--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-finetuned-gesture-prediction-21-classes results: [] --- # roberta-finetuned-gesture-prediction-21-classes This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7768 - Precision: 0.5980 - Recall: 0.7114 - F1: 0.6498 - Accuracy: 0.8114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.453261348481077e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.7887 | 1.0 | 104 | 1.0084 | 0.4610 | 0.5990 | 0.5210 | 0.7479 | | 0.8935 | 2.0 | 208 | 0.8393 | 0.5249 | 0.6618 | 0.5855 | 0.7872 | | 0.5383 | 3.0 | 312 | 0.7661 | 0.5499 | 0.6860 | 0.6104 | 0.7919 | | 0.3124 | 4.0 | 416 | 0.7768 | 0.5980 | 0.7114 | 0.6498 | 0.8114 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2