{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5b286176c0>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [ 24 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 4 ], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 10000384, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1675891219129617834, "learning_rate": { ":type:": "", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "tensorboard_log": "runs/BipedalWalkerHardcore-v3__trpo__3048602778__1675891215/BipedalWalkerHardcore-v3", "lr_schedule": { ":type:": "", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4=" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAGENNDu+U5i3nSa5Oi0Sg7xjNrw9OFb0us88XD/1NTY7AACAP7FTBD3IUfS6GpZaP/jLrDoAAIA/ZrLhPo9C5D6iP+w+Wab6Pvq6CD/nOho/zYo1P3TMYj8AAIA/AACAP9YNNDuWR363rIiaOjgSg7wkTLw9n+7LukU7XD91SSc7AACAP49/BD0m68u6eZRaPxk5kDoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAksYhpSMAUOUdJRSlC4=" }, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3.8399999999993994e-05, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcjRHVn6cZcCUhpRSlIwBbJRNjgaMAXSUR0DWPd1Xp4bCdX2UKGgGaAloD0MIfH2tS40HWMCUhpRSlGgVTdAHaBZHQNY/aI5ksjF1fZQoaAZoCWgPQwhNEkvK3eFgwJSGlFKUaBVN0AdoFkdA1j91Sn+AE3V9lChoBmgJaA9DCFG+oIUE+1bAlIaUUpRoFU3QB2gWR0DWQQIGTs6adX2UKGgGaAloD0MI5geu8oSQYMCUhpRSlGgVTdAHaBZHQNZBDsOLBKt1fZQoaAZoCWgPQwhtAaH18GpawJSGlFKUaBVL32gWR0DWQSBaB7NTdX2UKGgGaAloD0MI6ITQQZe/VMCUhpRSlGgVTdAHaBZHQNZIieCPIXF1fZQoaAZoCWgPQwi+Ed2zrrxWwJSGlFKUaBVN0AdoFkdA1kihSOinHnV9lChoBmgJaA9DCKt7ZHPVtVrAlIaUUpRoFU1ZAWgWR0DWSMc3R5TqdX2UKGgGaAloD0MIGXEBaJTkXsCUhpRSlGgVTRUDaBZHQNZJaJjQRf51fZQoaAZoCWgPQwiTxf1Hpi5dwJSGlFKUaBVNwwFoFkdA1kndwsoUjHV9lChoBmgJaA9DCIzZklWRu2HAlIaUUpRoFU3QB2gWR0DWSjPMr3CbdX2UKGgGaAloD0MImzxlNV39X8CUhpRSlGgVTdAHaBZHQNZLUMaS9uh1fZQoaAZoCWgPQwjxEpz6QJZawJSGlFKUaBVNZAFoFkdA1kt/HpbD/HV9lChoBmgJaA9DCJC/tKhPklfAlIaUUpRoFU3QB2gWR0DWS5f114gSdX2UKGgGaAloD0MI5xn7ko3EXMCUhpRSlGgVTdAHaBZHQNZM9ovN/vx1fZQoaAZoCWgPQwhbfXVVoFdawJSGlFKUaBVN0AdoFkdA1k0UZOi35XV9lChoBmgJaA9DCNPaNLZXgGHAlIaUUpRoFU3QB2gWR0DWTqpVAAyVdX2UKGgGaAloD0MIo8nFGFgwWcCUhpRSlGgVTdAHaBZHQNZO0IKhL5B1fZQoaAZoCWgPQwgShCugUPBbwJSGlFKUaBVNhwFoFkdA1k8PZq20A3V9lChoBmgJaA9DCFnaqbncAVrAlIaUUpRoFU09AWgWR0DWT3ZpSJj2dX2UKGgGaAloD0MIAU9auKwfV8CUhpRSlGgVS6RoFkdA1k+QvIwM6XV9lChoBmgJaA9DCAGFevoIv2DAlIaUUpRoFU3QB2gWR0DWUEzpgTh6dX2UKGgGaAloD0MI+BxYjhBJZsCUhpRSlGgVTdAHaBZHQNZRIAhW5pd1fZQoaAZoCWgPQwg/qmG/J0ZWwJSGlFKUaBVN0AdoFkdA1lcJP0qYq3V9lChoBmgJaA9DCM7DCUynDVzAlIaUUpRoFUthaBZHQNZXFjNUwSJ1fZQoaAZoCWgPQwgBbECEuGdWwJSGlFKUaBVN0AdoFkdA1lfd3zMA3nV9lChoBmgJaA9DCLL2d7ZHF2DAlIaUUpRoFUuYaBZHQNZX8ndweeZ1fZQoaAZoCWgPQwjZJhWNtQ1gwJSGlFKUaBVN0AdoFkdA1liwXKKYRnV9lChoBmgJaA9DCCbGMv0SSVjAlIaUUpRoFU3QB2gWR0DWWYyu5jH5dX2UKGgGaAloD0MIMewwJv32XcCUhpRSlGgVTdAHaBZHQNZaSuzlcQl1fZQoaAZoCWgPQwhV203wTbJZwJSGlFKUaBVN0AdoFkdA1lsnnjQzDXV9lChoBmgJaA9DCENYjSUsqGHAlIaUUpRoFU3QB2gWR0DWW+Yd4mkWdX2UKGgGaAloD0MIiGNd3EajVcCUhpRSlGgVTdAHaBZHQNZcwd2gWad1fZQoaAZoCWgPQwjRsu4fi3VhwJSGlFKUaBVN0AdoFkdA1l2CHxz7uXV9lChoBmgJaA9DCOgRo+cWm17AlIaUUpRoFU3QB2gWR0DWXlw5IYm+dX2UKGgGaAloD0MIokW28/2CVMCUhpRSlGgVTdAHaBZHQNZfGnfZVXF1fZQoaAZoCWgPQwhcqz3shdhgwJSGlFKUaBVN0AdoFkdA1l/0C+De03V9lChoBmgJaA9DCO+OjNXmH1vAlIaUUpRoFU3QB2gWR0DWZb1jSXt0dX2UKGgGaAloD0MI5Uf8ijU3VcCUhpRSlGgVTdAHaBZHQNZmmF8ohIR1fZQoaAZoCWgPQwiIZTOHpFpcwJSGlFKUaBVN0AdoFkdA1mcmZ1V5r3V9lChoBmgJaA9DCD/+0qI+HlrAlIaUUpRoFU3QB2gWR0DWaDF7mdRSdX2UKGgGaAloD0MI14f1Rq0jXMCUhpRSlGgVTaYBaBZHQNZoadjgAIZ1fZQoaAZoCWgPQwjcDg2L0bRgwJSGlFKUaBVN0AdoFkdA1mi5vqC6H3V9lChoBmgJaA9DCOpdvB+3GlrAlIaUUpRoFU3QB2gWR0DWagIFNcnmdX2UKGgGaAloD0MIgAwdO6gXZsCUhpRSlGgVTdAHaBZHQNZqS//rB0p1fZQoaAZoCWgPQwjB49u7BuBbwJSGlFKUaBVNjAFoFkdA1mq68JUo8nV9lChoBmgJaA9DCHuEmiHVRmHAlIaUUpRoFU3QB2gWR0DWa5s6ij+KdX2UKGgGaAloD0MIGEFjJlHfWsCUhpRSlGgVTdAHaBZHQNZsVORPoFF1fZQoaAZoCWgPQwj/rs+c9RlhwJSGlFKUaBVNGARoFkdA1mxuzKLbYnV9lChoBmgJaA9DCHpTkQrjCGLAlIaUUpRoFU3QB2gWR0DWbe8TJyQxdX2UKGgGaAloD0MItKz7x0LEXsCUhpRSlGgVTdAHaBZHQNZuCMr3Cbd1fZQoaAZoCWgPQwhy+KQTiSNhwJSGlFKUaBVN0AdoFkdA1m+CKmsNlXV9lChoBmgJaA9DCHYaaam8IGDAlIaUUpRoFU3QB2gWR0DWdL8Cr92pdX2UKGgGaAloD0MILeqT3GG+U8CUhpRSlGgVTdAHaBZHQNZ2HohyKel1fZQoaAZoCWgPQwgzcEBLV2BRwJSGlFKUaBVN0AdoFkdA1nY4UYsND3V9lChoBmgJaA9DCLgDdcqj8mTAlIaUUpRoFU3pBmgWR0DWd3qOwPiDdX2UKGgGaAloD0MINnUeFf8aVcCUhpRSlGgVTdAHaBZHQNZ3tMDjin51fZQoaAZoCWgPQwixbycR4W1dwJSGlFKUaBVN0AdoFkdA1nkN9QXQ+nV9lChoBmgJaA9DCDUqcLINlVnAlIaUUpRoFU3QB2gWR0DWeRUB0ZFYdX2UKGgGaAloD0MI5A8GnnuDYcCUhpRSlGgVTdAHaBZHQNZ6qC6lLvl1fZQoaAZoCWgPQwjImSZsP+VdwJSGlFKUaBVN0AdoFkdA1nqvFrl/6XV9lChoBmgJaA9DCBHhXwSNAVfAlIaUUpRoFU3QB2gWR0DWfD9R+BpYdX2UKGgGaAloD0MIgZICC2BPVsCUhpRSlGgVTdAHaBZHQNZ8RqqGUOd1fZQoaAZoCWgPQwjfNehLb/1ewJSGlFKUaBVN9wJoFkdA1nzqJZGKAXV9lChoBmgJaA9DCCAKZkzBgF/AlIaUUpRoFU3QB2gWR0DWfdgjxCpndX2UKGgGaAloD0MIwFlKlpNWXsCUhpRSlGgVTdAHaBZHQNaDpcB+4LF1fZQoaAZoCWgPQwgf2scK/oVhwJSGlFKUaBVN0AdoFkdA1oSIfpljE3V9lChoBmgJaA9DCNldoKTAn13AlIaUUpRoFU3QB2gWR0DWhTAoqkM1dX2UKGgGaAloD0MIJA9EFmmXY8CUhpRSlGgVTdAHaBZHQNaGGo/Rmbt1fZQoaAZoCWgPQwisyVNW0+RZwJSGlFKUaBVN0AdoFkdA1obCbaAWi3V9lChoBmgJaA9DCHsVGR2QpFnAlIaUUpRoFU05AWgWR0DWhwAzeoDQdX2UKGgGaAloD0MIHOp3YWufXcCUhpRSlGgVTdAHaBZHQNaHy38GcF11fZQoaAZoCWgPQwgzG2SSEcdgwJSGlFKUaBVNxgNoFkdA1ofZFRpDeHV9lChoBmgJaA9DCBMqOLwgwljAlIaUUpRoFU0PAWgWR0DWh/wpkPMCdX2UKGgGaAloD0MIkXu6umO4WMCUhpRSlGgVS/xoFkdA1ogGsrupj3V9lChoBmgJaA9DCK1POSaLQl3AlIaUUpRoFU3QB2gWR0DWiZFwEQoTdX2UKGgGaAloD0MIjiEAOPbQX8CUhpRSlGgVTdAHaBZHQNaJmwmReTp1fZQoaAZoCWgPQwhoBBvXvyJbwJSGlFKUaBVNYAFoFkdA1on69kz413V9lChoBmgJaA9DCFGiJY+n9VXAlIaUUpRoFU3QB2gWR0DWizG/rSmZdX2UKGgGaAloD0MIT1d3LLYSYcCUhpRSlGgVTdAHaBZHQNaLlQuuiex1fZQoaAZoCWgPQwjn4m97gotXwJSGlFKUaBVN0AdoFkdA1ozL0NjLCHV9lChoBmgJaA9DCKcjgJvFFGbAlIaUUpRoFU3gBmgWR0DWjNS7cwg1dX2UKGgGaAloD0MI001iEFjKWMCUhpRSlGgVS/NoFkdA1o0oO/L1VnV9lChoBmgJaA9DCJtY4Cu6IFfAlIaUUpRoFU3QB2gWR0DWk3i59Vm0dX2UKGgGaAloD0MI2NR5VPxkX8CUhpRSlGgVTdAHaBZHQNaTwTK9wm51fZQoaAZoCWgPQwhd3hyu1atbwJSGlFKUaBVN0AdoFkdA1pULRPXTVnV9lChoBmgJaA9DCOSeru5YBVvAlIaUUpRoFU3QB2gWR0DWlS1MYdhidX2UKGgGaAloD0MIYTJVMCrVW8CUhpRSlGgVTdAHaBZHQNaWmwgcLjR1fZQoaAZoCWgPQwgS2QdZFqBfwJSGlFKUaBVN0AdoFkdA1pa+gTyrgnV9lChoBmgJaA9DCL+6KlCLLFzAlIaUUpRoFU2xAWgWR0DWlxF53TuwdX2UKGgGaAloD0MIETY8vVJPXMCUhpRSlGgVTa0BaBZHQNaXUlHJ9y91fZQoaAZoCWgPQwgWF0flJvtVwJSGlFKUaBVN0AdoFkdA1phSLA57xHV9lChoBmgJaA9DCF7yP/m7W2DAlIaUUpRoFU3QB2gWR0DWmOfhybQUdX2UKGgGaAloD0MIRwA3ixeBV8CUhpRSlGgVS79oFkdA1pkG47A+IXV9lChoBmgJaA9DCNV5VPzfPl3AlIaUUpRoFU3QB2gWR0DWmehDfFaTdX2UKGgGaAloD0MI0uP3Nn2MZMCUhpRSlGgVTdAHaBZHQNaanyKR+0B1fZQoaAZoCWgPQwhh/DTuzaRcwJSGlFKUaBVN0AdoFkdA1pt8/wAlwHV9lChoBmgJaA9DCBo1XyUfjlnAlIaUUpRoFU0rAWgWR0DWm+YcaOxTdX2UKGgGaAloD0MIH/KWqx/xVsCUhpRSlGgVTdAHaBZHQNacNV18stl1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 4883, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.0, "max_grad_norm": 0.0, "normalize_advantage": true, "batch_size": 128, "cg_max_steps": 25, "cg_damping": 0.1, "line_search_shrinking_factor": 0.8, "line_search_max_iter": 10, "target_kl": 0.01, "n_critic_updates": 20, "sub_sampling_factor": 1 }