Quentin Gallouédec commited on
Commit
a348a6e
·
1 Parent(s): 9e52d34

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalkerHardcore-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalkerHardcore-v3
16
+ type: BipedalWalkerHardcore-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 27.49 +/- 65.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **BipedalWalkerHardcore-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalkerHardcore-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env BipedalWalkerHardcore-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env BipedalWalkerHardcore-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env BipedalWalkerHardcore-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('clip_range', 'lin_0.2'),
67
+ ('ent_coef', 0.001),
68
+ ('gae_lambda', 0.95),
69
+ ('gamma', 0.99),
70
+ ('learning_rate', 'lin_2.5e-4'),
71
+ ('n_envs', 16),
72
+ ('n_epochs', 10),
73
+ ('n_steps', 2048),
74
+ ('n_timesteps', 100000000.0),
75
+ ('normalize', True),
76
+ ('policy', 'MlpPolicy'),
77
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
78
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - BipedalWalkerHardcore-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2273753488
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/BipedalWalkerHardcore-v3__ppo__2273753488__1676838329
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - subproc
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - clip_range
5
+ - lin_0.2
6
+ - - ent_coef
7
+ - 0.001
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.99
12
+ - - learning_rate
13
+ - lin_2.5e-4
14
+ - - n_envs
15
+ - 16
16
+ - - n_epochs
17
+ - 10
18
+ - - n_steps
19
+ - 2048
20
+ - - n_timesteps
21
+ - 100000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-BipedalWalkerHardcore-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79caabdd17ae5250413a227845c0b34f9af48ae5fea09ab0db8c0262b20cce60
3
+ size 180998
ppo-BipedalWalkerHardcore-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
ppo-BipedalWalkerHardcore-v3/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80db052ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80db052f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80db054040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80db0540d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f80db054160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f80db0541f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80db054280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80db054310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f80db0543a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80db054430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80db0544c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80db054550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f80db053880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 24
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 4
43
+ ],
44
+ "low": "[-1. -1. -1. -1.]",
45
+ "high": "[1. 1. 1. 1.]",
46
+ "bounded_below": "[ True True True True]",
47
+ "bounded_above": "[ True True True True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 100007936,
52
+ "_total_timesteps": 100000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1676838353051283922,
57
+ "learning_rate": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSUBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
60
+ },
61
+ "tensorboard_log": "runs/BipedalWalkerHardcore-v3__ppo__2273753488__1676838329/BipedalWalkerHardcore-v3",
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSUBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/MGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAGPkMzvTZIY3+ecIu6gSg7xUx709y+ieO5kOXD8nyiC7AACAPz3oBj1S5547IntaP2M/WLsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj84nHk/AACAPz0QNDv0wCu25cJQOWUSg7w4p7w9Pr+Jua00XD97YdE6AACAP0c0BT3SvIm5AI5aP/3UQjkAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj8AAIA/AACAP18GNDudPHE2g771uXoSg7xg9bw9k56OOkYrXD/hCw06AACAP4WxBT1znY463IhaP9QWQroAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj9NnHk/AACAP5MMNDvSOsC3J6bpOh0Sg7y2FLw9MCsauzY/XD872E07AACAPwsPBD11KBq7lZhaPxsP2joAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAPy4ONDtBclK3nMl/OkESg7zEXrw9t8aouvQ5XD/oTRo7AACAPyOkBD2sw6i6PJNaP1W4bjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAPx38Mzu4IvY2eLt6uogSg7xkNL09loMRO6wiXD8IBr65AACAP+cPBj2EghE7poRaP+sExroAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAP+UONDuMORq3dHQ7OkwSg7zvdrw9cWB3uiw4XD95pwk7AACAP1PTBD3nW3e6k5FaP1nyLjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj95e3A/AACAP1cGNDs7y202TD/yuXkSg7xu9Lw9SZeMOmsrXD91RhA6AACAPxewBT2/lYw65ohaP0hRP7oAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj9NnHk/AACAP38ONDvhMlM1JTbXuHASg7yGxrw9AtF5OaYxXD95HJ86AACAP29tBT1oyHk5uotaP5n1KbkAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAP1QFNDtX7o82e6ASun0Sg7xKAr09kDGqOm8pXD8jXcI5AACAP0nFBT13L6o63odaP42ZZ7oAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj9JnHk/AACAPywNNDtx7JO30MuzOi8Sg7wPOrw9MkXtupw8XD+nmTM7AACAP6VbBD3eQO262ZVaP6PMpzoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP4TjMzs68og3CIILu6kSg7yyzL099+2hO9YNXD9HmCW7AACAP6/uBj1V7KE76npaP61bXLsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj8AAIA/AACAPwfpMzucv3A3kUH1uqISg7wzq709SVaOO3ESXD9pbga7AACAP3G+Bj2/VI47/XxaP3OxQbsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj8AAIA/AACAPyX2Mzth4iE3e+qkupESg7w2XL09BGw/OzkdXD/DEHG6AACAP7NJBj3IaT87GIJaP/k9ArsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP7kCNDvpf6k2q6osun8Sg7zcDr0902rIOsInXD8AdUQ5AACAP+fXBT38aMg6EodaPzdeiLoAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj8AAIA/AACAPwsONDs9wH23fTaaOjcSg7yUTLw9LYLLujw7XD/SICc7AACAP79/BD2Yfsu6gJRaP1LsjzoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj9nenA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": -7.935999999997279e-05,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14nL8QrqQsCUhpRSlIwBbJRNTQOMAXSUR0ESCLt95MURdX2UKGgGaAloD0MIzvv/OGGOVMCUhpRSlGgVTdAHaBZHQRIIux/NZ/11fZQoaAZoCWgPQwimXyLeOm9IwJSGlFKUaBVNgwFoFkdBEgi99vVEu3V9lChoBmgJaA9DCPPLYIxIPFDAlIaUUpRoFU2tAWgWR0ESCMC+Q2dedX2UKGgGaAloD0MInDHMCdoIUECUhpRSlGgVTdAHaBZHQRIIvheii7F1fZQoaAZoCWgPQwjgaTLjbSUSQJSGlFKUaBVN0AdoFkdBEgjBU+cH4XV9lChoBmgJaA9DCImV0cjnVlPAlIaUUpRoFUt4aBZHQRIIwNcfvF51fZQoaAZoCWgPQwgPCkrRyiFLwJSGlFKUaBVNBAFoFkdBEgjD3H+6y3V9lChoBmgJaA9DCGSvd3+8Q0PAlIaUUpRoFU1mAWgWR0ESCMdOwxFidX2UKGgGaAloD0MIby9pjNaHb0CUhpRSlGgVTaQGaBZHQRIIx6RhMJx1fZQoaAZoCWgPQwgT8db5NxlrQJSGlFKUaBVN0AdoFkdBEgjI2BmPHXV9lChoBmgJaA9DCBaJCWr4aVbAlIaUUpRoFU15AWgWR0ESCMngavRrdX2UKGgGaAloD0MI/BcIAuRhYECUhpRSlGgVTdAHaBZHQRII1mT1CgN1fZQoaAZoCWgPQwjqW+Z0WehnQJSGlFKUaBVN0AdoFkdBEgjT+3WnTHV9lChoBmgJaA9DCNjw9EpZ1EdAlIaUUpRoFU3QB2gWR0ESCU2ZI+W4dX2UKGgGaAloD0MIvaseMA9LQcCUhpRSlGgVTQQCaBZHQRIJTNujynV1fZQoaAZoCWgPQwgT7wBPWnJHQJSGlFKUaBVNOwNoFkdBEglRwtyxRnV9lChoBmgJaA9DCD/HR4sz8j3AlIaUUpRoFU1wAmgWR0ESCVv7AtWddX2UKGgGaAloD0MI1ZelnZqDJcCUhpRSlGgVTdAHaBZHQRIJWJO9FnZ1fZQoaAZoCWgPQwjfUWNCzGlXQJSGlFKUaBVN0AdoFkdBEglUwlu3t3V9lChoBmgJaA9DCMx9chQgOh3AlIaUUpRoFU01AmgWR0ESCVhx1HOKdX2UKGgGaAloD0MIwcjLmljAIcCUhpRSlGgVTdAHaBZHQRIKM1336AR1fZQoaAZoCWgPQwgaa39ne7QgQJSGlFKUaBVN0AdoFkdBEgo4ZM10knV9lChoBmgJaA9DCPt2EhH+s01AlIaUUpRoFU3QB2gWR0ESCjp3aSLZdX2UKGgGaAloD0MIQ+T09XzCUECUhpRSlGgVTdAHaBZHQRIKOhF4s3B1fZQoaAZoCWgPQwicbW5MT0A5QJSGlFKUaBVN0AdoFkdBEgo/sUEgXHV9lChoBmgJaA9DCFVRvMraNkPAlIaUUpRoFU3QB2gWR0ESCj+3RLK3dX2UKGgGaAloD0MIFXMQdLTeQECUhpRSlGgVTdAHaBZHQRIKQr7voeR1fZQoaAZoCWgPQwg2W3nJ/6piQJSGlFKUaBVN0AdoFkdBEgpGNWq95HV9lChoBmgJaA9DCPhtiPGaGUNAlIaUUpRoFU0mBGgWR0ESCkQLkbPydX2UKGgGaAloD0MIVG8NbJU8T0CUhpRSlGgVTbQFaBZHQRIKSEb349J1fZQoaAZoCWgPQwh9l1KXjGPSP5SGlFKUaBVN0AdoFkdBEgpH2u5jIHV9lChoBmgJaA9DCB0c7E0M707AlIaUUpRoFU1DAmgWR0ESCsW8twrEdX2UKGgGaAloD0MIjxoTYi5VW0CUhpRSlGgVTdkFaBZHQRIK0xPEsJ91fZQoaAZoCWgPQwi6vDlcq3pWQJSGlFKUaBVN0AdoFkdBEgrTxDv3J3V9lChoBmgJaA9DCBh47j1czElAlIaUUpRoFU3/A2gWR0ESCtVuJHiFdX2UKGgGaAloD0MI2NMOf02HZUCUhpRSlGgVTdAHaBZHQRIK4hGBnSR1fZQoaAZoCWgPQwiQ14NJ8cEqwJSGlFKUaBVN0AdoFkdBEgratwzch3V9lChoBmgJaA9DCG8qUmFsNTrAlIaUUpRoFU3QB2gWR0ESCt50tZmqdX2UKGgGaAloD0MIraQV31CYN8CUhpRSlGgVTdAHaBZHQRILs3gCfYl1fZQoaAZoCWgPQwhQ/1nz4zdRQJSGlFKUaBVNZgRoFkdBEguz/h86WHV9lChoBmgJaA9DCLE2xk54d0LAlIaUUpRoFU3QB2gWR0ESC7ivc8DCdX2UKGgGaAloD0MIhbNby2SaUECUhpRSlGgVTVEGaBZHQRILumfQKKJ1fZQoaAZoCWgPQwgq5bUSusdKwJSGlFKUaBVN0AdoFkdBEgu633vhInV9lChoBmgJaA9DCKjknNhDuUTAlIaUUpRoFU2DAWgWR0ESC7089nscdX2UKGgGaAloD0MIu7ciMUFJRsCUhpRSlGgVTe0BaBZHQRIMH7BV+7V1fZQoaAZoCWgPQwhc4zPZP99AQJSGlFKUaBVN0AdoFkdBEgwg2WqtHXV9lChoBmgJaA9DCEHzOXc7mW1AlIaUUpRoFU3QB2gWR0ESDCdZJoTPdX2UKGgGaAloD0MItcAeEylqb0CUhpRSlGgVTdYGaBZHQRIMIrSjgyd1fZQoaAZoCWgPQwjeOZShKg5VQJSGlFKUaBVN0AdoFkdBEgwlOvq1PXV9lChoBmgJaA9DCJpeYizTd0lAlIaUUpRoFU3QB2gWR0ESDClrbQC0dX2UKGgGaAloD0MI/aGZJ9erWcCUhpRSlGgVTSYBaBZHQRIMLhriVB51fZQoaAZoCWgPQwi9qN2vAopEwJSGlFKUaBVN8QFoFkdBEgwrOFg2InV9lChoBmgJaA9DCGg9fJkoFjxAlIaUUpRoFU3QB2gWR0ESDDYMl5WzdX2UKGgGaAloD0MIwM+4cCARU0CUhpRSlGgVTdAHaBZHQRIMNqHaN+91fZQoaAZoCWgPQwicUIiAQ8AhwJSGlFKUaBVNuwJoFkdBEgw1McLjP3V9lChoBmgJaA9DCKhXyjLEqSlAlIaUUpRoFU3QB2gWR0ESDDg+N5t4dX2UKGgGaAloD0MI+1dWmpTiA8CUhpRSlGgVTdAHaBZHQRIMROS5y2h1fZQoaAZoCWgPQwgdA7LXu9s3wJSGlFKUaBVN0AdoFkdBEgw9oR28qXV9lChoBmgJaA9DCMOgTKPJsTrAlIaUUpRoFU3QB2gWR0ESDEFO3H7xdX2UKGgGaAloD0MIZcVwdYDSb0CUhpRSlGgVTYAGaBZHQRIMQUg1WKd1fZQoaAZoCWgPQwghPNo4Yh1VQJSGlFKUaBVN4AZoFkdBEg1qTfNzKnV9lChoBmgJaA9DCCdr1EM0UVFAlIaUUpRoFU3QB2gWR0ESDWtzYAbRdX2UKGgGaAloD0MIk9+ik6U2MECUhpRSlGgVTY4DaBZHQRINbjNtIkJ1fZQoaAZoCWgPQwiL3T6rzKxBQJSGlFKUaBVN0AdoFkdBEg1tioVEeHV9lChoBmgJaA9DCMh6avXVhTjAlIaUUpRoFU3QB2gWR0ESDXLShSLqdX2UKGgGaAloD0MIHqZ9c38tVUCUhpRSlGgVTdAHaBZHQRINdI0dilV1fZQoaAZoCWgPQwga/P1itqw8QJSGlFKUaBVN0AdoFkdBEg17OL4ve3V9lChoBmgJaA9DCMiYu5aQiznAlIaUUpRoFU3QB2gWR0ESDX/rBwdbdX2UKGgGaAloD0MIn8ppT8mTS0CUhpRSlGgVTdAHaBZHQRINfP0uDjB1fZQoaAZoCWgPQwiWCiqqfllwQJSGlFKUaBVNIQZoFkdBEg2AKNyYHHV9lChoBmgJaA9DCD55WKg1MFBAlIaUUpRoFU3DBGgWR0ESDX18PSUkdX2UKGgGaAloD0MIUl+WdmouHsCUhpRSlGgVTdAHaBZHQRINh7gyM1l1fZQoaAZoCWgPQwjOF3svvqdSQJSGlFKUaBVN0AdoFkdBEg2IO8jAz3V9lChoBmgJaA9DCJiKjXkdrURAlIaUUpRoFU3QB2gWR0ESDhnu8K5TdX2UKGgGaAloD0MIIk+SrpnMU0CUhpRSlGgVTdAHaBZHQRIOFln0Cih1fZQoaAZoCWgPQwjGiEShZYFDQJSGlFKUaBVNbgNoFkdBEg4UYEs8PnV9lChoBmgJaA9DCNttF5rrxDdAlIaUUpRoFU20A2gWR0ESDhj+7UXpdX2UKGgGaAloD0MIqiwKuyhOS0CUhpRSlGgVTdAHaBZHQRIOFoOfdyl1fZQoaAZoCWgPQwheTZ6ymmZeQJSGlFKUaBVN0AdoFkdBEg70N2V3U3V9lChoBmgJaA9DCCyAKQMHdkLAlIaUUpRoFU3QB2gWR0ESDvVYJu2rdX2UKGgGaAloD0MIAyMva2LB+z+UhpRSlGgVTdAHaBZHQRIO+Bxd6cB1fZQoaAZoCWgPQwjSbYlc8HprQJSGlFKUaBVN0AdoFkdBEg73dfb9InV9lChoBmgJaA9DCPkRv2IN5ULAlIaUUpRoFU3QB2gWR0ESDvzGkWRBdX2UKGgGaAloD0MI7IoZ4e0qUMCUhpRSlGgVTewBaBZHQRIO/4UsFt91fZQoaAZoCWgPQwiQ2O4eoHM5wJSGlFKUaBVN0AdoFkdBEg7+oLv1DnV9lChoBmgJaA9DCFOSdTi6KgVAlIaUUpRoFU14A2gWR0ESDwPACW/rdX2UKGgGaAloD0MIxAYLJ2luGcCUhpRSlGgVTdAHaBZHQRIPBVhP0qZ1fZQoaAZoCWgPQwj9oZkn16BCwJSGlFKUaBVNWgJoFkdBEg8FNjRUm3V9lChoBmgJaA9DCJmaBG9IUxpAlIaUUpRoFU3QB2gWR0ESDwpCCrcTdX2UKGgGaAloD0MIfO2ZJQEaG8CUhpRSlGgVTdAHaBZHQRIPB5lu3tt1fZQoaAZoCWgPQwhQNA9gkVZbwJSGlFKUaBVNXQFoFkdBEg8Ls8U21nV9lChoBmgJaA9DCCMQr+uXGG5AlIaUUpRoFU1kB2gWR0ESDw9yJsO5dX2UKGgGaAloD0MIECGunL1tXUCUhpRSlGgVTdAHaBZHQRIPnG25hBt1fZQoaAZoCWgPQwhzLsVVZfBUwJSGlFKUaBVNxQFoFkdBEg+b8GY8dXV9lChoBmgJaA9DCMJtbeH5s2FAlIaUUpRoFU3QB2gWR0ESD6qnvH94dX2UKGgGaAloD0MIO+KQDaSDJ8CUhpRSlGgVTdAHaBZHQRIPpRQOnVJ1fZQoaAZoCWgPQwg66ui4GkElQJSGlFKUaBVN+gJoFkdBEg+qwFyJbnV9lChoBmgJaA9DCDmYTYBhwSzAlIaUUpRoFU3QB2gWR0ESD6mtf5UMdX2UKGgGaAloD0MI+N9KdmyEXUCUhpRSlGgVTdAHaBZHQRIPpzHIZIh1ZS4="
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 30520,
88
+ "n_steps": 2048,
89
+ "gamma": 0.99,
90
+ "gae_lambda": 0.95,
91
+ "ent_coef": 0.001,
92
+ "vf_coef": 0.5,
93
+ "max_grad_norm": 0.5,
94
+ "batch_size": 64,
95
+ "n_epochs": 10,
96
+ "clip_range": {
97
+ ":type:": "<class 'function'>",
98
+ ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSUBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
99
+ },
100
+ "clip_range_vf": null,
101
+ "normalize_advantage": true,
102
+ "target_kl": null
103
+ }
ppo-BipedalWalkerHardcore-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b57726b5dffb7835a2c9cbf1735dde09ae0f2eee635aa861bf0c209341f366c5
3
+ size 105200
ppo-BipedalWalkerHardcore-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:772cf4eae35f8669d37bf3ef8ad8dc070c7db1cc7431264e5bf6fe9ef13fa04a
3
+ size 51838
ppo-BipedalWalkerHardcore-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-BipedalWalkerHardcore-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:003bae2ccb8a4a78e025ea4228ca74d69edb88d9131d17a260513e18d9b347eb
3
+ size 235707
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 27.489446299999997, "std_reward": 65.52573853522442, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T15:41:19.149097"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28e634fe4cb3b9de5d762bd9b9e053fca6c0db58ca1bcf575b9e54547ae7744f
3
+ size 3454764
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47254c7c006e6bb6449409499d9f1afab9cd4e430ae61727df3a2ee29b2d9e28
3
+ size 6316