File size: 23,954 Bytes
0f9e661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import gc
import copy
import lpips
import torch
import wandb
from glob import glob
import numpy as np
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel
from diffusers.optimization import get_scheduler
from peft.utils import get_peft_model_state_dict
from cleanfid.fid import get_folder_features, build_feature_extractor, frechet_distance
import vision_aided_loss
from model import make_1step_sched
from cyclegan_turbo import CycleGAN_Turbo, VAE_encode, VAE_decode, initialize_unet, initialize_vae
from my_utils.training_utils import UnpairedDataset, build_transform, parse_args_unpaired_training
from my_utils.dino_struct import DinoStructureLoss
def main(args):
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, log_with=args.report_to)
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained("stabilityai/sd-turbo", subfolder="tokenizer", revision=args.revision, use_fast=False,)
noise_scheduler_1step = make_1step_sched()
text_encoder = CLIPTextModel.from_pretrained("stabilityai/sd-turbo", subfolder="text_encoder").cuda()
unet, l_modules_unet_encoder, l_modules_unet_decoder, l_modules_unet_others = initialize_unet(args.lora_rank_unet, return_lora_module_names=True)
vae_a2b, vae_lora_target_modules = initialize_vae(args.lora_rank_vae, return_lora_module_names=True)
weight_dtype = torch.float32
vae_a2b.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
if args.gan_disc_type == "vagan_clip":
net_disc_a = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
net_disc_a.cv_ensemble.requires_grad_(False) # Freeze feature extractor
net_disc_b = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
net_disc_b.cv_ensemble.requires_grad_(False) # Freeze feature extractor
crit_cycle, crit_idt = torch.nn.L1Loss(), torch.nn.L1Loss()
if args.enable_xformers_memory_efficient_attention:
unet.enable_xformers_memory_efficient_attention()
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
unet.conv_in.requires_grad_(True)
vae_b2a = copy.deepcopy(vae_a2b)
params_gen = CycleGAN_Turbo.get_traininable_params(unet, vae_a2b, vae_b2a)
vae_enc = VAE_encode(vae_a2b, vae_b2a=vae_b2a)
vae_dec = VAE_decode(vae_a2b, vae_b2a=vae_b2a)
optimizer_gen = torch.optim.AdamW(params_gen, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay, eps=args.adam_epsilon,)
params_disc = list(net_disc_a.parameters()) + list(net_disc_b.parameters())
optimizer_disc = torch.optim.AdamW(params_disc, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay, eps=args.adam_epsilon,)
dataset_train = UnpairedDataset(dataset_folder=args.dataset_folder, image_prep=args.train_img_prep, split="train", tokenizer=tokenizer)
train_dataloader = torch.utils.data.DataLoader(dataset_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers)
T_val = build_transform(args.val_img_prep)
fixed_caption_src = dataset_train.fixed_caption_src
fixed_caption_tgt = dataset_train.fixed_caption_tgt
l_images_src_test = []
for ext in ["*.jpg", "*.jpeg", "*.png", "*.bmp"]:
l_images_src_test.extend(glob(os.path.join(args.dataset_folder, "test_A", ext)))
l_images_tgt_test = []
for ext in ["*.jpg", "*.jpeg", "*.png", "*.bmp"]:
l_images_tgt_test.extend(glob(os.path.join(args.dataset_folder, "test_B", ext)))
l_images_src_test, l_images_tgt_test = sorted(l_images_src_test), sorted(l_images_tgt_test)
# make the reference FID statistics
if accelerator.is_main_process:
feat_model = build_feature_extractor("clean", "cuda", use_dataparallel=False)
"""
FID reference statistics for A -> B translation
"""
output_dir_ref = os.path.join(args.output_dir, "fid_reference_a2b")
os.makedirs(output_dir_ref, exist_ok=True)
# transform all images according to the validation transform and save them
for _path in tqdm(l_images_tgt_test):
_img = T_val(Image.open(_path).convert("RGB"))
outf = os.path.join(output_dir_ref, os.path.basename(_path)).replace(".jpg", ".png")
if not os.path.exists(outf):
_img.save(outf)
# compute the features for the reference images
ref_features = get_folder_features(output_dir_ref, model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_fn_resize=None, description="", verbose=True,
custom_image_tranform=None)
a2b_ref_mu, a2b_ref_sigma = np.mean(ref_features, axis=0), np.cov(ref_features, rowvar=False)
"""
FID reference statistics for B -> A translation
"""
# transform all images according to the validation transform and save them
output_dir_ref = os.path.join(args.output_dir, "fid_reference_b2a")
os.makedirs(output_dir_ref, exist_ok=True)
for _path in tqdm(l_images_src_test):
_img = T_val(Image.open(_path).convert("RGB"))
outf = os.path.join(output_dir_ref, os.path.basename(_path)).replace(".jpg", ".png")
if not os.path.exists(outf):
_img.save(outf)
# compute the features for the reference images
ref_features = get_folder_features(output_dir_ref, model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_fn_resize=None, description="", verbose=True,
custom_image_tranform=None)
b2a_ref_mu, b2a_ref_sigma = np.mean(ref_features, axis=0), np.cov(ref_features, rowvar=False)
lr_scheduler_gen = get_scheduler(args.lr_scheduler, optimizer=optimizer_gen,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles, power=args.lr_power)
lr_scheduler_disc = get_scheduler(args.lr_scheduler, optimizer=optimizer_disc,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles, power=args.lr_power)
net_lpips = lpips.LPIPS(net='vgg')
net_lpips.cuda()
net_lpips.requires_grad_(False)
fixed_a2b_tokens = tokenizer(fixed_caption_tgt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt").input_ids[0]
fixed_a2b_emb_base = text_encoder(fixed_a2b_tokens.cuda().unsqueeze(0))[0].detach()
fixed_b2a_tokens = tokenizer(fixed_caption_src, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt").input_ids[0]
fixed_b2a_emb_base = text_encoder(fixed_b2a_tokens.cuda().unsqueeze(0))[0].detach()
del text_encoder, tokenizer # free up some memory
unet, vae_enc, vae_dec, net_disc_a, net_disc_b = accelerator.prepare(unet, vae_enc, vae_dec, net_disc_a, net_disc_b)
net_lpips, optimizer_gen, optimizer_disc, train_dataloader, lr_scheduler_gen, lr_scheduler_disc = accelerator.prepare(
net_lpips, optimizer_gen, optimizer_disc, train_dataloader, lr_scheduler_gen, lr_scheduler_disc
)
if accelerator.is_main_process:
accelerator.init_trackers(args.tracker_project_name, config=dict(vars(args)))
first_epoch = 0
global_step = 0
progress_bar = tqdm(range(0, args.max_train_steps), initial=global_step, desc="Steps",
disable=not accelerator.is_local_main_process,)
# turn off eff. attn for the disc
for name, module in net_disc_a.named_modules():
if "attn" in name:
module.fused_attn = False
for name, module in net_disc_b.named_modules():
if "attn" in name:
module.fused_attn = False
for epoch in range(first_epoch, args.max_train_epochs):
for step, batch in enumerate(train_dataloader):
l_acc = [unet, net_disc_a, net_disc_b, vae_enc, vae_dec]
with accelerator.accumulate(*l_acc):
img_a = batch["pixel_values_src"].to(dtype=weight_dtype)
img_b = batch["pixel_values_tgt"].to(dtype=weight_dtype)
bsz = img_a.shape[0]
fixed_a2b_emb = fixed_a2b_emb_base.repeat(bsz, 1, 1).to(dtype=weight_dtype)
fixed_b2a_emb = fixed_b2a_emb_base.repeat(bsz, 1, 1).to(dtype=weight_dtype)
timesteps = torch.tensor([noise_scheduler_1step.config.num_train_timesteps - 1] * bsz, device=img_a.device).long()
"""
Cycle Objective
"""
# A -> fake B -> rec A
cyc_fake_b = CycleGAN_Turbo.forward_with_networks(img_a, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
cyc_rec_a = CycleGAN_Turbo.forward_with_networks(cyc_fake_b, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
loss_cycle_a = crit_cycle(cyc_rec_a, img_a) * args.lambda_cycle
loss_cycle_a += net_lpips(cyc_rec_a, img_a).mean() * args.lambda_cycle_lpips
# B -> fake A -> rec B
cyc_fake_a = CycleGAN_Turbo.forward_with_networks(img_b, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
cyc_rec_b = CycleGAN_Turbo.forward_with_networks(cyc_fake_a, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
loss_cycle_b = crit_cycle(cyc_rec_b, img_b) * args.lambda_cycle
loss_cycle_b += net_lpips(cyc_rec_b, img_b).mean() * args.lambda_cycle_lpips
accelerator.backward(loss_cycle_a + loss_cycle_b, retain_graph=False)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_gen, args.max_grad_norm)
optimizer_gen.step()
lr_scheduler_gen.step()
optimizer_gen.zero_grad()
"""
Generator Objective (GAN) for task a->b and b->a (fake inputs)
"""
fake_a = CycleGAN_Turbo.forward_with_networks(img_b, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
fake_b = CycleGAN_Turbo.forward_with_networks(img_a, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
loss_gan_a = net_disc_a(fake_b, for_G=True).mean() * args.lambda_gan
loss_gan_b = net_disc_b(fake_a, for_G=True).mean() * args.lambda_gan
accelerator.backward(loss_gan_a + loss_gan_b, retain_graph=False)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_gen, args.max_grad_norm)
optimizer_gen.step()
lr_scheduler_gen.step()
optimizer_gen.zero_grad()
optimizer_disc.zero_grad()
"""
Identity Objective
"""
idt_a = CycleGAN_Turbo.forward_with_networks(img_b, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
loss_idt_a = crit_idt(idt_a, img_b) * args.lambda_idt
loss_idt_a += net_lpips(idt_a, img_b).mean() * args.lambda_idt_lpips
idt_b = CycleGAN_Turbo.forward_with_networks(img_a, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
loss_idt_b = crit_idt(idt_b, img_a) * args.lambda_idt
loss_idt_b += net_lpips(idt_b, img_a).mean() * args.lambda_idt_lpips
loss_g_idt = loss_idt_a + loss_idt_b
accelerator.backward(loss_g_idt, retain_graph=False)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_gen, args.max_grad_norm)
optimizer_gen.step()
lr_scheduler_gen.step()
optimizer_gen.zero_grad()
"""
Discriminator for task a->b and b->a (fake inputs)
"""
loss_D_A_fake = net_disc_a(fake_b.detach(), for_real=False).mean() * args.lambda_gan
loss_D_B_fake = net_disc_b(fake_a.detach(), for_real=False).mean() * args.lambda_gan
loss_D_fake = (loss_D_A_fake + loss_D_B_fake) * 0.5
accelerator.backward(loss_D_fake, retain_graph=False)
if accelerator.sync_gradients:
params_to_clip = list(net_disc_a.parameters()) + list(net_disc_b.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer_disc.step()
lr_scheduler_disc.step()
optimizer_disc.zero_grad()
"""
Discriminator for task a->b and b->a (real inputs)
"""
loss_D_A_real = net_disc_a(img_b, for_real=True).mean() * args.lambda_gan
loss_D_B_real = net_disc_b(img_a, for_real=True).mean() * args.lambda_gan
loss_D_real = (loss_D_A_real + loss_D_B_real) * 0.5
accelerator.backward(loss_D_real, retain_graph=False)
if accelerator.sync_gradients:
params_to_clip = list(net_disc_a.parameters()) + list(net_disc_b.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer_disc.step()
lr_scheduler_disc.step()
optimizer_disc.zero_grad()
logs = {}
logs["cycle_a"] = loss_cycle_a.detach().item()
logs["cycle_b"] = loss_cycle_b.detach().item()
logs["gan_a"] = loss_gan_a.detach().item()
logs["gan_b"] = loss_gan_b.detach().item()
logs["disc_a"] = loss_D_A_fake.detach().item() + loss_D_A_real.detach().item()
logs["disc_b"] = loss_D_B_fake.detach().item() + loss_D_B_real.detach().item()
logs["idt_a"] = loss_idt_a.detach().item()
logs["idt_b"] = loss_idt_b.detach().item()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
eval_unet = accelerator.unwrap_model(unet)
eval_vae_enc = accelerator.unwrap_model(vae_enc)
eval_vae_dec = accelerator.unwrap_model(vae_dec)
if global_step % args.viz_freq == 1:
for tracker in accelerator.trackers:
if tracker.name == "wandb":
viz_img_a = batch["pixel_values_src"].to(dtype=weight_dtype)
viz_img_b = batch["pixel_values_tgt"].to(dtype=weight_dtype)
log_dict = {
"train/real_a": [wandb.Image(viz_img_a[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)],
"train/real_b": [wandb.Image(viz_img_b[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)],
}
log_dict["train/rec_a"] = [wandb.Image(cyc_rec_a[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
log_dict["train/rec_b"] = [wandb.Image(cyc_rec_b[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
log_dict["train/fake_b"] = [wandb.Image(fake_b[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
log_dict["train/fake_a"] = [wandb.Image(fake_a[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
tracker.log(log_dict)
gc.collect()
torch.cuda.empty_cache()
if global_step % args.checkpointing_steps == 1:
outf = os.path.join(args.output_dir, "checkpoints", f"model_{global_step}.pkl")
sd = {}
sd["l_target_modules_encoder"] = l_modules_unet_encoder
sd["l_target_modules_decoder"] = l_modules_unet_decoder
sd["l_modules_others"] = l_modules_unet_others
sd["rank_unet"] = args.lora_rank_unet
sd["sd_encoder"] = get_peft_model_state_dict(eval_unet, adapter_name="default_encoder")
sd["sd_decoder"] = get_peft_model_state_dict(eval_unet, adapter_name="default_decoder")
sd["sd_other"] = get_peft_model_state_dict(eval_unet, adapter_name="default_others")
sd["rank_vae"] = args.lora_rank_vae
sd["vae_lora_target_modules"] = vae_lora_target_modules
sd["sd_vae_enc"] = eval_vae_enc.state_dict()
sd["sd_vae_dec"] = eval_vae_dec.state_dict()
torch.save(sd, outf)
gc.collect()
torch.cuda.empty_cache()
# compute val FID and DINO-Struct scores
if global_step % args.validation_steps == 1:
_timesteps = torch.tensor([noise_scheduler_1step.config.num_train_timesteps - 1] * 1, device="cuda").long()
net_dino = DinoStructureLoss()
"""
Evaluate "A->B"
"""
fid_output_dir = os.path.join(args.output_dir, f"fid-{global_step}/samples_a2b")
os.makedirs(fid_output_dir, exist_ok=True)
l_dino_scores_a2b = []
# get val input images from domain a
for idx, input_img_path in enumerate(tqdm(l_images_src_test)):
if idx > args.validation_num_images and args.validation_num_images > 0:
break
outf = os.path.join(fid_output_dir, f"{idx}.png")
with torch.no_grad():
input_img = T_val(Image.open(input_img_path).convert("RGB"))
img_a = transforms.ToTensor()(input_img)
img_a = transforms.Normalize([0.5], [0.5])(img_a).unsqueeze(0).cuda()
eval_fake_b = CycleGAN_Turbo.forward_with_networks(img_a, "a2b", eval_vae_enc, eval_unet,
eval_vae_dec, noise_scheduler_1step, _timesteps, fixed_a2b_emb[0:1])
eval_fake_b_pil = transforms.ToPILImage()(eval_fake_b[0] * 0.5 + 0.5)
eval_fake_b_pil.save(outf)
a = net_dino.preprocess(input_img).unsqueeze(0).cuda()
b = net_dino.preprocess(eval_fake_b_pil).unsqueeze(0).cuda()
dino_ssim = net_dino.calculate_global_ssim_loss(a, b).item()
l_dino_scores_a2b.append(dino_ssim)
dino_score_a2b = np.mean(l_dino_scores_a2b)
gen_features = get_folder_features(fid_output_dir, model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_fn_resize=None, description="", verbose=True,
custom_image_tranform=None)
ed_mu, ed_sigma = np.mean(gen_features, axis=0), np.cov(gen_features, rowvar=False)
score_fid_a2b = frechet_distance(a2b_ref_mu, a2b_ref_sigma, ed_mu, ed_sigma)
print(f"step={global_step}, fid(a2b)={score_fid_a2b:.2f}, dino(a2b)={dino_score_a2b:.3f}")
"""
compute FID for "B->A"
"""
fid_output_dir = os.path.join(args.output_dir, f"fid-{global_step}/samples_b2a")
os.makedirs(fid_output_dir, exist_ok=True)
l_dino_scores_b2a = []
# get val input images from domain b
for idx, input_img_path in enumerate(tqdm(l_images_tgt_test)):
if idx > args.validation_num_images and args.validation_num_images > 0:
break
outf = os.path.join(fid_output_dir, f"{idx}.png")
with torch.no_grad():
input_img = T_val(Image.open(input_img_path).convert("RGB"))
img_b = transforms.ToTensor()(input_img)
img_b = transforms.Normalize([0.5], [0.5])(img_b).unsqueeze(0).cuda()
eval_fake_a = CycleGAN_Turbo.forward_with_networks(img_b, "b2a", eval_vae_enc, eval_unet,
eval_vae_dec, noise_scheduler_1step, _timesteps, fixed_b2a_emb[0:1])
eval_fake_a_pil = transforms.ToPILImage()(eval_fake_a[0] * 0.5 + 0.5)
eval_fake_a_pil.save(outf)
a = net_dino.preprocess(input_img).unsqueeze(0).cuda()
b = net_dino.preprocess(eval_fake_a_pil).unsqueeze(0).cuda()
dino_ssim = net_dino.calculate_global_ssim_loss(a, b).item()
l_dino_scores_b2a.append(dino_ssim)
dino_score_b2a = np.mean(l_dino_scores_b2a)
gen_features = get_folder_features(fid_output_dir, model=feat_model, num_workers=0, num=None,
shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
mode="clean", custom_fn_resize=None, description="", verbose=True,
custom_image_tranform=None)
ed_mu, ed_sigma = np.mean(gen_features, axis=0), np.cov(gen_features, rowvar=False)
score_fid_b2a = frechet_distance(b2a_ref_mu, b2a_ref_sigma, ed_mu, ed_sigma)
print(f"step={global_step}, fid(b2a)={score_fid_b2a}, dino(b2a)={dino_score_b2a:.3f}")
logs["val/fid_a2b"], logs["val/fid_b2a"] = score_fid_a2b, score_fid_b2a
logs["val/dino_struct_a2b"], logs["val/dino_struct_b2a"] = dino_score_a2b, dino_score_b2a
del net_dino # free up memory
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if __name__ == "__main__":
args = parse_args_unpaired_training()
main(args)
|