Quentin Gallouédec
commited on
Commit
·
7ea933c
1
Parent(s):
57966db
Initial commit
Browse files- .gitattributes +1 -0
- README.md +78 -0
- args.yml +81 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-BipedalWalkerHardcore-v3.zip +3 -0
- sac-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- sac-BipedalWalkerHardcore-v3/actor.optimizer.pth +3 -0
- sac-BipedalWalkerHardcore-v3/critic.optimizer.pth +3 -0
- sac-BipedalWalkerHardcore-v3/data +131 -0
- sac-BipedalWalkerHardcore-v3/policy.pth +3 -0
- sac-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- sac-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalkerHardcore-v3
|
16 |
+
type: BipedalWalkerHardcore-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -101.12 +/- 31.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
This is a trained model of a **SAC** agent playing **BipedalWalkerHardcore-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo sac --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo sac --env BipedalWalkerHardcore-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo sac --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo sac --env BipedalWalkerHardcore-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo sac --env BipedalWalkerHardcore-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo sac --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('buffer_size', 1000000),
|
67 |
+
('ent_coef', 0.005),
|
68 |
+
('gamma', 0.99),
|
69 |
+
('gradient_steps', 1),
|
70 |
+
('learning_rate', 'lin_7.3e-4'),
|
71 |
+
('learning_starts', 10000),
|
72 |
+
('n_timesteps', 10000000.0),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
75 |
+
('tau', 0.01),
|
76 |
+
('train_freq', 1),
|
77 |
+
('normalize', False)])
|
78 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- BipedalWalkerHardcore-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 172740193
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/BipedalWalkerHardcore-v3__sac__172740193__1671847712
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - ent_coef
|
7 |
+
- 0.005
|
8 |
+
- - gamma
|
9 |
+
- 0.99
|
10 |
+
- - gradient_steps
|
11 |
+
- 1
|
12 |
+
- - learning_rate
|
13 |
+
- lin_7.3e-4
|
14 |
+
- - learning_starts
|
15 |
+
- 10000
|
16 |
+
- - n_timesteps
|
17 |
+
- 10000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[400, 300])
|
22 |
+
- - tau
|
23 |
+
- 0.01
|
24 |
+
- - train_freq
|
25 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd2aff105867a82f336375fa10bd1c3bb802e7720f490debc0833c0ce2a76e6a
|
3 |
+
size 94405
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -101.11808319999997, "std_reward": 31.281940500456585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:31:22.025191"}
|
sac-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12ee2b9ee70c164fecf13291658480c5f55f91ecaf32c024a70a2278d7302ba1
|
3 |
+
size 5872414
|
sac-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
sac-BipedalWalkerHardcore-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08c41d48ac0b101d7d73d195ce6a9f0452eae12d2d269f58557d9470a82176bd
|
3 |
+
size 1068061
|
sac-BipedalWalkerHardcore-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ad1ce4641b5262ef682bc555a5b0db451ba164d43ea9994a64ca86532002b7f
|
3 |
+
size 2124601
|
sac-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function SACPolicy.__init__ at 0x7fcc6af92ca0>",
|
8 |
+
"_build": "<function SACPolicy._build at 0x7fcc6af92d30>",
|
9 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fcc6af92dc0>",
|
10 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7fcc6af92e50>",
|
11 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7fcc6af92ee0>",
|
12 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7fcc6af92f70>",
|
13 |
+
"forward": "<function SACPolicy.forward at 0x7fcc6af9a040>",
|
14 |
+
"_predict": "<function SACPolicy._predict at 0x7fcc6af9a0d0>",
|
15 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7fcc6af9a160>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcc6af97e40>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"net_arch": [
|
22 |
+
400,
|
23 |
+
300
|
24 |
+
],
|
25 |
+
"use_sde": false
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
30 |
+
"dtype": "float32",
|
31 |
+
"_shape": [
|
32 |
+
24
|
33 |
+
],
|
34 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
35 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
36 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
37 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
38 |
+
"_np_random": null
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
42 |
+
":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
43 |
+
"dtype": "float32",
|
44 |
+
"_shape": [
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"low": "[-1. -1. -1. -1.]",
|
48 |
+
"high": "[1. 1. 1. 1.]",
|
49 |
+
"bounded_below": "[ True True True True]",
|
50 |
+
"bounded_above": "[ True True True True]",
|
51 |
+
"_np_random": "RandomState(MT19937)"
|
52 |
+
},
|
53 |
+
"n_envs": 1,
|
54 |
+
"num_timesteps": 10000000,
|
55 |
+
"_total_timesteps": 10000000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": 0,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1671847714905042719,
|
60 |
+
"learning_rate": {
|
61 |
+
":type:": "<class 'function'>",
|
62 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
63 |
+
},
|
64 |
+
"tensorboard_log": "runs/BipedalWalkerHardcore-v3__sac__172740193__1671847712/BipedalWalkerHardcore-v3",
|
65 |
+
"lr_schedule": {
|
66 |
+
":type:": "<class 'function'>",
|
67 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
68 |
+
},
|
69 |
+
"_last_obs": null,
|
70 |
+
"_last_episode_starts": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
73 |
+
},
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAMvtpb1ENwg5AU5buoCs/rdv2I4/sJkROYynHL/QVRI5AACAP8JhHj+sv485vi8iv013s7kAAIA/4Tm1PsBItz7esr0+KkPJPiOU2z6Srvc+hMURP1wcNj+uEHo/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
|
77 |
+
},
|
78 |
+
"_episode_num": 8183,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.0,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkSqKV1lrVsCUhpRSlIwBbJRN0AeMAXSUR0DyGmaQyAQQdX2UKGgGaAloD0MI/yCSIUfhY8CUhpRSlGgVTdAHaBZHQPIbVIsUZel1fZQoaAZoCWgPQwhBgAwdO3JbwJSGlFKUaBVN0AdoFkdA8hxBjst03nV9lChoBmgJaA9DCLR224XmpEjAlIaUUpRoFU3QB2gWR0DyHS60Zm7KdX2UKGgGaAloD0MIraOqCSKsZMCUhpRSlGgVTfQDaBZHQPIdp1twaR91fZQoaAZoCWgPQwgaNsr6TYFgwJSGlFKUaBVNEwFoFkdA8h3IH9NvfnV9lChoBmgJaA9DCK2HLxNFcFbAlIaUUpRoFU3QB2gWR0DyHrZItDlYdX2UKGgGaAloD0MIzxQ6r7FWVMCUhpRSlGgVTdAHaBZHQPIfo22UjcF1fZQoaAZoCWgPQwjb3JiesPZKwJSGlFKUaBVN0AdoFkdA8iCRS0ngHnV9lChoBmgJaA9DCBy1wvQ9RGHAlIaUUpRoFU3QB2gWR0DyIdCpGnXNdX2UKGgGaAloD0MI8zy4O+tUYcCUhpRSlGgVTV4CaBZHQPIiGOmWMS91fZQoaAZoCWgPQwjSx3xAoPFLwJSGlFKUaBVN0AdoFkdA8iMHNg4OtnV9lChoBmgJaA9DCPim6bMDUFLAlIaUUpRoFU3QB2gWR0DyI/WL+xW1dX2UKGgGaAloD0MIOzlDccekVsCUhpRSlGgVTdAHaBZHQPIk42attAN1fZQoaAZoCWgPQwhEpREz+2JZwJSGlFKUaBVN0AdoFkdA8iXRsMd92HV9lChoBmgJaA9DCD7shQK2XGLAlIaUUpRoFU3QB2gWR0DyJsA0ygwodX2UKGgGaAloD0MIIjXtYppxWMCUhpRSlGgVTdAHaBZHQPInrkIiTt91fZQoaAZoCWgPQwj9ogT9heZXwJSGlFKUaBVN0AdoFkdA8iicGrwOOXV9lChoBmgJaA9DCAskKH6MplnAlIaUUpRoFU3QB2gWR0DyKYnG2kSFdX2UKGgGaAloD0MIJsed0sHzXMCUhpRSlGgVTdAHaBZHQPIqd3YcvM91fZQoaAZoCWgPQwhs0QK0rQxewJSGlFKUaBVN0AdoFkdA8itkurp7kXV9lChoBmgJaA9DCE6c3O9QSFzAlIaUUpRoFU3QB2gWR0DyLFLi++M7dX2UKGgGaAloD0MIa9PYXgsLXcCUhpRSlGgVTdAHaBZHQPItovz/ZNB1fZQoaAZoCWgPQwgRbjKqDNhbwJSGlFKUaBVN0AdoFkdA8i5xhUJfIHV9lChoBmgJaA9DCKd5xyk6oFvAlIaUUpRoFU3QB2gWR0DyL13wMYuTdX2UKGgGaAloD0MIpx/URQplX8CUhpRSlGgVTdAHaBZHQPIwStOVPep1fZQoaAZoCWgPQwgYzjXM0NdcwJSGlFKUaBVN0AdoFkdA8jE3fRzBAXV9lChoBmgJaA9DCBqlS/+SnVrAlIaUUpRoFU3QB2gWR0DyMiOAJLM+dX2UKGgGaAloD0MIiiKkbmfeWcCUhpRSlGgVTdAHaBZHQPIzEUWEbo91fZQoaAZoCWgPQwhgzQGCOa5fwJSGlFKUaBVLlWgWR0DyMyMOAAhjdX2UKGgGaAloD0MIg4k/ijqfWcCUhpRSlGgVTdAHaBZHQPI0EAR9PUN1fZQoaAZoCWgPQwj4VE57SptfwJSGlFKUaBVLo2gWR0DyNCNseGO/dX2UKGgGaAloD0MIKsQj8XLfYsCUhpRSlGgVTdAHaBZHQPI1EVjRUm51fZQoaAZoCWgPQwh9PV+z3MBiwJSGlFKUaBVNbAFoFkdA8jU8sHjZMHV9lChoBmgJaA9DCC+KHvgYuWPAlIaUUpRoFU3QB2gWR0DyNinVPva2dX2UKGgGaAloD0MIOEiI8gXdY8CUhpRSlGgVTdAHaBZHQPI3Fokqto11fZQoaAZoCWgPQwguVP61vPxjwJSGlFKUaBVN0AdoFkdA8jgDTnFHa3V9lChoBmgJaA9DCMxDpnyIamXAlIaUUpRoFU3QB2gWR0DyOVF9MK1HdX2UKGgGaAloD0MI72/QXn0iV8CUhpRSlGgVTdAHaBZHQPI6PZp35et1fZQoaAZoCWgPQwjTMlLvKbJiwJSGlFKUaBVN0AdoFkdA8jsqB+jM3nV9lChoBmgJaA9DCByz7Engl2PAlIaUUpRoFU3QB2gWR0DyPBZtFa0QdX2UKGgGaAloD0MIoBov3SQhWMCUhpRSlGgVTdAHaBZHQPI9ApxNqQB1fZQoaAZoCWgPQwgKn62Dgy5bwJSGlFKUaBVN0AdoFkdA8j3vHcQAdXV9lChoBmgJaA9DCDULtDukZFbAlIaUUpRoFU3QB2gWR0DyPttAbhm5dX2UKGgGaAloD0MIgsZMot7jY8CUhpRSlGgVTdAHaBZHQPI/x7JFLFp1fZQoaAZoCWgPQwjRH5p58rljwJSGlFKUaBVN0AdoFkdA8kC0/Q4S6HV9lChoBmgJaA9DCBqmttTBtGLAlIaUUpRoFU3QB2gWR0DyQaJwN9YwdX2UKGgGaAloD0MIZRu4A/XbYsCUhpRSlGgVTdAHaBZHQPJCj/B2wFF1fZQoaAZoCWgPQwhXYMjq1k5jwJSGlFKUaBVN0AdoFkdA8kN9OMdcS3V9lChoBmgJaA9DCHDurx53yWLAlIaUUpRoFU3QB2gWR0DyRGsTbFjvdX2UKGgGaAloD0MIC5xsA3cpYcCUhpRSlGgVTdAHaBZHQPJFs4SbpeN1fZQoaAZoCWgPQwj9TShEwC1iwJSGlFKUaBVN0AdoFkdA8kah4QSSNnV9lChoBmgJaA9DCIS7s3bbxVrAlIaUUpRoFU3QB2gWR0DyR4/lyzX0dX2UKGgGaAloD0MIteBFX0FLXsCUhpRSlGgVTdAHaBZHQPJIfO619fF1fZQoaAZoCWgPQwi8IY0KnJ5TwJSGlFKUaBVN0AdoFkdA8klo80tRN3V9lChoBmgJaA9DCA3DR8SU7l/AlIaUUpRoFU3QB2gWR0DySlS+yJKrdX2UKGgGaAloD0MI29/ZHr0VWcCUhpRSlGgVTdAHaBZHQPJLQNOwgT11fZQoaAZoCWgPQwhlcmpnmCFhwJSGlFKUaBVN0AdoFkdA8kwtIRIz33V9lChoBmgJaA9DCMwlVdtNIVLAlIaUUpRoFU3QB2gWR0DyTRkGi5/cdX2UKGgGaAloD0MI/dgkP+LjXsCUhpRSlGgVTdAHaBZHQPJOBJtZV4p1fZQoaAZoCWgPQwhYN94dmb1gwJSGlFKUaBVN0AdoFkdA8k7xDlHSW3V9lChoBmgJaA9DCGHFqdbC+lTAlIaUUpRoFU3QB2gWR0DyT91uB+WodX2UKGgGaAloD0MI+RVruMhlVMCUhpRSlGgVTdAHaBZHQPJRID0Yj0N1fZQoaAZoCWgPQwh7avXVVYRbwJSGlFKUaBVN0AdoFkdA8lIOgmiQDHV9lChoBmgJaA9DCHvXoC+9i2LAlIaUUpRoFU3QB2gWR0DyUvz2itaIdX2UKGgGaAloD0MISN3OvvJaUsCUhpRSlGgVTdAHaBZHQPJT64FbFCN1fZQoaAZoCWgPQwgtzhjmBLdcwJSGlFKUaBVN0AdoFkdA8lTaFCTlk3V9lChoBmgJaA9DCDNRhNTtbVTAlIaUUpRoFU3QB2gWR0DyVbPFYMfBdX2UKGgGaAloD0MIb2WJzjI8UMCUhpRSlGgVTdAHaBZHQPJWit/+bVl1fZQoaAZoCWgPQwhUq6+uCmFcwJSGlFKUaBVN0AdoFkdA8ld5Wy9mH3V9lChoBmgJaA9DCHDs2XOZL2DAlIaUUpRoFU3QB2gWR0DyWFVYDDCQdX2UKGgGaAloD0MIaTo7GRz9XcCUhpRSlGgVTdAHaBZHQPJZQuSwGGF1fZQoaAZoCWgPQwjUKCSZVc1gwJSGlFKUaBVN0AdoFkdA8lowz850bXV9lChoBmgJaA9DCDDUYYVbvE/AlIaUUpRoFU3QB2gWR0DyWx6r6ciGdX2UKGgGaAloD0MIS5NS0O3AXMCUhpRSlGgVTdAHaBZHQPJcDQkQf6p1fZQoaAZoCWgPQwiE1VjC2lhQwJSGlFKUaBVN0AdoFkdA8l1d2ATZhHV9lChoBmgJaA9DCCAot+37I2HAlIaUUpRoFU3QB2gWR0DyXkw0jC53dX2UKGgGaAloD0MIKjkn9tD/UMCUhpRSlGgVTdAHaBZHQPJfIA+JP691fZQoaAZoCWgPQwhWEW4yqgxgwJSGlFKUaBVN0AdoFkdA8mABTJlrdnV9lChoBmgJaA9DCDs42JsYSlHAlIaUUpRoFU3QB2gWR0DyYM+VnEl3dX2UKGgGaAloD0MIPE7RkVxKTsCUhpRSlGgVTdAHaBZHQPJhvPhZQpF1fZQoaAZoCWgPQwjr/rEQHUJbwJSGlFKUaBVN0AdoFkdA8mKqv+OwPnV9lChoBmgJaA9DCDrJVpdTEk7AlIaUUpRoFU3QB2gWR0DyY5lLDQ7cdX2UKGgGaAloD0MILlbUYBrAVsCUhpRSlGgVTdAHaBZHQPJkho1EVnF1fZQoaAZoCWgPQwh5AmGnWMRfwJSGlFKUaBVN0AdoFkdA8mV0kDEFXHV9lChoBmgJaA9DCDVG66hq8EzAlIaUUpRoFU3QB2gWR0DyZl9Qzk6tdX2UKGgGaAloD0MIQiRDjq38U8CUhpRSlGgVTdAHaBZHQPJnTDY02tN1fZQoaAZoCWgPQwjNI38w8ORZwJSGlFKUaBVN0AdoFkdA8miavSMLnnV9lChoBmgJaA9DCGr11VWBnkzAlIaUUpRoFU3QB2gWR0DyaYcwo9cKdX2UKGgGaAloD0MIK4VALnG/WcCUhpRSlGgVTdAHaBZHQPJqc3o4dZJ1fZQoaAZoCWgPQwjqXif1ZXVMwJSGlFKUaBVN0AdoFkdA8mtfLOVxCXV9lChoBmgJaA9DCBalhGBVx1/AlIaUUpRoFU3QB2gWR0DybEpD8LrpdX2UKGgGaAloD0MI41Eq4QlaWsCUhpRSlGgVTdAHaBZHQPJtNwIv8Il1fZQoaAZoCWgPQwhw0F59PNZbwJSGlFKUaBVN0AdoFkdA8m4iDWbw0HV9lChoBmgJaA9DCAaFQZlGzl7AlIaUUpRoFU3QB2gWR0Dybu3AEt/XdX2UKGgGaAloD0MId0zdlV00V8CUhpRSlGgVTdAHaBZHQPJv3AVbiZR1fZQoaAZoCWgPQwiFl+DUB9xcwJSGlFKUaBVN0AdoFkdA8nDJrcbiqHV9lChoBmgJaA9DCAH8U6pE31jAlIaUUpRoFU3QB2gWR0DycbfZ1FH8dX2UKGgGaAloD0MI+pgPCHQ8SsCUhpRSlGgVTdAHaBZHQPJypWTibUh1fZQoaAZoCWgPQwhsXtVZLWZNwJSGlFKUaBVN0AdoFkdA8nOSXmzSkXVlLg=="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 9990000,
|
91 |
+
"buffer_size": 1,
|
92 |
+
"batch_size": 256,
|
93 |
+
"learning_starts": 10000,
|
94 |
+
"tau": 0.01,
|
95 |
+
"gamma": 0.99,
|
96 |
+
"gradient_steps": 1,
|
97 |
+
"optimize_memory_usage": false,
|
98 |
+
"replay_buffer_class": {
|
99 |
+
":type:": "<class 'abc.ABCMeta'>",
|
100 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
101 |
+
"__module__": "stable_baselines3.common.buffers",
|
102 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
103 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fcc6afea430>",
|
104 |
+
"add": "<function ReplayBuffer.add at 0x7fcc6afea4c0>",
|
105 |
+
"sample": "<function ReplayBuffer.sample at 0x7fcc6afea550>",
|
106 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fcc6afea5e0>",
|
107 |
+
"__abstractmethods__": "frozenset()",
|
108 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcc6afe0c00>"
|
109 |
+
},
|
110 |
+
"replay_buffer_kwargs": {},
|
111 |
+
"train_freq": {
|
112 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
114 |
+
},
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"target_entropy": -4.0,
|
117 |
+
"log_ent_coef": null,
|
118 |
+
"ent_coef": 0.005,
|
119 |
+
"target_update_interval": 1,
|
120 |
+
"ent_coef_optimizer": null,
|
121 |
+
"_action_repeat": [
|
122 |
+
null
|
123 |
+
],
|
124 |
+
"surgeon": null,
|
125 |
+
"batch_norm_stats": [],
|
126 |
+
"batch_norm_stats_target": [],
|
127 |
+
"_last_action": {
|
128 |
+
":type:": "<class 'numpy.ndarray'>",
|
129 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAGjwfz+AshS+oHfePT9cQ7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
130 |
+
}
|
131 |
+
}
|
sac-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d36c90341d386c04da282903350b41a97a8fd11d075ce3f785d1684b8bb4a81
|
3 |
+
size 2656645
|
sac-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bc559dddb2e28fabff3a03abb4d0bebeecb78f66473f15c8953cdc407ffd53a
|
3 |
+
size 747
|
sac-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:020c03b5fde8bfe9a7b66dc94610382214b53907607e9fd4097a65f3c36fe6ba
|
3 |
+
size 278868
|