Quentin Gallouédec commited on
Commit
ac8311a
·
1 Parent(s): d3c2241

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FishUprightDMC-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: FishUprightDMC-v0
16
+ type: FishUprightDMC-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 427.14 +/- 361.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **FishUprightDMC-v0**
25
+ This is a trained model of a **DDPG** agent playing **FishUprightDMC-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env FishUprightDMC-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env FishUprightDMC-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env FishUprightDMC-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env FishUprightDMC-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env FishUprightDMC-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env FishUprightDMC-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('gamma', 0.99),
67
+ ('learning_rate', 0.0001),
68
+ ('n_timesteps', 1000000.0),
69
+ ('noise_std', 0.3),
70
+ ('noise_type', 'ornstein-uhlenbeck'),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ 'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
74
+ ('normalize', False)])
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - FishUprightDMC-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 4269684304
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/FishUprightDMC-v0__ddpg__4269684304__1673811056
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - qgallouedec
78
+ - - wandb_project_name
79
+ - dmc
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - gamma
5
+ - 0.99
6
+ - - learning_rate
7
+ - 0.0001
8
+ - - n_timesteps
9
+ - 1000000.0
10
+ - - noise_std
11
+ - 0.3
12
+ - - noise_type
13
+ - ornstein-uhlenbeck
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
ddpg-FishUprightDMC-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:805f4eb2f3a10cfd015a088801eb3ce28d4f96008af4ca03cef1964b6c08dfa4
3
+ size 3229083
ddpg-FishUprightDMC-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ddpg-FishUprightDMC-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29696c488e2ce25ab102f250687ee5fbab9664decac8e77c589fc1c558980c80
3
+ size 547119
ddpg-FishUprightDMC-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c46e89626d2b73fed4feb9061a97ca52d7ea832ababdbb220ebc0d1237e452f1
3
+ size 1055855
ddpg-FishUprightDMC-v0/data ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x12ef98280>",
8
+ "_build": "<function TD3Policy._build at 0x12ef98310>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x12ef983a0>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x12ef98430>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x12ef984c0>",
12
+ "forward": "<function TD3Policy.forward at 0x12ef98550>",
13
+ "_predict": "<function TD3Policy._predict at 0x12ef985e0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x12ef98670>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x12ef92440>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": {
21
+ "pi": [
22
+ 300,
23
+ 200
24
+ ],
25
+ "qf": [
26
+ 400,
27
+ 300
28
+ ]
29
+ },
30
+ "n_critics": 1
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWV0gwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWVAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLFYWUjAFDlHSUUpSMBGhpZ2iUaBMollQAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxWFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksVhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBaRisAETP9Me+NtIT8gjJFF9OoinqKLe77rZwb705pqIjsGp1Fl70N0NjSlf3irisFHL0fcEievzDAEG0vkVJrTsJNQUMw3uJrg0fGdgDK38d3J0EyPZJGdt076FTmVToWSFrU2DSqNLXWFfua3ftb20IPyzau9g7MruEoYSrlkUmDrl0N4cR0atLanijQcfSm6HCHuoVOuvJ2PxVY4DDvJ9Sn7z0QX8+IzmfXCEBRMiFtnRTlgMomS1Y58EMJTQCs5CjInshAxXv5YZTJj00cVPH/X2vECwnMt1C9VGgYMPuUhPf6UYgPL95VLe43Vsl2a8zUk2cGnwsKcT7787wEFa7NbLVlZmSOH8kdS/SHvyXFgAtuCu0RtCU4G+5gkynavY8f4QnIV7GBZPqp9GqdjezG2GxMCA+Ph0w3bvEIxIjnxMhUcRr80O6ej41VQjjdOakQ9OFE1+GvCUBakGBBkuWhWfo+jZRLOBxytHGgmqko+4w9yJ1lkke3hNKmfTSyQIZqlvtvgRCqgtLVKtRHoDN32B748gFzgj6y1kY55DmE41490wobNPgnk7WCDPi7zQTgQIkBr+CExQNDORZG9jIXo8OtJmPTGIIyyN8ErP+yBx/1t2oeLYjsfwlbRx5kGgt5bMKNmMkOSS1QZgcO4uQfyChwaqBNDi+CL4doDF8fO14gRtgSP7YCCU/QD8rJXlqUvOliZpIE/hrHLEKSj3PNOUZRr3DctwQ5toUnrF7s8uKLba2tigBjy85HqdbH4YTV/YOjle2YIR1FJHHnYRrAgoS9IvAJJdnHcJD1PN9oG8zuZ0uBEeGimRDFIrePquUAPqGBhSP+in0FNrT+j/vpEed7nrzBglwEx3lWhLYeglaJiFiMex0zf8J0UGEGFzvRwg36t/PwnCQ7okI3LRokduUA0gGUt1QjgXiz4924L+7ytoJT7NAWEnr/gu+6mKuPkaiOkrN19Lv4/rNJZprqLr4MtNe4rUgx+JjyLuls+/NnESQofaHMWOH0/+FiC+E4UqpfMy0NYMxFZQ1IqPWHW3GqzAV1VpmZR46XNwCr/ISqwk6dpv3r912YVOH99UBTt/QPZPUSpcX5JsUkQMRzNZy8suubaUwiPSxBBXCGywg1p8hE4F2iN9Rpv7Ghh9xVZ3i+/Y0fXnX16DVXBrGvCcLn+GPmpg/75PAbISOU9e6H5eGGk6dKSyGkxnaPa0WCLFlBcdA/bZZbn9WCuGUv3HwdNWy+qA3jA+UoEvFAJoVedZMBlRRneYNmxT4uaGNdjlj9fx7Zg6WZG8zlZgG+k+xOxnWWNuX/2p/3slycKi1TDnzdkJwm9MqSiVI9Jp/dsR50rQxbrVDaGIbZS2It5u9O7cruc2y8AM8kccQc82ABd2wJqwJWqbuO4kjdWXfZJUB1B30tbYGg1Mk4r0n52oqenJ5FOiWknewVG0jIBd1mdp8A0ZlSXyaV6ScLm04JXW/tJw8vuRxoDEzsGy1EtdZTlnWCclGE8+eMaZPynn1pMOPSw0lHqWAAiUXTxrFVvBPcMk2eFWwEfMkK+HKNf6aeE+/OXP39tL3yKZQzQvt4Vv/ds7MPmAg8RXepa4e7ckOH5gvb6tukSI2WhMuiF6AEOSYwlpS1LnzLn7/N4qrozmmJtVcKEMKOyyqYKTcbt/4ZaIhIh5XoBcIW22BIps59gc4GD1HeGwU5UHLVY4K7wmbZusMHrFbRjctNCUxTESXBz2Nz7nl2Eo1vg6ik7Ukk/7rMytt3MFMJK0RdiDAQayLnwMYtk/VHXCBxQD8cJbBZ7Us3sy6G0mYzPEDXcvnIsGgwqgC9rj/siJCE77YfJfXT0N6vOq6TBLRf4TjSGnOlBaBrUjNJLxKl2DyHY+QixAuYHbEJkLPZxIhHXLbr7RmaJmeBAqS2MBUozgIvFxEK7oh+Fam7Fw+5sodX2vsUIdLXsiB2/qdurPtQlHM8g8ibs3kpOp8EBGZB53PY0X1d4tKjJKtFWe6d5ePL3z/onIwpTG3J5h4JgBgVkLllUvuonpTrMBf5hPaLt0Y1e9mM2u9JFRdFCDOBG1b8HE62UUNxkAQhXlehSeg6BPDRj1ACc8aUTwM7VDm9sxHrRE4Nmm/zfXEtaiWBNlEftLMUe50sQA5tZHV1ancYbcde4nLpIwdMlnrO9gOo9ealQKYEwE92/qUV8+N5R3UZP5kJ2Uqd4d9GNW4H5AKXg4kdlMqtwSLj4e8ipQekbITz3JzH9UzRVxygeQbm+bgOvSTDeI8FMwj3E3YMpKqeSuE7/+FFm6p/U3bDMOKbjMxkwunm4W/8SCh0kWweTDJodPXT++tXC/p+zFUrl3rdFza4XJzPSdof3igOn7MN0Y4BGwQoReh2b9TxceExNK5oELN2778heekxLikGKYF3mjPlOW8Bl7gLMiglqcPYUa0F9331h/kMhbwyEM0vWkpjEpqbmm42uFuDDFPcF9hjOHSqLK6Qwoi8E9kwV/lXdv2087WzeHFAQn0zSuqnCfya2vz75crAtkeaEKoBm+PuPEHxaxiYszKvEy/FdDmfKF0IsXJZGYJE1W4S1W+DdOTZdBYW+9NCYkHuCiFkn8wpaoeWLUFYwGXVjGZBtMU5BvykkUpcvbo9/7ECle1LMB0om1NF4c2ap5DQyY94S/pVkCmbA9SF4f3IoGY3mcx0w8wa2bsv05BlBXV+HH2KkuUkQ1h9sjUr4fcybeZdO7eOjRQlhcxAWk5Ixy1Ah3cqPVfSw8/fH3xRzKSOMFU/OyEyQjM//A2NkvUvaLa0QzBu5QfsyXzvcUCIFOvhYUtot3kQE3JqDlX4hABwguTcU9TYFZ0lSHBHD7RIX9cNbdF68w7kdorLvL49ekY4gh9bZh7dyfVRvhAskk5GS+etwlivXgBoE6a24Jf8780b3eFpewN8RTgt0xwej+c7Jbe35y6Tj50+ek6n93zRQ7XPreGCfv7ivtwCy1fewdukhKdaK7r3mNiTnRSGryYTFc2I6hgTYRRQQS3gZUF3WvkKk3XNkwY+TMtkfnRhRjiCUIYN/69VqIakC+c+OnBtKKQMDOGwI/or8tY3nbbsKKXLAb3DGE5GXtIfCMhjAt+zyje3MH+LWIVVxNeRiUmoU+BKtBuV+uUyycWj5CdhPmcCIgVg1gZvXurKORvi8Lluj4Ax1Ta3iwqDPoHk8I2oizP5jXwuKE3Wa0fLRG5irPQmIHeUFrw6cnMhBG8s9DZ6D3dYDSYARKRRfjfdwTBV+f/L3jPVzgXc6FKD2Ye1eV0bS61VGK9iAeaID81+S4Rd5jWYFEMKEiFV3EqnG5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 21
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf]",
41
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False]",
42
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gAWVMgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAv5RoC0sFhZSMAUOUdJRSlIwEaGlnaJRoEyiWFAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAP5RoC0sFhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgUAAAAAAAAAAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYFAAAAAAAAAAEBAQEBlGgiSwWFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
48
+ "dtype": "float32",
49
+ "_shape": [
50
+ 5
51
+ ],
52
+ "low": "[-1. -1. -1. -1. -1.]",
53
+ "high": "[1. 1. 1. 1. 1.]",
54
+ "bounded_below": "[ True True True True True]",
55
+ "bounded_above": "[ True True True True True]",
56
+ "_np_random": "RandomState(MT19937)"
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": {
64
+ ":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
65
+ ":serialized:": "gAWVtQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwWFlIwBQ5R0lFKUjAZfc2lnbWGUaAkoligAAAAAAAAAMzMzMzMz0z8zMzMzMzPTPzMzMzMzM9M/MzMzMzMz0z8zMzMzMzPTP5RoEEsFhZRoFHSUUpSMA19kdJRHP4R64UeuFHuMDWluaXRpYWxfbm9pc2WUTowKbm9pc2VfcHJldpRoCSiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwWFlGgUdJRSlHViLg==",
66
+ "_theta": 0.15,
67
+ "_mu": "[0. 0. 0. 0. 0.]",
68
+ "_sigma": "[0.3 0.3 0.3 0.3 0.3]",
69
+ "_dt": 0.01,
70
+ "initial_noise": null,
71
+ "noise_prev": "[0. 0. 0. 0. 0.]"
72
+ },
73
+ "start_time": 1673811059348984361,
74
+ "learning_rate": {
75
+ ":type:": "<class 'function'>",
76
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
77
+ },
78
+ "tensorboard_log": "runs/FishUprightDMC-v0__ddpg__4269684304__1673811056/FishUprightDMC-v0",
79
+ "lr_schedule": {
80
+ ":type:": "<class 'function'>",
81
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
82
+ },
83
+ "_last_obs": null,
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gAWVyQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZUAAAAAAAAADP/27xJD28/Xr5fPHDKgDwfoQW/u6stPRFm7T4q7SU/rzKQu4lmgjppCOE7VRKvvW/bUj6bOrs+YLonwESEsrxUTc8/tPohwHQCGz/KgyFABo0YQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsVhpSMAUOUdJRSlC4="
91
+ },
92
+ "_episode_num": 1000,
93
+ "use_sde": false,
94
+ "sde_sample_freq": -1,
95
+ "_current_progress_remaining": 0.0,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/q4rjHXEqGMAWyUTegDjAF0lEdAvzZtSxZ+yHV9lChoBkdAhYST8pCrtGgHTegDaAhHQL8+51NQCS11fZQoaAZHQHD+TFdcB2hoB03oA2gIR0C/R3vXwsoVdX2UKGgGRz/sriMo+fRNaAdN6ANoCEdAv1ALNPgvUXV9lChoBkdAckEeDnNgSmgHTegDaAhHQL9YjDCxeLN1fZQoaAZHQIVCbA31jAloB03oA2gIR0C/YRFEy+HrdX2UKGgGR0BoVZhc7hegaAdN6ANoCEdAv2mT/Q0GeXV9lChoBkdAcLisDnvDxmgHTegDaAhHQL9yKwmVqvh1fZQoaAZHQIPOL1M/QjVoB03oA2gIR0C/esGBe5WjdX2UKGgGR0BUzwntv4ucaAdN6ANoCEdAv4NIrc0tRXV9lChoBkdAW4Utcv/R3WgHTegDaAhHQL+L2vLowEh1fZQoaAZHQHYr7eZXuE5oB03oA2gIR0C/lHch9srNdX2UKGgGR0Bpx2cOLBKuaAdN6ANoCEdAv50QWFev6nV9lChoBkdAPRRScbzbvmgHTegDaAhHQL+lmmdAgPp1fZQoaAZHP+5tvXK8tf5oB03oA2gIR0C/rj5fYzzmdX2UKGgGR0Bl4KJ2t+1CaAdN6ANoCEdAv7bo44p+dHV9lChoBkdAZV1LIPsiS2gHTegDaAhHQL+/mnh86WB1fZQoaAZHQIYCoWi1y/9oB03oA2gIR0C/yFFPnB+GdX2UKGgGR0BSRj59E1EWaAdN6ANoCEdAv9EM495hSnV9lChoBkdAgpuJ5E+gUWgHTegDaAhHQL/ZyK8L8aZ1fZQoaAZHQHtEznV5KOFoB03oA2gIR0C/4oXCoCMhdX2UKGgGR0BYTSBTXJ5naAdN6ANoCEdAv+s9+CsfaHV9lChoBkc//lkMCtA9m2gHTegDaAhHQL/z9drwe/51fZQoaAZHQANUDU3GXHBoB03oA2gIR0C//KxX8wYcdX2UKGgGR0CJFukbgjyGaAdN6ANoCEdAwAK09bor4HV9lChoBkdAdahtQKrq+2gHTegDaAhHQMAJ8b0OEuh1fZQoaAZHQGjRLronrptoB03oA2gIR0DADlBAjY7JdX2UKGgGR0BhgckB0ZFYaAdN6ANoCEdAwBKp3EAHV3V9lChoBkdAUIp/Aj6eoWgHTegDaAhHQMAXBzgMtsh1fZQoaAZHQIXUc8TzundoB03oA2gIR0DAG2U0+C9RdX2UKGgGR0CA15v5xiobaAdN6ANoCEdAwB+6Ymb9ZXV9lChoBkdAfvgtJnQIEGgHTegDaAhHQMAkGVopQUJ1fZQoaAZHQH9LKP0Zm7JoB03oA2gIR0DAKHucWj46dX2UKGgGR0BERhf0Eov0aAdN6ANoCEdAwCzXgGbCrXV9lChoBkdAay4sPJ7swGgHTegDaAhHQMAxMcrAgxJ1fZQoaAZHQGvM9vS+g15oB03oA2gIR0DANYzU1AJLdX2UKGgGR0CI7nrbg0j1aAdN6ANoCEdAwDnkqTbFj3V9lChoBkdAV6NpUPxx1mgHTegDaAhHQMA+QZVGTcJ1fZQoaAZHQGGc2/SH/LloB03oA2gIR0DAQqOyTpxFdX2UKGgGR0BYwNG/etSyaAdN6ANoCEdAwEb/hbW3B3V9lChoBkdAVr+5Fw1iv2gHTegDaAhHQMBLYe98JD51fZQoaAZHQFI7m6oVEeBoB03oA2gIR0DAT8KM5wOwdX2UKGgGR0BuUVTJhfBvaAdN6ANoCEdAwFQlH5Jsf3V9lChoBkdAdNWHlwLmZGgHTegDaAhHQMBYiHvUjLV1fZQoaAZHQEdQx2St/4JoB03oA2gIR0DAXO10/4ZddX2UKGgGR0B84EG7jDKpaAdN6ANoCEdAwGFVJ2+wknV9lChoBkdASyrgCOmzjWgHTegDaAhHQMBluuGKyfN1fZQoaAZHQHRIarNnoPloB03oA2gIR0DAaiGg13t8dX2UKGgGR0B9EjYraufVaAdN6ANoCEdAwG6JN6gM+nV9lChoBkdAhz5mLUCq62gHTegDaAhHQMBy4srEtNB1fZQoaAZHQHNco/Vy3kRoB03oA2gIR0DAejtglWwNdX2UKGgGR0BrmSSgXdj5aAdN6ANoCEdAwH6jg2IfsHV9lChoBkdAUrreGfwqiGgHTegDaAhHQMCDC0tyxRl1fZQoaAZHQH6cVi4J/odoB03oA2gIR0DAh3NhoduHdX2UKGgGR0B7D7okiUxEaAdN6ANoCEdAwIvZtpmEoXV9lChoBkdAdXGE1l5GBmgHTegDaAhHQMCQQRWtEG91fZQoaAZHQIJm3WDpTuRoB03oA2gIR0DAlKpssQNDdX2UKGgGR0B5hUdxQzk7aAdN6ANoCEdAwJkS90zTF3V9lChoBkc/8qS0Sh8IA2gHTegDaAhHQMCdeJ4rz5J1fZQoaAZHQHxWzTfBN21oB03oA2gIR0DAoeYuRLbpdX2UKGgGR0Bp8KGnGbTdaAdN6ANoCEdAwKZSwXZXdXV9lChoBkdAgxMu+yquKWgHTegDaAhHQMCqvb4i5d51fZQoaAZHP/ERZ2ZAprloB03oA2gIR0DAryop8WsSdX2UKGgGR0CAmHwIdELIaAdN6ANoCEdAwLOY06YE4nV9lChoBkdAV5/Xf642CWgHTegDaAhHQMC4CH6l+E11fZQoaAZHQGtWUd7v5QBoB03oA2gIR0DAvHFitq59dX2UKGgGR0BZwYyj59E1aAdN6ANoCEdAwMDdGRV6vHV9lChoBkdAgbf2AG0NSmgHTegDaAhHQMDFQf2K2rp1fZQoaAZHQGO2QkHD765oB03oA2gIR0DAyaHeJpFkdX2UKGgGR0CJzekLx7RfaAdN6ANoCEdAwM4NOv+wT3V9lChoBkdAfCLBVMmF8GgHTegDaAhHQMDSe9Gqgh91fZQoaAZHP/Go2XLNfPZoB03oA2gIR0DA1unMMZxadX2UKGgGR0CETqeumrKeaAdN6ANoCEdAwNtUhWYF7nV9lChoBkdAcvkg8bJfY2gHTegDaAhHQMDfu1RUFSt1fZQoaAZHQDcsP8Q7LdNoB03oA2gIR0DA5BcmMOwxdX2UKGgGR0BkxG5H3DekaAdN6ANoCEdAwOtIkMTewnV9lChoBkdAh28oEjgQ6WgHTegDaAhHQMDvmhXCCSR1fZQoaAZHQIwLwssg+yJoB03oA2gIR0DA89/3cpLFdX2UKGgGR0Blb7Rc/t6YaAdN6ANoCEdAwPgub83uNXV9lChoBkdAh/GDuBtk4GgHTegDaAhHQMD8awfZElV1fZQoaAZHP9WLtNSIgvFoB03oA2gIR0DBAKqSX+l1dX2UKGgGRz/NLUTcqOLjaAdN6ANoCEdAwQTkHpr1unV9lChoBkdAEd7NjbzshWgHTegDaAhHQMEJJGknCwd1fZQoaAZHQIrvWgte2NNoB03oA2gIR0DBDUOsxO+JdX2UKGgGR0ASjeCTUy57aAdN6ANoCEdAwRFwkvboKXV9lChoBkdAfxUcE/0NBmgHTegDaAhHQMEVnNXPqs51fZQoaAZHQI7jbLGJemhoB03oA2gIR0DBGc2KTB69dX2UKGgGR0AwT7voePq+aAdN6ANoCEdAwR4AaHbh33V9lChoBkdAEi50r9VFQWgHTegDaAhHQMEiL+Il+mZ1fZQoaAZHQHtriIHkcS5oB03oA2gIR0DBJl3qFAVxdX2UKGgGR0BwDwte2NNraAdN6ANoCEdAwSqIdmQKbHV9lChoBkdAVjn41xbSqmgHTegDaAhHQMEutRLbpNd1fZQoaAZHQIKCML+glGBoB03oA2gIR0DBMuhqCYkWdX2UKGgGR0CCEDnr6ciGaAdN6ANoCEdAwTcYTfzjFXV9lChoBkdAfxlr9VFQVWgHTegDaAhHQME7SbVjI7x1fZQoaAZHQIYZsQ/X5FhoB03oA2gIR0DBP3HEdeY2dX2UKGgGR0BHAjrzGxUvaAdN6ANoCEdAwUOja8Hv+nV9lChoBkdAO1Lbg0j1PGgHTegDaAhHQMFH1mx2SuB1fZQoaAZHQHPyRvvSc9ZoB03oA2gIR0DBTApDb8FZdX2UKGgGR0Bf8RxgiNbUaAdN6ANoCEdAwVAvYvnKXHVlLg=="
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 1000000,
105
+ "buffer_size": 1,
106
+ "batch_size": 64,
107
+ "learning_starts": 100,
108
+ "tau": 0.005,
109
+ "gamma": 0.99,
110
+ "gradient_steps": -1,
111
+ "optimize_memory_usage": false,
112
+ "replay_buffer_class": {
113
+ ":type:": "<class 'abc.ABCMeta'>",
114
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
115
+ "__module__": "stable_baselines3.common.buffers",
116
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
117
+ "__init__": "<function ReplayBuffer.__init__ at 0x12ef96dd0>",
118
+ "add": "<function ReplayBuffer.add at 0x12ef96e60>",
119
+ "sample": "<function ReplayBuffer.sample at 0x12ef96ef0>",
120
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x12ef96f80>",
121
+ "__abstractmethods__": "frozenset()",
122
+ "_abc_impl": "<_abc._abc_data object at 0x12eb5a900>"
123
+ },
124
+ "replay_buffer_kwargs": {},
125
+ "train_freq": {
126
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
127
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
128
+ },
129
+ "use_sde_at_warmup": false,
130
+ "policy_delay": 1,
131
+ "target_noise_clip": 0.0,
132
+ "target_policy_noise": 0.1,
133
+ "actor_batch_norm_stats": [],
134
+ "critic_batch_norm_stats": [],
135
+ "actor_batch_norm_stats_target": [],
136
+ "critic_batch_norm_stats_target": []
137
+ }
ddpg-FishUprightDMC-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e05efed14475a5ee4d5099ff8aeec5f0c3df6e45065c220226338c2f3d2a7da
3
+ size 1601309
ddpg-FishUprightDMC-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-FishUprightDMC-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e628140fe04d306a8fac367ed054245c82d4ecc28eb5521381a323e020ddc96d
3
+ size 234424
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 427.14342100000005, "std_reward": 361.6983029152146, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:59:06.969877"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e5eac43e4ddde65002872526cb7259c9c71aa2d9e83904fe10e6478669fdb31
3
+ size 42311