fid_score |
|
logs["val/l2"] = np.mean(l_l2) |
|
logs["val/lpips"] = np.mean(l_lpips) |
|
logs["val/clipsim"] = np.mean(l_clipsim) |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
accelerator.log(logs, step=global_step) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args_paired_training() |
|
main(args) |
|
|