Quentin Gallouédec
commited on
Commit
·
0f26aca
1
Parent(s):
e9d1eb7
Initial commit
Browse files- .gitattributes +1 -0
- README.md +81 -0
- a2c-BipedalWalkerHardcore-v3.zip +3 -0
- a2c-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- a2c-BipedalWalkerHardcore-v3/data +106 -0
- a2c-BipedalWalkerHardcore-v3/policy.optimizer.pth +3 -0
- a2c-BipedalWalkerHardcore-v3/policy.pth +3 -0
- a2c-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- a2c-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- args.yml +79 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalkerHardcore-v3
|
16 |
+
type: BipedalWalkerHardcore-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 103.13 +/- 141.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **BipedalWalkerHardcore-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.001),
|
66 |
+
('gae_lambda', 0.9),
|
67 |
+
('gamma', 0.99),
|
68 |
+
('learning_rate', 'lin_0.0008'),
|
69 |
+
('max_grad_norm', 0.5),
|
70 |
+
('n_envs', 32),
|
71 |
+
('n_steps', 8),
|
72 |
+
('n_timesteps', 200000000.0),
|
73 |
+
('normalize', True),
|
74 |
+
('normalize_advantage', False),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
77 |
+
('use_rms_prop', True),
|
78 |
+
('use_sde', True),
|
79 |
+
('vf_coef', 0.4),
|
80 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
81 |
+
```
|
a2c-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:430642b4ac5c065c03b97ec5134e14df4c3291d7ebf795440d3680fcf195d2f3
|
3 |
+
size 130089
|
a2c-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f30a794fd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30a794fdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30a794fe50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30a794fee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f30a794ff70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f30a7951040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30a79510d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30a7951160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f30a79511f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30a7951280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30a7951310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30a79513a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f30a7950ec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
24
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
4
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True]",
|
58 |
+
"bounded_above": "[ True True True True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 200000000,
|
63 |
+
"_total_timesteps": 200000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1670930562216864858,
|
68 |
+
"learning_rate": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"tensorboard_log": "runs/BipedalWalkerHardcore-v3__a2c__1004659622__1670930559/BipedalWalkerHardcore-v3",
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
76 |
+
},
|
77 |
+
"_last_obs": null,
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAOcHNDs2+Es2MMrPuXkSg7xk7Lw93y9xOngsXD9/FDA6AACAP/OjBT0hLXE6dIlaP8YbJLoAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAP3gONDu3ej63+IRnOkQSg7x+Z7w9gsOYukw5XD8LZBQ7AACAPx21BD27wJi6lpJaP0sSWDoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj9anHk/AACAP/YNNDuD6mi3toyNOjoSg7ycVbw9Icy6upQ6XD/c9SA7AACAP0+RBD3WyLq65JNaP9sahDoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAPxENNDtI+ZO3ctuzOjASg7w4Orw9tVntupQ8XD+XoDM7AACAP2dZBD2CVe26ApZaPzzbpzoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP+YLNDs4G963QfsGOw8Sg7y4+rs9MyEyuxhBXD+Vi187AACAPx/bAz0MHjK7gJpaPyvz+zoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP6gFNDshVX42VI0BunwSg7zW+Lw9DmCWOsQqXD9ftgA6AACAP7G2BT0GXpY6nohaPyWjTLoAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAP9v2MzsbvRw3xKufuo8Sg7w2V709UVU5O+AdXD/0sF26AACAP+NBBj1sUzk7eoJaP7sz/LoAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP3EENDsy8Zk2V9Mcun8Sg7z5Br09BAi2OsYoXD9wspw5AACAP6/LBT3sBbY6oodaPzO3d7oAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj+EfnA/AACAP7X6MzvEkAU3aw+IuooSg7yIP709b+0dOyEhXD8Pgwa6AACAPxUgBj0G7B0754NaP13p1roAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj8AAIA/AACAP0ENNDtfZKm3/OPNOicSg7wUKLw9UtoHu849XD+YUUA7AACAP0U3BD3o1we7GJdaPxQnwDoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP1nwMztJm0E3jzrFupgSg7yUe709X+1kO/gYXD9zMbS6AACAPzt3Bj0P62Q7MIBaP2fDG7sAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP+vkMzsDN4U33bQHu6gSg7wvxb09WISdO+YOXD/Kkx67AACAPynkBj3Wgp07YntaP+hZVrsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj8AAIA/AACAP+cPNDtaQDq2WGViOWQSg7zNpbw9YmKVudQ0XD+8htM6AACAP9EwBT1gX5W5JY5aPwdKUzkAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP7LlMzsmHIM3cJAFu6YSg7zqwL096QebO3EPXD9Ynxq7AACAPxveBj09Bps7l3taP7X3UrsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj8AAIA/AACAP8rrMzv07l837x7kup8Sg7w6mr09VWSEO8AUXD89Ou26AACAP52lBj0RY4Q7DH5aP7EpNLsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj8AAIA/AACAPy8NNDtW5p23n+u/OioSg7zIMbw90ET9uio9XD/YgTk7AACAP7NKBD2KQP26bJZaP1sdszoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj/AeXA/AACAP2MNNDs04Zy3z62+OiwSg7zuMrw9kKH7uhI9XD+p5jg7AACAP4lMBD0Ynfu6XpZaP7n0sToAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP44HNDu3FFU2Rw7ZuXoSg7yf7rw9i/B7OjAsXD9zhSc6AACAP+unBT297ns6PolaPwtuK7oAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAPx0FNDvr1Yk2VGoMunwSg7y+/rw9xvuiOvEpXD9oTtk5AACAPzu/BT3b+aI6NIhaP6vJXboAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAP+7kMzvfW4U3BtsHu6gSg7zUxb091rCdO8AOXD+D2h67AACAP33kBj0Wr507W3taPxOWVrsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj80nHk/AACAP334Mzs/WhM3YhyWuo0Sg7xGTb09vzwuOzofXD+zZDq6AACAP4szBj3aOi47FoNaPy0b7boAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj/Df3A/AACAP7/tMzsbxVM3+LvXupwSg7zHjb09S2h6O3IWXD8BW9a6AACAP1+TBj2bZXo70X5aP8dgKrsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAPzIONDvvVmS3+sSKOjwSg7woV7w94CC3uoI6XD/jmh87AACAP+2UBD2YHbe6wpNaP4+CgToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAPx8MNDth98S38WfvOhkSg7ygELw9n/cdu4Y/XD8LplA7AACAP3UGBD3a9B277ZhaP5Fu3zoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP9LvMzsbPkQ3SerHupgSg7xIfr09rgtoO5IYXD8FJ7m6AACAP915Bj1CCWg7K4BaP63iHbsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj8AAIA/AACAPxLlMzv10IQ3Wk0Hu6YSg7wAxL09YAydOw8PXD9K1B27AACAP5njBj2OCp07VHtaPz+2VbsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj8AAIA/AACAP7cPNDsEB4u2NP2oOWASg7ysm7w99gHfuYc1XD9fIeE6AACAP18cBT17/t65645aP8e2nTkAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj8AAIA/AACAP0IQNDt2fpY09GgZuHASg7ypvrw9BxiyOKwyXD9AGK86AACAPxlhBT3eDLI4Q4xaPwtecrgAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAP1wNNDvEwKK3JNLFOioSg7yiLbw9NYcCu3A9XD+XYjw7AACAP31CBD3mhAK7qpZaPxWfuDoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj9enHk/AACAPw4NNDusEJy3I7G9OisSg7wRM7w9L1T6uhw9XD8FbDg7AACAP1dNBD3DT/q6YJZaP+0IsToAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP3PkMzv2RYY3EMkIu6gSg7x0x709/MSeO4kOXD/fkSC7AACAP53oBj1gw547GntaP7QOWLsAAIA/SLLhPnFC5D6CP+w+OKb6Pue6CD/SOho/tYo1P1XMYj8AAIA/AACAPwL1Mzuq5SY36AWqupMSg7y+YL09lVlFO6IcXD/v9oG6AACAP+NQBj06V0U7xoFaP+NGBrsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrcPRVbqGVcCUhpRSlIwBbJRN0AeMAXSUR0D2z/2tuk1udX2UKGgGaAloD0MI9RJjmX4SUcCUhpRSlGgVTdAHaBZHQPbQAa4uscR1fZQoaAZoCWgPQwheFD3wsYJhwJSGlFKUaBVNYARoFkdA9tACcjmjkHV9lChoBmgJaA9DCAt9sIzNgXBAlIaUUpRoFU39A2gWR0D20AmTrmhedX2UKGgGaAloD0MIRpp4Bzi+cECUhpRSlGgVTegDaBZHQPbQCvWGyop1fZQoaAZoCWgPQwjqWnufqk44QJSGlFKUaBVN8wFoFkdA9tAROfh/AnV9lChoBmgJaA9DCBgmUwWjjjlAlIaUUpRoFU0zAmgWR0D20Brdmg8KdX2UKGgGaAloD0MIFQMkmkBxNcCUhpRSlGgVTdAHaBZHQPbQHExM3611fZQoaAZoCWgPQwhWnkDYKStwQJSGlFKUaBVNNARoFkdA9tAhE163RXV9lChoBmgJaA9DCNhhTPp79VRAlIaUUpRoFU0QA2gWR0D20CkgTRICdX2UKGgGaAloD0MI+fNtwVJNTcCUhpRSlGgVTR8GaBZHQPbQLN28qWl1fZQoaAZoCWgPQwibH39pUYtBQJSGlFKUaBVN0AdoFkdA9tB0h5X2d3V9lChoBmgJaA9DCHcujPSiDFpAlIaUUpRoFU3QB2gWR0D20HnZmZmadX2UKGgGaAloD0MI0/iFV5JdYkCUhpRSlGgVTdAHaBZHQPbQgIKnei11fZQoaAZoCWgPQwhAoZ4+gmxrQJSGlFKUaBVNFgZoFkdA9tCBWEsasXV9lChoBmgJaA9DCLudfeXB3G5AlIaUUpRoFU21BGgWR0D20Iz9If8udX2UKGgGaAloD0MIFQMkmkADSECUhpRSlGgVTUgCaBZHQPbQmUFzMid1fZQoaAZoCWgPQwjw+zcvzrttQJSGlFKUaBVNEQVoFkdA9tCaBmkFfXV9lChoBmgJaA9DCOBIoMFmPHBAlIaUUpRoFU0uBGgWR0D20JtF3Y+TdX2UKGgGaAloD0MI8+fbgqVDcECUhpRSlGgVTR0EaBZHQPbQoT6BRQ91fZQoaAZoCWgPQwiAm8WLhRFvQJSGlFKUaBVNmgRoFkdA9tC3ZOWSlnV9lChoBmgJaA9DCP0v16KFC3BAlIaUUpRoFU1QBGgWR0D20LibTMJQdX2UKGgGaAloD0MIHhuBeF3BX0CUhpRSlGgVTdAHaBZHQPbQvadTYNB1fZQoaAZoCWgPQwgF4J9SpXZwQJSGlFKUaBVNDwRoFkdA9tC/iWNWEXV9lChoBmgJaA9DCLb3qSo0l2FAlIaUUpRoFU3QB2gWR0D20MT67/XHdX2UKGgGaAloD0MI5EnSNRMXcUCUhpRSlGgVTYoDaBZHQPbQy1kPMB91fZQoaAZoCWgPQwiyLm6jwQ5wQJSGlFKUaBVNRwRoFkdA9tDRZmdy1nV9lChoBmgJaA9DCMYZw5ygQWDAlIaUUpRoFU3QB2gWR0D20NLqh11XdX2UKGgGaAloD0MIHnBdMSN3WcCUhpRSlGgVTbgHaBZHQPbQ1o2ycCp1fZQoaAZoCWgPQwilMO9xpukfQJSGlFKUaBVN2AFoFkdA9tDZiKR+0HV9lChoBmgJaA9DCCwpd59jt29AlIaUUpRoFU1kBGgWR0D20Np0xubadX2UKGgGaAloD0MIdk8eFqqYcECUhpRSlGgVTf0DaBZHQPbRMxArxy51fZQoaAZoCWgPQwjzx7Q2jShuQJSGlFKUaBVN5ARoFkdA9tE1ylvZRXV9lChoBmgJaA9DCAA3ixcLEyJAlIaUUpRoFU07AmgWR0D20TdmSQo1dX2UKGgGaAloD0MIJv29FF4+cECUhpRSlGgVTS0EaBZHQPbROyvt+kR1fZQoaAZoCWgPQwhvL2mM1sFIwJSGlFKUaBVN0AdoFkdA9tE81l5GBnV9lChoBmgJaA9DCEnyXN+HmVTAlIaUUpRoFU3CA2gWR0D20UYDEFW5dX2UKGgGaAloD0MIueAM/r77cECUhpRSlGgVTcEDaBZHQPbRS0+LWI51fZQoaAZoCWgPQwiV9DC0Oj03wJSGlFKUaBVNVAFoFkdA9tFOrDuSfXV9lChoBmgJaA9DCISgo1WtEHFAlIaUUpRoFU2pA2gWR0D20U7uDSPVdX2UKGgGaAloD0MIMISc9/89MUCUhpRSlGgVTSECaBZHQPbRUeH1vl51fZQoaAZoCWgPQwiMnfASnGBqQJSGlFKUaBVNKAZoFkdA9tFX79hqkHV9lChoBmgJaA9DCM78ag4Q3BLAlIaUUpRoFU3BAWgWR0D20V9nKnvVdX2UKGgGaAloD0MI+N7foL1GM8CUhpRSlGgVTY4BaBZHQPbRX/Ho5gh1fZQoaAZoCWgPQwiSzVXznAljQJSGlFKUaBVN0AdoFkdA9tFhgW3z+XV9lChoBmgJaA9DCDohdNAlJHBAlIaUUpRoFU1RBGgWR0D20WcoAn2JdX2UKGgGaAloD0MI+1dWmpSaP8CUhpRSlGgVTdAHaBZHQPbRbyhi9Zl1fZQoaAZoCWgPQwikq3R3HbRhQJSGlFKUaBVN0AdoFkdA9tFyH7P6bnV9lChoBmgJaA9DCDkKEAUz9jZAlIaUUpRoFU1SAmgWR0D20XemNzbOdX2UKGgGaAloD0MI8gwa+mc8cECUhpRSlGgVTS0EaBZHQPbRe8+fRNR1fZQoaAZoCWgPQwjuz0VDxoM7wJSGlFKUaBVNcgFoFkdA9tGCwjhUBHV9lChoBmgJaA9DCMy1aAGalXBAlIaUUpRoFU3tA2gWR0D20ZDGJN0vdX2UKGgGaAloD0MIuoeE7/3NSsCUhpRSlGgVTRkBaBZHQPbR2CgQHzJ1fZQoaAZoCWgPQwgYldQJ6JFwQJSGlFKUaBVN+ANoFkdA9tHZt0aIe3V9lChoBmgJaA9DCKn26XhMwWFAlIaUUpRoFU0cBGgWR0D20dzapPykdX2UKGgGaAloD0MIml5iLNOjXECUhpRSlGgVTdAHaBZHQPbR4OKAJ9l1fZQoaAZoCWgPQwgheHx710NXwJSGlFKUaBVNFQdoFkdA9tHmvP5YYHV9lChoBmgJaA9DCPeUnBN7cETAlIaUUpRoFU3QB2gWR0D20ejUeuFIdX2UKGgGaAloD0MIdo2WAz37XkCUhpRSlGgVTWADaBZHQPbR6oB/7SB1fZQoaAZoCWgPQwh/h6JAn1wyQJSGlFKUaBVNSwRoFkdA9tHxOlGgBnV9lChoBmgJaA9DCDkLe9rhrxzAlIaUUpRoFU0TBGgWR0D20geBxPwedX2UKGgGaAloD0MIgy9Mpgo5YkCUhpRSlGgVTdAHaBZHQPbSCQnPVut1fZQoaAZoCWgPQwjKG2DmO4ZVwJSGlFKUaBVN0AdoFkdA9tIM5vP1MHV9lChoBmgJaA9DCFiR0QEJ83BAlIaUUpRoFU3IA2gWR0D20hFDwYtQdX2UKGgGaAloD0MIj3Ba8KJ4cECUhpRSlGgVTQgEaBZHQPbSFOUmlZZ1fZQoaAZoCWgPQwjfpGlQNIclwJSGlFKUaBVN0AdoFkdA9tIu9at9yHV9lChoBmgJaA9DCEerWtLRPHBAlIaUUpRoFU0YBGgWR0D20jB96kZadX2UKGgGaAloD0MIT7D/OrePacCUhpRSlGgVTYMFaBZHQPbSOXE4vOB1fZQoaAZoCWgPQwjr/Ntl/1FwQJSGlFKUaBVNHwRoFkdA9tJBDb349HV9lChoBmgJaA9DCDEm/b0UM1jAlIaUUpRoFU3QB2gWR0D20nybKifydX2UKGgGaAloD0MIi/z6ITYrXUCUhpRSlGgVTTsDaBZHQPbSjJ4qwyJ1fZQoaAZoCWgPQwhjCWtjLENwQJSGlFKUaBVNKwRoFkdA9tKOwOz6anV9lChoBmgJaA9DCOqwwi0ftnBAlIaUUpRoFU3zA2gWR0D20p6Ug0TDdX2UKGgGaAloD0MIpKmezD86M8CUhpRSlGgVTdAHaBZHQPbSoHR6WxB1fZQoaAZoCWgPQwjAl8KDZtcGwJSGlFKUaBVNUgFoFkdA9tKoK0UoKHV9lChoBmgJaA9DCCdMGM3KuG9AlIaUUpRoFU2ABGgWR0D20qhXbM5fdX2UKGgGaAloD0MIe6NWmL66cECUhpRSlGgVTdQDaBZHQPbSqWxjawl1fZQoaAZoCWgPQwjRV5BmLGJwQJSGlFKUaBVNHARoFkdA9tK1FdkauXV9lChoBmgJaA9DCMsuGFxzN2DAlIaUUpRoFU3QB2gWR0D20rVpd8iOdX2UKGgGaAloD0MIdzBin0B6cECUhpRSlGgVTRMEaBZHQPbSutQvYe11fZQoaAZoCWgPQwj36A33kVBVQJSGlFKUaBVNuwJoFkdA9tLIkDIRy3V9lChoBmgJaA9DCBubHam+E1TAlIaUUpRoFU3QB2gWR0D20skRG+bmdX2UKGgGaAloD0MI9yLajqlhWUCUhpRSlGgVTdAHaBZHQPbSysd8zAN1fZQoaAZoCWgPQwj4bB0c7NRsQJSGlFKUaBVNWQVoFkdA9tLPQd8zAXV9lChoBmgJaA9DCPGdmPWi9XBAlIaUUpRoFU3JA2gWR0D20tDPIXCTdX2UKGgGaAloD0MI31D4bB03cECUhpRSlGgVTTUEaBZHQPbS24uzyBl1fZQoaAZoCWgPQwhIMxZN51JmQJSGlFKUaBVN0AdoFkdA9tLc+NT99HV9lChoBmgJaA9DCJi9bDttY0RAlIaUUpRoFU3QB2gWR0D20uApuMuOdX2UKGgGaAloD0MIcjPcgA8rcECUhpRSlGgVTScEaBZHQPbS4ZssQNF1fZQoaAZoCWgPQwiSskXSbjZuwJSGlFKUaBVNuQdoFkdA9tLjH05EMXV9lChoBmgJaA9DCOp5NxaUQm9AlIaUUpRoFU2ZBGgWR0D20uRzfrKOdX2UKGgGaAloD0MIwVJdwMvsUkCUhpRSlGgVTdAHaBZHQPbTLd43WFx1fZQoaAZoCWgPQwh3aFiMuuRRQJSGlFKUaBVN0AdoFkdA9tMvashgV3V9lChoBmgJaA9DCHl3ZKw2OGBAlIaUUpRoFU3QB2gWR0D20zUAPuohdX2UKGgGaAloD0MIqFZfXRVPZ0CUhpRSlGgVTXgHaBZHQPbTPOexwAF1fZQoaAZoCWgPQwj7P4f58jI7wJSGlFKUaBVN0AdoFkdA9tNEw/xDs3V9lChoBmgJaA9DCC6rsBngqHBAlIaUUpRoFU3uA2gWR0D200eN0eU7dX2UKGgGaAloD0MIArfu5qkfWcCUhpRSlGgVTVYBaBZHQPbTUCQ6p5x1fZQoaAZoCWgPQwg83uS36CxCQJSGlFKUaBVNLwJoFkdA9tNWC7sfJXV9lChoBmgJaA9DCCcXY2DdQXBAlIaUUpRoFU0tBGgWR0D202AKxcFAdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 781250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.001,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-BipedalWalkerHardcore-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf5fc47980e4e818bfdfdef1962c1c2df975308c96c268eac765f8e41fa99baf
|
3 |
+
size 52094
|
a2c-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dbe025d3aab384b1707cea21c9fd7dab345ecb8aa3006696d95bf801c7d3ea0
|
3 |
+
size 52798
|
a2c-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- BipedalWalkerHardcore-v3
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 1004659622
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/BipedalWalkerHardcore-v3__a2c__1004659622__1670930559
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.001
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.9
|
6 |
+
- - gamma
|
7 |
+
- 0.99
|
8 |
+
- - learning_rate
|
9 |
+
- lin_0.0008
|
10 |
+
- - max_grad_norm
|
11 |
+
- 0.5
|
12 |
+
- - n_envs
|
13 |
+
- 32
|
14 |
+
- - n_steps
|
15 |
+
- 8
|
16 |
+
- - n_timesteps
|
17 |
+
- 200000000.0
|
18 |
+
- - normalize
|
19 |
+
- true
|
20 |
+
- - normalize_advantage
|
21 |
+
- false
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
24 |
+
- - policy_kwargs
|
25 |
+
- dict(log_std_init=-2, ortho_init=False)
|
26 |
+
- - use_rms_prop
|
27 |
+
- true
|
28 |
+
- - use_sde
|
29 |
+
- true
|
30 |
+
- - vf_coef
|
31 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cb43d040e030d675be76d5daffe6e64373eb3a62173959dad0f2345013f60b7
|
3 |
+
size 496626
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 103.1278538, "std_reward": 141.13470473188445, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:38:16.620315"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e29a33e68ccaf583a75483f35d1951ad31c5e9ef0a9362cdf07c089f1805a52
|
3 |
+
size 5039283
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f8e3b7a9a0f3f13dd77a1fb97661e845cd88f7b5a078640efa38eb752039ba1
|
3 |
+
size 7818
|