--- license: apache-2.0 datasets: - ShengbinYue/DISC-Law-SFT base_model: - Qwen/Qwen2.5-Coder-7B library_name: adapter-transformers tags: - legal --- # Qwen2.5-Coder-7B-LoRA-Law This repository contains trained weights for a fine-tuned version of the Qwen2.5-Coder-7B-Instruct model, specialized for answering legal questions in Chinese. The model is fine-tuned using LoRA on the DISC-Law-SFT dataset. ## Model Description This model is intended to provide informative and comprehensive answers to legal questions posed in Chinese. ## Training Details * **Base Model:** Qwen/Qwen2.5-Coder-7B-Instruct * **Dataset:** [DISC-Law-SFT](https://huggingface.co/datasets/ShengbinYue/DISC-Law-SFT), specifically the `DISC-Law-SFT-Pair-QA-released.jsonl` subset. * **Fine-tuning Method:** LoRA * **LoRA Parameters:** * `r`: 64 * `lora_alpha`: 16 * `lora_dropout`: 0.1 * **Training Hyperparameters:** * `per_device_train_batch_size`: 4 * `gradient_accumulation_steps`: 8 * `learning_rate`: 2e-5 * `num_train_epochs`: 2 * **System Prompt:** 你是一个法律专家,请根据用户的问题给出专业的回答 ## How to Merge Lora weights ```python from peft import PeftModel from transformers import AutoModelForCausalLM import torch import os from modelscope import AutoTokenizer import shutil # 保证原始模型的各个文件不遗漏保存到merge_path中 def copy_files_not_in_B(A_path, B_path): """ Copies files from directory A to directory B if they exist in A but not in B. :param A_path: Path to the source directory (A). :param B_path: Path to the destination directory (B). """ # 保证路径存在 if not os.path.exists(A_path): raise FileNotFoundError(f"The directory {A_path} does not exist.") if not os.path.exists(B_path): os.makedirs(B_path) # 获取路径A中所有非权重文件 files_in_A = os.listdir(A_path) files_in_A = set([file for file in files_in_A if not (".bin" in file or "safetensors" in file)]) # List all files in directory B files_in_B = set(os.listdir(B_path)) # 找到所有A中存在但B中不存在的文件 files_to_copy = files_in_A - files_in_B # 将文件或文件夹复制到B路径下 for file in files_to_copy: src_path = os.path.join(A_path, file) dst_path = os.path.join(B_path, file) if os.path.isdir(src_path): # 复制目录及其内容 shutil.copytree(src_path, dst_path) else: # 复制文件 shutil.copy2(src_path, dst_path) def merge_lora_to_base_model(): model_name_or_path = '...' # 原模型地址 adapter_name_or_path = '...' # 微调后模型的保存地址 save_path = '...' # 如果文件夹不存在,就创建 if not os.path.exists(save_path): os.makedirs(save_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True,) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map="auto" ) # 加载保存的 Adapter model = PeftModel.from_pretrained(model, adapter_name_or_path, device_map="auto",trust_remote_code=True) # 将 Adapter 合并到基础模型中 merged_model = model.merge_and_unload() # PEFT 的方法将 Adapter 权重合并到基础模型 # 保存合并后的模型 tokenizer.save_pretrained(save_path) merged_model.save_pretrained(save_path, safe_serialization=False) copy_files_not_in_B(model_name_or_path, save_path) print(f"合并后的模型已保存至: {save_path}") if __name__ == '__main__': merge_lora_to_base_model()