Quentin Gallouédec
commited on
Commit
·
a348a6e
1
Parent(s):
9e52d34
Initial commit
Browse files- .gitattributes +1 -0
- README.md +78 -0
- args.yml +83 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- ppo-BipedalWalkerHardcore-v3.zip +3 -0
- ppo-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalkerHardcore-v3/data +103 -0
- ppo-BipedalWalkerHardcore-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalkerHardcore-v3/policy.pth +3 -0
- ppo-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalkerHardcore-v3
|
16 |
+
type: BipedalWalkerHardcore-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 27.49 +/- 65.53
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **BipedalWalkerHardcore-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env BipedalWalkerHardcore-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env BipedalWalkerHardcore-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env BipedalWalkerHardcore-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 64),
|
66 |
+
('clip_range', 'lin_0.2'),
|
67 |
+
('ent_coef', 0.001),
|
68 |
+
('gae_lambda', 0.95),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('learning_rate', 'lin_2.5e-4'),
|
71 |
+
('n_envs', 16),
|
72 |
+
('n_epochs', 10),
|
73 |
+
('n_steps', 2048),
|
74 |
+
('n_timesteps', 100000000.0),
|
75 |
+
('normalize', True),
|
76 |
+
('policy', 'MlpPolicy'),
|
77 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
78 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- BipedalWalkerHardcore-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2273753488
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/BipedalWalkerHardcore-v3__ppo__2273753488__1676838329
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- subproc
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - clip_range
|
5 |
+
- lin_0.2
|
6 |
+
- - ent_coef
|
7 |
+
- 0.001
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- lin_2.5e-4
|
14 |
+
- - n_envs
|
15 |
+
- 16
|
16 |
+
- - n_epochs
|
17 |
+
- 10
|
18 |
+
- - n_steps
|
19 |
+
- 2048
|
20 |
+
- - n_timesteps
|
21 |
+
- 100000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79caabdd17ae5250413a227845c0b34f9af48ae5fea09ab0db8c0262b20cce60
|
3 |
+
size 180998
|
ppo-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
ppo-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f80db052ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80db052f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80db054040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80db0540d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f80db054160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f80db0541f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80db054280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80db054310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f80db0543a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80db054430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80db0544c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80db054550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f80db053880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
24
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
4
|
43 |
+
],
|
44 |
+
"low": "[-1. -1. -1. -1.]",
|
45 |
+
"high": "[1. 1. 1. 1.]",
|
46 |
+
"bounded_below": "[ True True True True]",
|
47 |
+
"bounded_above": "[ True True True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 100007936,
|
52 |
+
"_total_timesteps": 100000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1676838353051283922,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSUBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/BipedalWalkerHardcore-v3__ppo__2273753488__1676838329/BipedalWalkerHardcore-v3",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSUBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAGPkMzvTZIY3+ecIu6gSg7xUx709y+ieO5kOXD8nyiC7AACAPz3oBj1S5547IntaP2M/WLsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj84nHk/AACAPz0QNDv0wCu25cJQOWUSg7w4p7w9Pr+Jua00XD97YdE6AACAP0c0BT3SvIm5AI5aP/3UQjkAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj8AAIA/AACAP18GNDudPHE2g771uXoSg7xg9bw9k56OOkYrXD/hCw06AACAP4WxBT1znY463IhaP9QWQroAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj9NnHk/AACAP5MMNDvSOsC3J6bpOh0Sg7y2FLw9MCsauzY/XD872E07AACAPwsPBD11KBq7lZhaPxsP2joAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAPy4ONDtBclK3nMl/OkESg7zEXrw9t8aouvQ5XD/oTRo7AACAPyOkBD2sw6i6PJNaP1W4bjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAPx38Mzu4IvY2eLt6uogSg7xkNL09loMRO6wiXD8IBr65AACAP+cPBj2EghE7poRaP+sExroAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAP+UONDuMORq3dHQ7OkwSg7zvdrw9cWB3uiw4XD95pwk7AACAP1PTBD3nW3e6k5FaP1nyLjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj95e3A/AACAP1cGNDs7y202TD/yuXkSg7xu9Lw9SZeMOmsrXD91RhA6AACAPxewBT2/lYw65ohaP0hRP7oAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj9NnHk/AACAP38ONDvhMlM1JTbXuHASg7yGxrw9AtF5OaYxXD95HJ86AACAP29tBT1oyHk5uotaP5n1KbkAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAP1QFNDtX7o82e6ASun0Sg7xKAr09kDGqOm8pXD8jXcI5AACAP0nFBT13L6o63odaP42ZZ7oAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj9JnHk/AACAPywNNDtx7JO30MuzOi8Sg7wPOrw9MkXtupw8XD+nmTM7AACAP6VbBD3eQO262ZVaP6PMpzoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP4TjMzs68og3CIILu6kSg7yyzL099+2hO9YNXD9HmCW7AACAP6/uBj1V7KE76npaP61bXLsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj8AAIA/AACAPwfpMzucv3A3kUH1uqISg7wzq709SVaOO3ESXD9pbga7AACAP3G+Bj2/VI47/XxaP3OxQbsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj8AAIA/AACAPyX2Mzth4iE3e+qkupESg7w2XL09BGw/OzkdXD/DEHG6AACAP7NJBj3IaT87GIJaP/k9ArsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP7kCNDvpf6k2q6osun8Sg7zcDr0902rIOsInXD8AdUQ5AACAP+fXBT38aMg6EodaPzdeiLoAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj8AAIA/AACAPwsONDs9wH23fTaaOjcSg7yUTLw9LYLLujw7XD/SICc7AACAP79/BD2Yfsu6gJRaP1LsjzoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj9nenA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -7.935999999997279e-05,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14nL8QrqQsCUhpRSlIwBbJRNTQOMAXSUR0ESCLt95MURdX2UKGgGaAloD0MIzvv/OGGOVMCUhpRSlGgVTdAHaBZHQRIIux/NZ/11fZQoaAZoCWgPQwimXyLeOm9IwJSGlFKUaBVNgwFoFkdBEgi99vVEu3V9lChoBmgJaA9DCPPLYIxIPFDAlIaUUpRoFU2tAWgWR0ESCMC+Q2dedX2UKGgGaAloD0MInDHMCdoIUECUhpRSlGgVTdAHaBZHQRIIvheii7F1fZQoaAZoCWgPQwjgaTLjbSUSQJSGlFKUaBVN0AdoFkdBEgjBU+cH4XV9lChoBmgJaA9DCImV0cjnVlPAlIaUUpRoFUt4aBZHQRIIwNcfvF51fZQoaAZoCWgPQwgPCkrRyiFLwJSGlFKUaBVNBAFoFkdBEgjD3H+6y3V9lChoBmgJaA9DCGSvd3+8Q0PAlIaUUpRoFU1mAWgWR0ESCMdOwxFidX2UKGgGaAloD0MIby9pjNaHb0CUhpRSlGgVTaQGaBZHQRIIx6RhMJx1fZQoaAZoCWgPQwgT8db5NxlrQJSGlFKUaBVN0AdoFkdBEgjI2BmPHXV9lChoBmgJaA9DCBaJCWr4aVbAlIaUUpRoFU15AWgWR0ESCMngavRrdX2UKGgGaAloD0MI/BcIAuRhYECUhpRSlGgVTdAHaBZHQRII1mT1CgN1fZQoaAZoCWgPQwjqW+Z0WehnQJSGlFKUaBVN0AdoFkdBEgjT+3WnTHV9lChoBmgJaA9DCNjw9EpZ1EdAlIaUUpRoFU3QB2gWR0ESCU2ZI+W4dX2UKGgGaAloD0MIvaseMA9LQcCUhpRSlGgVTQQCaBZHQRIJTNujynV1fZQoaAZoCWgPQwgT7wBPWnJHQJSGlFKUaBVNOwNoFkdBEglRwtyxRnV9lChoBmgJaA9DCD/HR4sz8j3AlIaUUpRoFU1wAmgWR0ESCVv7AtWddX2UKGgGaAloD0MI1ZelnZqDJcCUhpRSlGgVTdAHaBZHQRIJWJO9FnZ1fZQoaAZoCWgPQwjfUWNCzGlXQJSGlFKUaBVN0AdoFkdBEglUwlu3t3V9lChoBmgJaA9DCMx9chQgOh3AlIaUUpRoFU01AmgWR0ESCVhx1HOKdX2UKGgGaAloD0MIwcjLmljAIcCUhpRSlGgVTdAHaBZHQRIKM1336AR1fZQoaAZoCWgPQwgaa39ne7QgQJSGlFKUaBVN0AdoFkdBEgo4ZM10knV9lChoBmgJaA9DCPt2EhH+s01AlIaUUpRoFU3QB2gWR0ESCjp3aSLZdX2UKGgGaAloD0MIQ+T09XzCUECUhpRSlGgVTdAHaBZHQRIKOhF4s3B1fZQoaAZoCWgPQwicbW5MT0A5QJSGlFKUaBVN0AdoFkdBEgo/sUEgXHV9lChoBmgJaA9DCFVRvMraNkPAlIaUUpRoFU3QB2gWR0ESCj+3RLK3dX2UKGgGaAloD0MIFXMQdLTeQECUhpRSlGgVTdAHaBZHQRIKQr7voeR1fZQoaAZoCWgPQwg2W3nJ/6piQJSGlFKUaBVN0AdoFkdBEgpGNWq95HV9lChoBmgJaA9DCPhtiPGaGUNAlIaUUpRoFU0mBGgWR0ESCkQLkbPydX2UKGgGaAloD0MIVG8NbJU8T0CUhpRSlGgVTbQFaBZHQRIKSEb349J1fZQoaAZoCWgPQwh9l1KXjGPSP5SGlFKUaBVN0AdoFkdBEgpH2u5jIHV9lChoBmgJaA9DCB0c7E0M707AlIaUUpRoFU1DAmgWR0ESCsW8twrEdX2UKGgGaAloD0MIjxoTYi5VW0CUhpRSlGgVTdkFaBZHQRIK0xPEsJ91fZQoaAZoCWgPQwi6vDlcq3pWQJSGlFKUaBVN0AdoFkdBEgrTxDv3J3V9lChoBmgJaA9DCBh47j1czElAlIaUUpRoFU3/A2gWR0ESCtVuJHiFdX2UKGgGaAloD0MI2NMOf02HZUCUhpRSlGgVTdAHaBZHQRIK4hGBnSR1fZQoaAZoCWgPQwiQ14NJ8cEqwJSGlFKUaBVN0AdoFkdBEgratwzch3V9lChoBmgJaA9DCG8qUmFsNTrAlIaUUpRoFU3QB2gWR0ESCt50tZmqdX2UKGgGaAloD0MIraQV31CYN8CUhpRSlGgVTdAHaBZHQRILs3gCfYl1fZQoaAZoCWgPQwhQ/1nz4zdRQJSGlFKUaBVNZgRoFkdBEguz/h86WHV9lChoBmgJaA9DCLE2xk54d0LAlIaUUpRoFU3QB2gWR0ESC7ivc8DCdX2UKGgGaAloD0MIhbNby2SaUECUhpRSlGgVTVEGaBZHQRILumfQKKJ1fZQoaAZoCWgPQwgq5bUSusdKwJSGlFKUaBVN0AdoFkdBEgu633vhInV9lChoBmgJaA9DCKjknNhDuUTAlIaUUpRoFU2DAWgWR0ESC7089nscdX2UKGgGaAloD0MIu7ciMUFJRsCUhpRSlGgVTe0BaBZHQRIMH7BV+7V1fZQoaAZoCWgPQwhc4zPZP99AQJSGlFKUaBVN0AdoFkdBEgwg2WqtHXV9lChoBmgJaA9DCEHzOXc7mW1AlIaUUpRoFU3QB2gWR0ESDCdZJoTPdX2UKGgGaAloD0MItcAeEylqb0CUhpRSlGgVTdYGaBZHQRIMIrSjgyd1fZQoaAZoCWgPQwjeOZShKg5VQJSGlFKUaBVN0AdoFkdBEgwlOvq1PXV9lChoBmgJaA9DCJpeYizTd0lAlIaUUpRoFU3QB2gWR0ESDClrbQC0dX2UKGgGaAloD0MI/aGZJ9erWcCUhpRSlGgVTSYBaBZHQRIMLhriVB51fZQoaAZoCWgPQwi9qN2vAopEwJSGlFKUaBVN8QFoFkdBEgwrOFg2InV9lChoBmgJaA9DCGg9fJkoFjxAlIaUUpRoFU3QB2gWR0ESDDYMl5WzdX2UKGgGaAloD0MIwM+4cCARU0CUhpRSlGgVTdAHaBZHQRIMNqHaN+91fZQoaAZoCWgPQwicUIiAQ8AhwJSGlFKUaBVNuwJoFkdBEgw1McLjP3V9lChoBmgJaA9DCKhXyjLEqSlAlIaUUpRoFU3QB2gWR0ESDDg+N5t4dX2UKGgGaAloD0MI+1dWmpTiA8CUhpRSlGgVTdAHaBZHQRIMROS5y2h1fZQoaAZoCWgPQwgdA7LXu9s3wJSGlFKUaBVN0AdoFkdBEgw9oR28qXV9lChoBmgJaA9DCMOgTKPJsTrAlIaUUpRoFU3QB2gWR0ESDEFO3H7xdX2UKGgGaAloD0MIZcVwdYDSb0CUhpRSlGgVTYAGaBZHQRIMQUg1WKd1fZQoaAZoCWgPQwghPNo4Yh1VQJSGlFKUaBVN4AZoFkdBEg1qTfNzKnV9lChoBmgJaA9DCCdr1EM0UVFAlIaUUpRoFU3QB2gWR0ESDWtzYAbRdX2UKGgGaAloD0MIk9+ik6U2MECUhpRSlGgVTY4DaBZHQRINbjNtIkJ1fZQoaAZoCWgPQwiL3T6rzKxBQJSGlFKUaBVN0AdoFkdBEg1tioVEeHV9lChoBmgJaA9DCMh6avXVhTjAlIaUUpRoFU3QB2gWR0ESDXLShSLqdX2UKGgGaAloD0MIHqZ9c38tVUCUhpRSlGgVTdAHaBZHQRINdI0dilV1fZQoaAZoCWgPQwga/P1itqw8QJSGlFKUaBVN0AdoFkdBEg17OL4ve3V9lChoBmgJaA9DCMiYu5aQiznAlIaUUpRoFU3QB2gWR0ESDX/rBwdbdX2UKGgGaAloD0MIn8ppT8mTS0CUhpRSlGgVTdAHaBZHQRINfP0uDjB1fZQoaAZoCWgPQwiWCiqqfllwQJSGlFKUaBVNIQZoFkdBEg2AKNyYHHV9lChoBmgJaA9DCD55WKg1MFBAlIaUUpRoFU3DBGgWR0ESDX18PSUkdX2UKGgGaAloD0MIUl+WdmouHsCUhpRSlGgVTdAHaBZHQRINh7gyM1l1fZQoaAZoCWgPQwjOF3svvqdSQJSGlFKUaBVN0AdoFkdBEg2IO8jAz3V9lChoBmgJaA9DCJiKjXkdrURAlIaUUpRoFU3QB2gWR0ESDhnu8K5TdX2UKGgGaAloD0MIIk+SrpnMU0CUhpRSlGgVTdAHaBZHQRIOFln0Cih1fZQoaAZoCWgPQwjGiEShZYFDQJSGlFKUaBVNbgNoFkdBEg4UYEs8PnV9lChoBmgJaA9DCNttF5rrxDdAlIaUUpRoFU20A2gWR0ESDhj+7UXpdX2UKGgGaAloD0MIqiwKuyhOS0CUhpRSlGgVTdAHaBZHQRIOFoOfdyl1fZQoaAZoCWgPQwheTZ6ymmZeQJSGlFKUaBVN0AdoFkdBEg70N2V3U3V9lChoBmgJaA9DCCyAKQMHdkLAlIaUUpRoFU3QB2gWR0ESDvVYJu2rdX2UKGgGaAloD0MIAyMva2LB+z+UhpRSlGgVTdAHaBZHQRIO+Bxd6cB1fZQoaAZoCWgPQwjSbYlc8HprQJSGlFKUaBVN0AdoFkdBEg73dfb9InV9lChoBmgJaA9DCPkRv2IN5ULAlIaUUpRoFU3QB2gWR0ESDvzGkWRBdX2UKGgGaAloD0MI7IoZ4e0qUMCUhpRSlGgVTewBaBZHQRIO/4UsFt91fZQoaAZoCWgPQwiQ2O4eoHM5wJSGlFKUaBVN0AdoFkdBEg7+oLv1DnV9lChoBmgJaA9DCFOSdTi6KgVAlIaUUpRoFU14A2gWR0ESDwPACW/rdX2UKGgGaAloD0MIxAYLJ2luGcCUhpRSlGgVTdAHaBZHQRIPBVhP0qZ1fZQoaAZoCWgPQwj9oZkn16BCwJSGlFKUaBVNWgJoFkdBEg8FNjRUm3V9lChoBmgJaA9DCJmaBG9IUxpAlIaUUpRoFU3QB2gWR0ESDwpCCrcTdX2UKGgGaAloD0MIfO2ZJQEaG8CUhpRSlGgVTdAHaBZHQRIPB5lu3tt1fZQoaAZoCWgPQwhQNA9gkVZbwJSGlFKUaBVNXQFoFkdBEg8Ls8U21nV9lChoBmgJaA9DCCMQr+uXGG5AlIaUUpRoFU1kB2gWR0ESDw9yJsO5dX2UKGgGaAloD0MIECGunL1tXUCUhpRSlGgVTdAHaBZHQRIPnG25hBt1fZQoaAZoCWgPQwhzLsVVZfBUwJSGlFKUaBVNxQFoFkdBEg+b8GY8dXV9lChoBmgJaA9DCMJtbeH5s2FAlIaUUpRoFU3QB2gWR0ESD6qnvH94dX2UKGgGaAloD0MIO+KQDaSDJ8CUhpRSlGgVTdAHaBZHQRIPpRQOnVJ1fZQoaAZoCWgPQwg66ui4GkElQJSGlFKUaBVN+gJoFkdBEg+qwFyJbnV9lChoBmgJaA9DCDmYTYBhwSzAlIaUUpRoFU3QB2gWR0ESD6mtf5UMdX2UKGgGaAloD0MI+N9KdmyEXUCUhpRSlGgVTdAHaBZHQRIPpzHIZIh1ZS4="
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 30520,
|
88 |
+
"n_steps": 2048,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.95,
|
91 |
+
"ent_coef": 0.001,
|
92 |
+
"vf_coef": 0.5,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"batch_size": 64,
|
95 |
+
"n_epochs": 10,
|
96 |
+
"clip_range": {
|
97 |
+
":type:": "<class 'function'>",
|
98 |
+
":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSUBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
99 |
+
},
|
100 |
+
"clip_range_vf": null,
|
101 |
+
"normalize_advantage": true,
|
102 |
+
"target_kl": null
|
103 |
+
}
|
ppo-BipedalWalkerHardcore-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b57726b5dffb7835a2c9cbf1735dde09ae0f2eee635aa861bf0c209341f366c5
|
3 |
+
size 105200
|
ppo-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:772cf4eae35f8669d37bf3ef8ad8dc070c7db1cc7431264e5bf6fe9ef13fa04a
|
3 |
+
size 51838
|
ppo-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:003bae2ccb8a4a78e025ea4228ca74d69edb88d9131d17a260513e18d9b347eb
|
3 |
+
size 235707
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 27.489446299999997, "std_reward": 65.52573853522442, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T15:41:19.149097"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28e634fe4cb3b9de5d762bd9b9e053fca6c0db58ca1bcf575b9e54547ae7744f
|
3 |
+
size 3454764
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47254c7c006e6bb6449409499d9f1afab9cd4e430ae61727df3a2ee29b2d9e28
|
3 |
+
size 6316
|