qfrodicio commited on
Commit
dd1d050
·
1 Parent(s): 00ec564

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: roberta-finetuned-gesture-prediction-21-classes
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-finetuned-gesture-prediction-21-classes
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7768
23
+ - Precision: 0.5980
24
+ - Recall: 0.7114
25
+ - F1: 0.6498
26
+ - Accuracy: 0.8114
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 9.453261348481077e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 4
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.7887 | 1.0 | 104 | 1.0084 | 0.4610 | 0.5990 | 0.5210 | 0.7479 |
58
+ | 0.8935 | 2.0 | 208 | 0.8393 | 0.5249 | 0.6618 | 0.5855 | 0.7872 |
59
+ | 0.5383 | 3.0 | 312 | 0.7661 | 0.5499 | 0.6860 | 0.6104 | 0.7919 |
60
+ | 0.3124 | 4.0 | 416 | 0.7768 | 0.5980 | 0.7114 | 0.6498 | 0.8114 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.26.1
66
+ - Pytorch 1.13.1+cu116
67
+ - Datasets 2.10.1
68
+ - Tokenizers 0.13.2