{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff595d74100>" }, "verbose": 1, "policy_kwargs": { "net_arch": [ 400, 300 ] }, "observation_space": { ":type:": "", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [ 24 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 4 ], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 1000436, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": { ":type:": "", ":serialized:": "gAWVGgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWIAAAAAAAAACamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5RoD0sEhZRoE3SUUpR1Yi4=", "_mu": "[0. 0. 0. 0.]", "_sigma": "[0.1 0.1 0.1 0.1]" }, "start_time": 1672164945631923253, "learning_rate": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "tensorboard_log": "runs/BipedalWalker-v3__td3__803448186__1672164943/BipedalWalker-v3", "lr_schedule": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAJLuwLyjAAe9j9c9P+1RYDtJWSA+pQeAvyCtW77YGSQ/AACAP7flcz9h0B0/aElqvvn/fz8AAAAAAyLEPqrFxj651M0+hdfaPmaI8T5jiwc/DisbPzCYPT8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4=" }, "_episode_num": 1298, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00043600000000010297, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlKRrJl8MdECUhpRSlIwBbJRNxwKMAXSUR0CuizoyTINmdX2UKGgGaAloD0MIDcNHxNQEdECUhpRSlGgVTc8CaBZHQK6RJNTtLL91fZQoaAZoCWgPQwhn8WJhSPdzQJSGlFKUaBVN1wJoFkdArpdDu2JBPnV9lChoBmgJaA9DCHV3nQ05cXNAlIaUUpRoFU0pA2gWR0CunY1F6RhddX2UKGgGaAloD0MIHLPsSeDCc0CUhpRSlGgVTesCaBZHQK6kRabF0gd1fZQoaAZoCWgPQwgeUaG6+e5zQJSGlFKUaBVN1wJoFkdArqpsQ5FPSHV9lChoBmgJaA9DCFjIXBnUBHRAlIaUUpRoFU3fAmgWR0CusIFcyFfzdX2UKGgGaAloD0MIl6lJ8MYBdECUhpRSlGgVTeYCaBZHQK62qnBtUGV1fZQoaAZoCWgPQwheFD3wccFzQJSGlFKUaBVN4wJoFkdArrzT0L+glHV9lChoBmgJaA9DCIeGxahr8HNAlIaUUpRoFU3hAmgWR0Cuwu9AgPmQdX2UKGgGaAloD0MIfVwbKsbhc0CUhpRSlGgVTeICaBZHQK7JB/95yEN1fZQoaAZoCWgPQwgkmGpmbZlzQJSGlFKUaBVN7AJoFkdArs8UTSLIgnV9lChoBmgJaA9DCDs1lxtM23NAlIaUUpRoFU3xAmgWR0Cu1UAMDwH8dX2UKGgGaAloD0MIXWqEfmbPc0CUhpRSlGgVTesCaBZHQK7bfJFLFn91fZQoaAZoCWgPQwhNZyeDo7hzQJSGlFKUaBVN2AJoFkdAruGtBv73wnV9lChoBmgJaA9DCA4V4/zNl3NAlIaUUpRoFU31AmgWR0Cu58OI68xsdX2UKGgGaAloD0MIOBPThZjQc0CUhpRSlGgVTekCaBZHQK7uLwNLDht1fZQoaAZoCWgPQwiGIXL6+uJzQJSGlFKUaBVN4AJoFkdArvRyqMm4RXV9lChoBmgJaA9DCGnFNxT+AnRAlIaUUpRoFU3XAmgWR0Cu+pIScslLdX2UKGgGaAloD0MI2PLK9Xbuc0CUhpRSlGgVTdgCaBZHQK8AhqzqrzZ1fZQoaAZoCWgPQwhGmngHeNlzQJSGlFKUaBVN4wJoFkdArwZ84FRpDnV9lChoBmgJaA9DCD1fs1z2q3NAlIaUUpRoFU3uAmgWR0CvDKXxOLzgdX2UKGgGaAloD0MIAALWql2qc0CUhpRSlGgVTfsCaBZHQK8S6Dr7fpF1fZQoaAZoCWgPQwhyio7k8qdzQJSGlFKUaBVN/QJoFkdArxk+p++dsnV9lChoBmgJaA9DCG76sx9p0HNAlIaUUpRoFU3VAmgWR0CvH6WuPmxMdX2UKGgGaAloD0MITDj0Fg+fJECUhpRSlGgVTTEBaBZHQK8lLwn6VMV1fZQoaAZoCWgPQwjHDb+bbtJzQJSGlFKUaBVN3gJoFkdArygz3Ehq03V9lChoBmgJaA9DCBr35jdMTWBAlIaUUpRoFU03AmgWR0CvLg0g0TDgdX2UKGgGaAloD0MIUG1wInqyc0CUhpRSlGgVTRoDaBZHQK82x2ZiNKh1fZQoaAZoCWgPQwjl0viF1wl0QJSGlFKUaBVNwwJoFkdArz1Jm03OwHV9lChoBmgJaA9DCO/hkuOO2XNAlIaUUpRoFU3YAmgWR0CvQzT2exwAdX2UKGgGaAloD0MI+fTYloHLc0CUhpRSlGgVTewCaBZHQK9JR4k/r0J1fZQoaAZoCWgPQwjuQQjI1+NzQJSGlFKUaBVNzAJoFkdAr094EwFkhHV9lChoBmgJaA9DCPp6vmb56XNAlIaUUpRoFU3CAmgWR0CvVWGgzxgBdX2UKGgGaAloD0MIq3ZNSKsFdECUhpRSlGgVTbICaBZHQK9bNsyi22J1fZQoaAZoCWgPQwgpIsMq3stzQJSGlFKUaBVN6QJoFkdAr2DyTbFju3V9lChoBmgJaA9DCNgsl40OonNAlIaUUpRoFU31AmgWR0CvZyspgCwKdX2UKGgGaAloD0MIks1V8xwrXkCUhpRSlGgVTTgCaBZHQK9tPvw3HaN1fZQoaAZoCWgPQwgXRQ98DAheQJSGlFKUaBVNJQJoFkdAr3HzkELYw3V9lChoBmgJaA9DCJEr9SzI3HNAlIaUUpRoFU3yAmgWR0CvdsLbQC0XdX2UKGgGaAloD0MIp60RwThhVUCUhpRSlGgVTcgBaBZHQK98sW2w3YN1fZQoaAZoCWgPQwgbRkHweONnQJSGlFKUaBVNswJoFkdAr4C+3rleW3V9lChoBmgJaA9DCM45eCZ0CnRAlIaUUpRoFU3IAmgWR0Cvhnv1DjR2dX2UKGgGaAloD0MI3ElE+JeiZUCUhpRSlGgVTXUCaBZHQK+MP7O3UhF1fZQoaAZoCWgPQwg7AOKuXtJzQJSGlFKUaBVNygJoFkdAr5GMJBw++3V9lChoBmgJaA9DCHHK3Hxj4HNAlIaUUpRoFU3IAmgWR0Cvl3vgm7aqdX2UKGgGaAloD0MIkszqHa6mc0CUhpRSlGgVTfQCaBZHQK+ddMj/uLJ1fZQoaAZoCWgPQwgl58QeWrZzQJSGlFKUaBVN4wJoFkdAr6O3dyksSXV9lChoBmgJaA9DCCFblq9LwnNAlIaUUpRoFU0AA2gWR0CvqdowdsBRdX2UKGgGaAloD0MIUMJM2//+c0CUhpRSlGgVTdoCaBZHQK+wKWUr08N1fZQoaAZoCWgPQwgqcR3jyht0QJSGlFKUaBVNyAJoFkdAr7YzlkpZwHV9lChoBmgJaA9DCGrAIOmTD3RAlIaUUpRoFU3SAmgWR0CvvA8Zk079dX2UKGgGaAloD0MI/KpcqPwnWECUhpRSlGgVTe0BaBZHQK/Btxz7uUl1fZQoaAZoCWgPQwjb+BOVDfRzQJSGlFKUaBVNwgJoFkdAr8YAT238XXV9lChoBmgJaA9DCAjkEkfeunNAlIaUUpRoFU1HA2gWR0Cvy/vjGT9sdX2UKGgGaAloD0MIPNhitw/Vc0CUhpRSlGgVTfwCaBZHQK/S3+717IF1fZQoaAZoCWgPQwgSh2wgHS10QJSGlFKUaBVN1gJoFkdAr9kwdjoZAXV9lChoBmgJaA9DCBe7fVYZAXRAlIaUUpRoFU3TAmgWR0Cv3zbgCOm0dX2UKGgGaAloD0MIo5HPK17Ic0CUhpRSlGgVTd0CaBZHQK/lPVqesgd1fZQoaAZoCWgPQwh16PS8G8cxQJSGlFKUaBVNPgFoFkdAr+rPdZaFEnV9lChoBmgJaA9DCOLLRBFSxnNAlIaUUpRoFU3XAmgWR0Cv7d8oH9m6dX2UKGgGaAloD0MIeEFEatrDc0CUhpRSlGgVTdcCaBZHQK/z3uIAOrh1fZQoaAZoCWgPQwimSL4SyNpzQJSGlFKUaBVN3gJoFkdAr/nnHo5ggHV9lChoBmgJaA9DCFCPbRlw23NAlIaUUpRoFU3uAmgWR0Cv//5WilBQdX2UKGgGaAloD0MIeAyP/WwBdECUhpRSlGgVTdACaBZHQLAE94wRGtp1fZQoaAZoCWgPQwjqzD0kPPlzQJSGlFKUaBVNuAJoFkdAsAf0E4ecQXV9lChoBmgJaA9DCEdWfhnM7XNAlIaUUpRoFU3tAmgWR0CwCt+JpFkQdX2UKGgGaAloD0MITdh+MgbRc0CUhpRSlGgVTdoCaBZHQLAN7zQeFL51fZQoaAZoCWgPQwgnvASnft1zQJSGlFKUaBVN4AJoFkdAsBDxA9mpVHV9lChoBmgJaA9DCEPhs3Ww+XNAlIaUUpRoFU3cAmgWR0CwE/1SjxkNdX2UKGgGaAloD0MIbCV0l8Tac0CUhpRSlGgVTb8CaBZHQLAXBWsRxtJ1fZQoaAZoCWgPQwiCWDZzCA90QJSGlFKUaBVNsgJoFkdAsBntL8Jla3V9lChoBmgJaA9DCJqYLsSq5XNAlIaUUpRoFU3XAmgWR0CwHNDhky1vdX2UKGgGaAloD0MI3ncMj33zc0CUhpRSlGgVTdECaBZHQLAf1k8A7xN1fZQoaAZoCWgPQwha1ZKO8vRzQJSGlFKUaBVN2QJoFkdAsCLSLUCq63V9lChoBmgJaA9DCNbEAl/R53NAlIaUUpRoFU3pAmgWR0CwJc4VVPvbdX2UKGgGaAloD0MIB+qUR3e+c0CUhpRSlGgVTeQCaBZHQLAo3mdAgPp1fZQoaAZoCWgPQwgKavgWFsZzQJSGlFKUaBVNBQNoFkdAsCvyb3Gn43V9lChoBmgJaA9DCJceTfXkxnNAlIaUUpRoFU3nAmgWR0CwLyGlQ/HHdX2UKGgGaAloD0MIL/1LUlnWc0CUhpRSlGgVTdcCaBZHQLAyNKJVKf51fZQoaAZoCWgPQwh1rFJ6JrFzQJSGlFKUaBVN8wJoFkdAsDU7tShrWXV9lChoBmgJaA9DCCgPC7WmBHRAlIaUUpRoFU2/AmgWR0CwOFX1jAi3dX2UKGgGaAloD0MIhJ7Nqk//c0CUhpRSlGgVTdkCaBZHQLA7QPBzmwJ1fZQoaAZoCWgPQwiRXz/ERvJzQJSGlFKUaBVN2AJoFkdAsD48KMNtqHV9lChoBmgJaA9DCJQyqaGNLWVAlIaUUpRoFU2DAmgWR0CwQSnfhuO0dX2UKGgGaAloD0MIJ9vAHagzWkCUhpRSlGgVTRYCaBZHQLBDw0KJEYx1fZQoaAZoCWgPQwiYwK27uexzQJSGlFKUaBVN2gJoFkdAsEYXASFoMHV9lChoBmgJaA9DCOGaO/rf6nNAlIaUUpRoFU3hAmgWR0CwSR7QTmGNdX2UKGgGaAloD0MIiV5GsRyuc0CUhpRSlGgVTeUCaBZHQLBMKmzByjp1fZQoaAZoCWgPQwhBSuza3hJ0QJSGlFKUaBVNzwJoFkdAsE85t52Qn3V9lChoBmgJaA9DCDhKXp3j3XNAlIaUUpRoFU3nAmgWR0CwUju5vtMPdX2UKGgGaAloD0MIiLzl6kfOc0CUhpRSlGgVTeoCaBZHQLBVSwQDmr91fZQoaAZoCWgPQwi8V61MuOlzQJSGlFKUaBVN3QJoFkdAsFhci0OVgXV9lChoBmgJaA9DCD9Tr1sE8XNAlIaUUpRoFU3qAmgWR0CwW2l6AvtddX2UKGgGaAloD0MIz9ptF5oCdECUhpRSlGgVTcwCaBZHQLBefekYXO51fZQoaAZoCWgPQwiILNLEO8BzQJSGlFKUaBVN7AJoFkdAsGF3BacI7nV9lChoBmgJaA9DCLnCu1wE/XNAlIaUUpRoFU3FAmgWR0CwZIdlqagFdX2UKGgGaAloD0MIH/RsVj2gc0CUhpRSlGgVTdwCaBZHQLBne+b3Gn51fZQoaAZoCWgPQwggRgiP9udzQJSGlFKUaBVN7AJoFkdAsGqCeqaPS3V9lChoBmgJaA9DCJW1TfH4DHRAlIaUUpRoFU27AmgWR0Cwbq4TfzjFdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 991697, "buffer_size": 1, "batch_size": 100, "learning_starts": 10000, "tau": 0.005, "gamma": 0.98, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff595d5ff00>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [] }