Upload visual_encoder.py with huggingface_hub
Browse files- visual_encoder.py +922 -0
visual_encoder.py
ADDED
|
@@ -0,0 +1,922 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Any, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
|
| 5 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 6 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from icecream import ic
|
| 13 |
+
|
| 14 |
+
def get_abs_pos(abs_pos, tgt_size):
|
| 15 |
+
# abs_pos: L, C
|
| 16 |
+
# tgt_size: M
|
| 17 |
+
# return: M, C
|
| 18 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
| 19 |
+
tgt_size = int(math.sqrt(tgt_size))
|
| 20 |
+
dtype = abs_pos.dtype
|
| 21 |
+
|
| 22 |
+
if src_size != tgt_size:
|
| 23 |
+
return F.interpolate(
|
| 24 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
| 25 |
+
size=(tgt_size, tgt_size),
|
| 26 |
+
mode="bicubic",
|
| 27 |
+
align_corners=False,
|
| 28 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
| 29 |
+
else:
|
| 30 |
+
return abs_pos
|
| 31 |
+
|
| 32 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
| 33 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
| 34 |
+
"""
|
| 35 |
+
grid_size: int of the grid height and width
|
| 36 |
+
return:
|
| 37 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 38 |
+
"""
|
| 39 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 40 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 41 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 42 |
+
grid = np.stack(grid, axis=0)
|
| 43 |
+
|
| 44 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 45 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 46 |
+
if cls_token:
|
| 47 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 48 |
+
return pos_embed
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 52 |
+
assert embed_dim % 2 == 0
|
| 53 |
+
|
| 54 |
+
# use half of dimensions to encode grid_h
|
| 55 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 56 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 57 |
+
|
| 58 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 59 |
+
return emb
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 63 |
+
"""
|
| 64 |
+
embed_dim: output dimension for each position
|
| 65 |
+
pos: a list of positions to be encoded: size (M,)
|
| 66 |
+
out: (M, D)
|
| 67 |
+
"""
|
| 68 |
+
assert embed_dim % 2 == 0
|
| 69 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
| 70 |
+
omega /= embed_dim / 2.
|
| 71 |
+
omega = 1. / 10000**omega # (D/2,)
|
| 72 |
+
|
| 73 |
+
pos = pos.reshape(-1) # (M,)
|
| 74 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 75 |
+
|
| 76 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 77 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 78 |
+
|
| 79 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 80 |
+
return emb
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class MplugOwlVisionEmbeddings(nn.Module):
|
| 85 |
+
def __init__(self, config):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.config = config
|
| 88 |
+
self.hidden_size = config.hidden_size
|
| 89 |
+
self.image_size = config.image_size
|
| 90 |
+
self.patch_size = config.patch_size
|
| 91 |
+
|
| 92 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
|
| 93 |
+
|
| 94 |
+
self.patch_embed = nn.Conv2d(
|
| 95 |
+
in_channels=3,
|
| 96 |
+
out_channels=self.hidden_size,
|
| 97 |
+
kernel_size=self.patch_size,
|
| 98 |
+
stride=self.patch_size,
|
| 99 |
+
bias=False,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 103 |
+
|
| 104 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))
|
| 105 |
+
|
| 106 |
+
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 107 |
+
|
| 108 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 109 |
+
batch_size = pixel_values.size(0)
|
| 110 |
+
image_embeds = self.patch_embed(pixel_values)
|
| 111 |
+
image_embeds = image_embeds.flatten(2).transpose(1, 2)
|
| 112 |
+
|
| 113 |
+
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype)
|
| 114 |
+
embeddings = torch.cat([class_embeds, image_embeds], dim=1)
|
| 115 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype)
|
| 116 |
+
embeddings = self.pre_layernorm(embeddings)
|
| 117 |
+
return embeddings
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class MplugOwlVisionAttention(nn.Module):
|
| 122 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 123 |
+
|
| 124 |
+
def __init__(self, config):
|
| 125 |
+
super().__init__()
|
| 126 |
+
self.config = config
|
| 127 |
+
self.hidden_size = config.hidden_size
|
| 128 |
+
self.num_heads = config.num_attention_heads
|
| 129 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 130 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
| 131 |
+
raise ValueError(
|
| 132 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
| 133 |
+
f" {self.num_heads})."
|
| 134 |
+
)
|
| 135 |
+
self.scale = self.head_dim**-0.5
|
| 136 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
| 137 |
+
|
| 138 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
|
| 139 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
| 140 |
+
|
| 141 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 142 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 143 |
+
|
| 144 |
+
def forward(
|
| 145 |
+
self,
|
| 146 |
+
hidden_states: torch.Tensor,
|
| 147 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 148 |
+
output_attentions: Optional[bool] = False,
|
| 149 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 150 |
+
"""Input shape: Batch x Time x Channel"""
|
| 151 |
+
|
| 152 |
+
bsz, seq_len, embed_dim = hidden_states.size()
|
| 153 |
+
|
| 154 |
+
mixed_qkv = self.query_key_value(hidden_states)
|
| 155 |
+
|
| 156 |
+
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
|
| 157 |
+
3, 0, 2, 1, 4
|
| 158 |
+
) # [3, b, np, sq, hn]
|
| 159 |
+
query_states, key_states, value_states = (
|
| 160 |
+
mixed_qkv[0],
|
| 161 |
+
mixed_qkv[1],
|
| 162 |
+
mixed_qkv[2],
|
| 163 |
+
)
|
| 164 |
+
# if self.config.use_flash_attn and flash_attn_func is not None:
|
| 165 |
+
if False:
|
| 166 |
+
# [b*sq, np, hn]
|
| 167 |
+
query_states = query_states.permute(0, 2, 1, 3).contiguous()
|
| 168 |
+
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)
|
| 169 |
+
|
| 170 |
+
key_states = key_states.permute(0, 2, 1, 3).contiguous()
|
| 171 |
+
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)
|
| 172 |
+
|
| 173 |
+
value_states = value_states.permute(0, 2, 1, 3).contiguous()
|
| 174 |
+
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)
|
| 175 |
+
|
| 176 |
+
cu_seqlens = torch.arange(
|
| 177 |
+
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
context_layer = flash_attn_func(
|
| 181 |
+
query_states,
|
| 182 |
+
key_states,
|
| 183 |
+
value_states,
|
| 184 |
+
cu_seqlens,
|
| 185 |
+
cu_seqlens,
|
| 186 |
+
seq_len,
|
| 187 |
+
seq_len,
|
| 188 |
+
self.dropout if self.training else 0.0,
|
| 189 |
+
softmax_scale=self.scale,
|
| 190 |
+
causal=False,
|
| 191 |
+
return_attn_probs=False,
|
| 192 |
+
)
|
| 193 |
+
# [b*sq, np, hn] => [b, sq, np, hn]
|
| 194 |
+
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
|
| 195 |
+
else:
|
| 196 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 197 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
| 198 |
+
|
| 199 |
+
attention_scores = attention_scores * self.scale
|
| 200 |
+
|
| 201 |
+
# Normalize the attention scores to probabilities.
|
| 202 |
+
attention_probs = torch.softmax(attention_scores, dim=-1)
|
| 203 |
+
|
| 204 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 205 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 206 |
+
attention_probs = self.dropout(attention_probs)
|
| 207 |
+
|
| 208 |
+
# Mask heads if we want to
|
| 209 |
+
if head_mask is not None:
|
| 210 |
+
attention_probs = attention_probs * head_mask
|
| 211 |
+
|
| 212 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
| 213 |
+
|
| 214 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
| 215 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
| 216 |
+
|
| 217 |
+
output = self.dense(context_layer)
|
| 218 |
+
|
| 219 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
| 220 |
+
|
| 221 |
+
return outputs
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class QuickGELU(nn.Module):
|
| 225 |
+
def forward(self, x: torch.Tensor):
|
| 226 |
+
return x * torch.sigmoid(1.702 * x)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class MplugOwlMLP(nn.Module):
|
| 230 |
+
def __init__(self, config):
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.config = config
|
| 233 |
+
self.activation_fn = QuickGELU()
|
| 234 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 235 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 236 |
+
|
| 237 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 238 |
+
hidden_states = self.fc1(hidden_states)
|
| 239 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 240 |
+
hidden_states = self.fc2(hidden_states)
|
| 241 |
+
return hidden_states
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class MplugOwlVisionEncoderLayer(nn.Module):
|
| 245 |
+
def __init__(self, config):
|
| 246 |
+
super().__init__()
|
| 247 |
+
self.hidden_size = config.hidden_size
|
| 248 |
+
self.self_attn = MplugOwlVisionAttention(config)
|
| 249 |
+
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 250 |
+
self.mlp = MplugOwlMLP(config)
|
| 251 |
+
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 252 |
+
|
| 253 |
+
def forward(
|
| 254 |
+
self,
|
| 255 |
+
hidden_states: torch.Tensor,
|
| 256 |
+
attention_mask: torch.Tensor,
|
| 257 |
+
output_attentions: Optional[bool] = False,
|
| 258 |
+
) -> Tuple[torch.FloatTensor]:
|
| 259 |
+
"""
|
| 260 |
+
Args:
|
| 261 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 262 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 263 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 264 |
+
`(config.encoder_attention_heads,)`.
|
| 265 |
+
output_attentions (`bool`, *optional*):
|
| 266 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 267 |
+
returned tensors for more detail.
|
| 268 |
+
"""
|
| 269 |
+
residual = hidden_states
|
| 270 |
+
|
| 271 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 272 |
+
hidden_states, attn_weights = self.self_attn(
|
| 273 |
+
hidden_states=hidden_states,
|
| 274 |
+
head_mask=attention_mask,
|
| 275 |
+
output_attentions=output_attentions,
|
| 276 |
+
)
|
| 277 |
+
hidden_states = hidden_states + residual
|
| 278 |
+
residual = hidden_states
|
| 279 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 280 |
+
hidden_states = self.mlp(hidden_states)
|
| 281 |
+
|
| 282 |
+
hidden_states = hidden_states + residual
|
| 283 |
+
|
| 284 |
+
outputs = (hidden_states,)
|
| 285 |
+
|
| 286 |
+
if output_attentions:
|
| 287 |
+
outputs += (attn_weights,)
|
| 288 |
+
|
| 289 |
+
return outputs
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class MplugOwlVisionEncoder(nn.Module):
|
| 293 |
+
"""
|
| 294 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 295 |
+
[`MplugOwlVisionEncoderLayer`].
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
config (`MplugOwlVisionConfig`):
|
| 299 |
+
The corresponding vision configuration for the `MplugOwlEncoder`.
|
| 300 |
+
"""
|
| 301 |
+
|
| 302 |
+
def __init__(self, config):
|
| 303 |
+
super().__init__()
|
| 304 |
+
self.config = config
|
| 305 |
+
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 306 |
+
self.gradient_checkpointing = True
|
| 307 |
+
|
| 308 |
+
def forward(
|
| 309 |
+
self,
|
| 310 |
+
inputs_embeds,
|
| 311 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 312 |
+
output_attentions: Optional[bool] = None,
|
| 313 |
+
output_hidden_states: Optional[bool] = None,
|
| 314 |
+
return_dict: Optional[bool] = None,
|
| 315 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 316 |
+
r"""
|
| 317 |
+
Args:
|
| 318 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 319 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 320 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 321 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 322 |
+
|
| 323 |
+
- 1 for tokens that are **not masked**,
|
| 324 |
+
- 0 for tokens that are **masked**.
|
| 325 |
+
|
| 326 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 327 |
+
output_attentions (`bool`, *optional*):
|
| 328 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 329 |
+
returned tensors for more detail.
|
| 330 |
+
output_hidden_states (`bool`, *optional*):
|
| 331 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 332 |
+
for more detail.
|
| 333 |
+
return_dict (`bool`, *optional*):
|
| 334 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 335 |
+
"""
|
| 336 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 337 |
+
output_hidden_states = (
|
| 338 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 339 |
+
)
|
| 340 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 341 |
+
|
| 342 |
+
encoder_states = () if output_hidden_states else None
|
| 343 |
+
all_attentions = () if output_attentions else None
|
| 344 |
+
|
| 345 |
+
hidden_states = inputs_embeds
|
| 346 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 347 |
+
if output_hidden_states:
|
| 348 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 349 |
+
if self.gradient_checkpointing and self.training:
|
| 350 |
+
|
| 351 |
+
def create_custom_forward(module):
|
| 352 |
+
def custom_forward(*inputs):
|
| 353 |
+
return module(*inputs, output_attentions)
|
| 354 |
+
|
| 355 |
+
return custom_forward
|
| 356 |
+
|
| 357 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 358 |
+
create_custom_forward(encoder_layer),
|
| 359 |
+
hidden_states,
|
| 360 |
+
attention_mask,
|
| 361 |
+
)
|
| 362 |
+
else:
|
| 363 |
+
layer_outputs = encoder_layer(
|
| 364 |
+
hidden_states,
|
| 365 |
+
attention_mask,
|
| 366 |
+
output_attentions=output_attentions,
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
hidden_states = layer_outputs[0]
|
| 370 |
+
|
| 371 |
+
if output_attentions:
|
| 372 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 373 |
+
|
| 374 |
+
if output_hidden_states:
|
| 375 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 376 |
+
|
| 377 |
+
if not return_dict:
|
| 378 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 379 |
+
return BaseModelOutput(
|
| 380 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class MplugOwlVisionModel(PreTrainedModel):
|
| 385 |
+
main_input_name = "pixel_values"
|
| 386 |
+
_no_split_modules = ["MplugOwlVisionEncoderLayer"]
|
| 387 |
+
|
| 388 |
+
def __init__(self, config):
|
| 389 |
+
super().__init__(config)
|
| 390 |
+
self.config = config
|
| 391 |
+
self.hidden_size = config.hidden_size
|
| 392 |
+
|
| 393 |
+
self.embeddings = MplugOwlVisionEmbeddings(config)
|
| 394 |
+
self.encoder = MplugOwlVisionEncoder(config)
|
| 395 |
+
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 396 |
+
|
| 397 |
+
self.post_init()
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def forward(
|
| 401 |
+
self,
|
| 402 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 403 |
+
output_attentions: Optional[bool] = None,
|
| 404 |
+
output_hidden_states: Optional[bool] = None,
|
| 405 |
+
return_dict: Optional[bool] = None,
|
| 406 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 407 |
+
r"""
|
| 408 |
+
Returns:
|
| 409 |
+
|
| 410 |
+
"""
|
| 411 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 412 |
+
output_hidden_states = (
|
| 413 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 414 |
+
)
|
| 415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 416 |
+
|
| 417 |
+
if pixel_values is None:
|
| 418 |
+
raise ValueError("You have to specify pixel_values")
|
| 419 |
+
|
| 420 |
+
hidden_states = self.embeddings(pixel_values)
|
| 421 |
+
|
| 422 |
+
encoder_outputs = self.encoder(
|
| 423 |
+
inputs_embeds=hidden_states,
|
| 424 |
+
output_attentions=output_attentions,
|
| 425 |
+
output_hidden_states=output_hidden_states,
|
| 426 |
+
return_dict=return_dict,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
last_hidden_state = encoder_outputs[0]
|
| 430 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 431 |
+
|
| 432 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 433 |
+
pooled_output = self.post_layernorm(pooled_output)
|
| 434 |
+
|
| 435 |
+
if not return_dict:
|
| 436 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 437 |
+
|
| 438 |
+
return BaseModelOutputWithPooling(
|
| 439 |
+
last_hidden_state=last_hidden_state,
|
| 440 |
+
pooler_output=pooled_output,
|
| 441 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 442 |
+
attentions=encoder_outputs.attentions,
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
def get_input_embeddings(self):
|
| 446 |
+
return self.embeddings
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
class MplugOwlVisualAbstractorMLP(nn.Module):
|
| 450 |
+
def __init__(self, config):
|
| 451 |
+
super().__init__()
|
| 452 |
+
self.config = config
|
| 453 |
+
in_features = config.hidden_size
|
| 454 |
+
self.act = nn.SiLU()
|
| 455 |
+
|
| 456 |
+
self.w1 = nn.Linear(in_features, config.intermediate_size)
|
| 457 |
+
self.w2 = nn.Linear(config.intermediate_size, in_features)
|
| 458 |
+
self.w3 = nn.Linear(in_features, config.intermediate_size)
|
| 459 |
+
self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps)
|
| 460 |
+
|
| 461 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 462 |
+
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
|
| 463 |
+
hidden_states = self.ffn_ln(hidden_states)
|
| 464 |
+
hidden_states = self.w2(hidden_states)
|
| 465 |
+
return hidden_states
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module):
|
| 469 |
+
def __init__(self, config):
|
| 470 |
+
super().__init__()
|
| 471 |
+
self.config = config
|
| 472 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
| 473 |
+
raise ValueError(
|
| 474 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
| 475 |
+
% (config.hidden_size, config.num_attention_heads)
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
self.num_attention_heads = config.num_attention_heads
|
| 479 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 480 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 481 |
+
|
| 482 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 483 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
| 484 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
| 485 |
+
|
| 486 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 487 |
+
self.save_attention = False
|
| 488 |
+
|
| 489 |
+
# self.q_pos_embed = nn.Parameter(
|
| 490 |
+
# torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float()
|
| 491 |
+
# ).requires_grad_(False)
|
| 492 |
+
# grids = config.grid_size
|
| 493 |
+
# self.k_pos_embed = nn.Parameter(
|
| 494 |
+
# torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float()
|
| 495 |
+
# ).requires_grad_(False)
|
| 496 |
+
grids = config.grid_size
|
| 497 |
+
self.register_buffer(
|
| 498 |
+
'q_pos_embed',
|
| 499 |
+
torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float()
|
| 500 |
+
)
|
| 501 |
+
self.register_buffer(
|
| 502 |
+
'k_pos_embed',
|
| 503 |
+
torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float()
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
def save_attn_gradients(self, attn_gradients):
|
| 508 |
+
self.attn_gradients = attn_gradients
|
| 509 |
+
|
| 510 |
+
def get_attn_gradients(self):
|
| 511 |
+
return self.attn_gradients
|
| 512 |
+
|
| 513 |
+
def save_attention_map(self, attention_map):
|
| 514 |
+
self.attention_map = attention_map
|
| 515 |
+
|
| 516 |
+
def get_attention_map(self):
|
| 517 |
+
return self.attention_map
|
| 518 |
+
|
| 519 |
+
def transpose_for_scores(self, x):
|
| 520 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 521 |
+
x = x.view(*new_x_shape)
|
| 522 |
+
return x.permute(0, 2, 1, 3)
|
| 523 |
+
|
| 524 |
+
def forward(
|
| 525 |
+
self,
|
| 526 |
+
hidden_states,
|
| 527 |
+
attention_mask=None,
|
| 528 |
+
head_mask=None,
|
| 529 |
+
encoder_hidden_states=None,
|
| 530 |
+
encoder_attention_mask=None,
|
| 531 |
+
past_key_value=None,
|
| 532 |
+
output_attentions=False,
|
| 533 |
+
):
|
| 534 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 535 |
+
# and values come from an encoder; the attention mask needs to be
|
| 536 |
+
# such that the encoder's padding tokens are not attended to.
|
| 537 |
+
|
| 538 |
+
qk_pos_embed = torch.cat([self.q_pos_embed, self.k_pos_embed], dim = 0).unsqueeze(0).to(dtype=hidden_states.dtype)
|
| 539 |
+
|
| 540 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states + qk_pos_embed))
|
| 541 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 542 |
+
attention_mask = encoder_attention_mask
|
| 543 |
+
|
| 544 |
+
mixed_query_layer = self.query(hidden_states + self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype))
|
| 545 |
+
|
| 546 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 547 |
+
|
| 548 |
+
past_key_value = (key_layer, value_layer)
|
| 549 |
+
|
| 550 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 551 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 552 |
+
|
| 553 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 554 |
+
|
| 555 |
+
if attention_mask is not None:
|
| 556 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 557 |
+
attention_scores = attention_scores + attention_mask
|
| 558 |
+
|
| 559 |
+
# Normalize the attention scores to probabilities.
|
| 560 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
| 561 |
+
|
| 562 |
+
if self.save_attention:
|
| 563 |
+
self.save_attention_map(attention_probs)
|
| 564 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
| 565 |
+
|
| 566 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 567 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 568 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
| 569 |
+
|
| 570 |
+
# Mask heads if we want to
|
| 571 |
+
if head_mask is not None:
|
| 572 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
| 573 |
+
|
| 574 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
| 575 |
+
|
| 576 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 577 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 578 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 579 |
+
|
| 580 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 581 |
+
|
| 582 |
+
outputs = outputs + (past_key_value,)
|
| 583 |
+
return outputs
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
class MplugOwlVisualAbstractorCrossOutput(nn.Module):
|
| 587 |
+
def __init__(self, config):
|
| 588 |
+
super().__init__()
|
| 589 |
+
dim = config.hidden_size
|
| 590 |
+
self.out_proj = nn.Linear(dim, dim, bias=True)
|
| 591 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 592 |
+
self.mlp = MplugOwlVisualAbstractorMLP(config)
|
| 593 |
+
|
| 594 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 595 |
+
input_tensor = input_tensor + self.out_proj(hidden_states)
|
| 596 |
+
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
|
| 597 |
+
return input_tensor
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
class MplugOwlVisualAbstractorAttention(nn.Module):
|
| 601 |
+
def __init__(self, config):
|
| 602 |
+
super().__init__()
|
| 603 |
+
self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config)
|
| 604 |
+
self.output = MplugOwlVisualAbstractorCrossOutput(config)
|
| 605 |
+
self.pruned_heads = set()
|
| 606 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
| 607 |
+
self.normk = nn.LayerNorm(config.hidden_size)
|
| 608 |
+
|
| 609 |
+
def prune_heads(self, heads):
|
| 610 |
+
if len(heads) == 0:
|
| 611 |
+
return
|
| 612 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 613 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
# Prune linear layers
|
| 617 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
| 618 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
| 619 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
| 620 |
+
self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1)
|
| 621 |
+
|
| 622 |
+
# Update hyper params and store pruned heads
|
| 623 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
| 624 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
| 625 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 626 |
+
|
| 627 |
+
def forward(
|
| 628 |
+
self,
|
| 629 |
+
hidden_states: torch.Tensor,
|
| 630 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 631 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 632 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 633 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 634 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 635 |
+
output_attentions: Optional[bool] = False,
|
| 636 |
+
) -> Tuple[torch.Tensor]:
|
| 637 |
+
# HACK we apply norm on q and k
|
| 638 |
+
hidden_states = self.norm1(hidden_states)
|
| 639 |
+
encoder_hidden_states = self.normk(encoder_hidden_states)
|
| 640 |
+
encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 641 |
+
encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1)
|
| 642 |
+
self_outputs = self.attention(
|
| 643 |
+
hidden_states,
|
| 644 |
+
attention_mask,
|
| 645 |
+
head_mask,
|
| 646 |
+
encoder_hidden_states,
|
| 647 |
+
encoder_attention_mask,
|
| 648 |
+
past_key_value,
|
| 649 |
+
output_attentions,
|
| 650 |
+
)
|
| 651 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 652 |
+
# add attentions if we output them
|
| 653 |
+
outputs = (attention_output,) + self_outputs[1:]
|
| 654 |
+
return outputs
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
class MplugOwlVisualAbstractorLayer(nn.Module):
|
| 658 |
+
def __init__(self, config, layer_idx):
|
| 659 |
+
super().__init__()
|
| 660 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 661 |
+
self.seq_len_dim = 1
|
| 662 |
+
|
| 663 |
+
self.layer_idx = layer_idx
|
| 664 |
+
|
| 665 |
+
self.crossattention = MplugOwlVisualAbstractorAttention(config)
|
| 666 |
+
self.has_cross_attention = True
|
| 667 |
+
|
| 668 |
+
def forward(
|
| 669 |
+
self,
|
| 670 |
+
hidden_states,
|
| 671 |
+
attention_mask=None,
|
| 672 |
+
head_mask=None,
|
| 673 |
+
encoder_hidden_states=None,
|
| 674 |
+
encoder_attention_mask=None,
|
| 675 |
+
output_attentions=False,
|
| 676 |
+
):
|
| 677 |
+
if encoder_hidden_states is None:
|
| 678 |
+
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
|
| 679 |
+
cross_attention_outputs = self.crossattention(
|
| 680 |
+
hidden_states,
|
| 681 |
+
attention_mask,
|
| 682 |
+
head_mask,
|
| 683 |
+
encoder_hidden_states,
|
| 684 |
+
encoder_attention_mask,
|
| 685 |
+
output_attentions=output_attentions,
|
| 686 |
+
)
|
| 687 |
+
query_attention_output = cross_attention_outputs[0]
|
| 688 |
+
|
| 689 |
+
outputs = (query_attention_output,)
|
| 690 |
+
return outputs
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
class MplugOwlVisualAbstractorEncoder(nn.Module):
|
| 694 |
+
def __init__(self, config):
|
| 695 |
+
super().__init__()
|
| 696 |
+
self.config = config
|
| 697 |
+
self.layers = nn.ModuleList(
|
| 698 |
+
[MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 699 |
+
)
|
| 700 |
+
self.gradient_checkpointing = True
|
| 701 |
+
|
| 702 |
+
def forward(
|
| 703 |
+
self,
|
| 704 |
+
hidden_states,
|
| 705 |
+
attention_mask=None,
|
| 706 |
+
head_mask=None,
|
| 707 |
+
encoder_hidden_states=None,
|
| 708 |
+
encoder_attention_mask=None,
|
| 709 |
+
past_key_values=None,
|
| 710 |
+
output_attentions=False,
|
| 711 |
+
output_hidden_states=False,
|
| 712 |
+
return_dict=True,
|
| 713 |
+
):
|
| 714 |
+
all_hidden_states = () if output_hidden_states else None
|
| 715 |
+
|
| 716 |
+
for i in range(self.config.num_hidden_layers):
|
| 717 |
+
layer_module = self.layers[i]
|
| 718 |
+
if output_hidden_states:
|
| 719 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 720 |
+
|
| 721 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 722 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 723 |
+
|
| 724 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
| 725 |
+
|
| 726 |
+
def create_custom_forward(module):
|
| 727 |
+
def custom_forward(*inputs):
|
| 728 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 729 |
+
|
| 730 |
+
return custom_forward
|
| 731 |
+
|
| 732 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 733 |
+
create_custom_forward(layer_module),
|
| 734 |
+
hidden_states,
|
| 735 |
+
attention_mask,
|
| 736 |
+
layer_head_mask,
|
| 737 |
+
encoder_hidden_states,
|
| 738 |
+
encoder_attention_mask,
|
| 739 |
+
)
|
| 740 |
+
else:
|
| 741 |
+
layer_outputs = layer_module(
|
| 742 |
+
hidden_states,
|
| 743 |
+
attention_mask,
|
| 744 |
+
layer_head_mask,
|
| 745 |
+
encoder_hidden_states,
|
| 746 |
+
encoder_attention_mask,
|
| 747 |
+
output_attentions,
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
hidden_states = layer_outputs[0]
|
| 751 |
+
|
| 752 |
+
return BaseModelOutput(
|
| 753 |
+
last_hidden_state=hidden_states,
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
class MplugOwlVisualAbstractorModel(PreTrainedModel):
|
| 758 |
+
_no_split_modules = ["MplugOwlVisualAbstractorLayer"]
|
| 759 |
+
def __init__(self, config, language_hidden_size):
|
| 760 |
+
super().__init__(config)
|
| 761 |
+
self.config = config
|
| 762 |
+
|
| 763 |
+
self.encoder = MplugOwlVisualAbstractorEncoder(config)
|
| 764 |
+
self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size)
|
| 765 |
+
self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size))
|
| 766 |
+
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))
|
| 767 |
+
|
| 768 |
+
self.post_init()
|
| 769 |
+
|
| 770 |
+
def _prune_heads(self, heads_to_prune):
|
| 771 |
+
"""
|
| 772 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 773 |
+
class PreTrainedModel
|
| 774 |
+
"""
|
| 775 |
+
for layer, heads in heads_to_prune.items():
|
| 776 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 777 |
+
|
| 778 |
+
def get_extended_attention_mask(
|
| 779 |
+
self,
|
| 780 |
+
attention_mask: torch.Tensor,
|
| 781 |
+
input_shape: Tuple[int],
|
| 782 |
+
device: torch.device,
|
| 783 |
+
) -> torch.Tensor:
|
| 784 |
+
"""
|
| 785 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
| 786 |
+
|
| 787 |
+
Arguments:
|
| 788 |
+
attention_mask (`torch.Tensor`):
|
| 789 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
| 790 |
+
input_shape (`Tuple[int]`):
|
| 791 |
+
The shape of the input to the model.
|
| 792 |
+
device: (`torch.device`):
|
| 793 |
+
The device of the input to the model.
|
| 794 |
+
|
| 795 |
+
Returns:
|
| 796 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
| 797 |
+
"""
|
| 798 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 799 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 800 |
+
if attention_mask.dim() == 3:
|
| 801 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
| 802 |
+
elif attention_mask.dim() == 2:
|
| 803 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
| 804 |
+
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 805 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
| 806 |
+
else:
|
| 807 |
+
raise ValueError(
|
| 808 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
| 809 |
+
input_shape, attention_mask.shape
|
| 810 |
+
)
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 814 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 815 |
+
# positions we want to attend and -10000.0 for masked positions.
|
| 816 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 817 |
+
# effectively the same as removing these entirely.
|
| 818 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 819 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
| 820 |
+
return extended_attention_mask
|
| 821 |
+
|
| 822 |
+
def forward(
|
| 823 |
+
self,
|
| 824 |
+
attention_mask=None,
|
| 825 |
+
head_mask=None,
|
| 826 |
+
encoder_hidden_states=None,
|
| 827 |
+
encoder_attention_mask=None,
|
| 828 |
+
past_key_values=None,
|
| 829 |
+
output_attentions=None,
|
| 830 |
+
output_hidden_states=None,
|
| 831 |
+
return_dict=None,
|
| 832 |
+
):
|
| 833 |
+
r"""
|
| 834 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
| 835 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 836 |
+
the model is configured as a decoder.
|
| 837 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
| 838 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 839 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 840 |
+
- 1 for tokens that are **not masked**,
|
| 841 |
+
- 0 for tokens that are **masked**.
|
| 842 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
|
| 843 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
|
| 844 |
+
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
|
| 845 |
+
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
|
| 846 |
+
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
| 847 |
+
`(batch_size, sequence_length)`.
|
| 848 |
+
"""
|
| 849 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 850 |
+
output_hidden_states = (
|
| 851 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 852 |
+
)
|
| 853 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 854 |
+
|
| 855 |
+
query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1)
|
| 856 |
+
embedding_output = query_embeds
|
| 857 |
+
input_shape = embedding_output.size()[:-1]
|
| 858 |
+
batch_size, seq_length = input_shape
|
| 859 |
+
device = embedding_output.device
|
| 860 |
+
|
| 861 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 862 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 863 |
+
if attention_mask is None:
|
| 864 |
+
attention_mask = torch.ones(
|
| 865 |
+
(query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device
|
| 866 |
+
)
|
| 867 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
| 868 |
+
|
| 869 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 870 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 871 |
+
if encoder_hidden_states is not None:
|
| 872 |
+
if type(encoder_hidden_states) == list:
|
| 873 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
| 874 |
+
else:
|
| 875 |
+
(
|
| 876 |
+
encoder_batch_size,
|
| 877 |
+
encoder_sequence_length,
|
| 878 |
+
_,
|
| 879 |
+
) = encoder_hidden_states.size()
|
| 880 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 881 |
+
|
| 882 |
+
if type(encoder_attention_mask) == list:
|
| 883 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
| 884 |
+
elif encoder_attention_mask is None:
|
| 885 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 886 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 887 |
+
else:
|
| 888 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 889 |
+
else:
|
| 890 |
+
encoder_extended_attention_mask = None
|
| 891 |
+
|
| 892 |
+
# Prepare head mask if needed
|
| 893 |
+
# 1.0 in head_mask indicate we keep the head
|
| 894 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 895 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 896 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 897 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 898 |
+
|
| 899 |
+
encoder_outputs = self.encoder(
|
| 900 |
+
embedding_output,
|
| 901 |
+
attention_mask=extended_attention_mask,
|
| 902 |
+
head_mask=head_mask,
|
| 903 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 904 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 905 |
+
past_key_values=past_key_values,
|
| 906 |
+
output_attentions=output_attentions,
|
| 907 |
+
output_hidden_states=output_hidden_states,
|
| 908 |
+
return_dict=return_dict,
|
| 909 |
+
)
|
| 910 |
+
sequence_output = encoder_outputs[0]
|
| 911 |
+
pooled_output = sequence_output[:, 0, :]
|
| 912 |
+
|
| 913 |
+
sequence_output = self.visual_fc(sequence_output)
|
| 914 |
+
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1)
|
| 915 |
+
|
| 916 |
+
return BaseModelOutputWithPooling(
|
| 917 |
+
last_hidden_state=sequence_output,
|
| 918 |
+
pooler_output=pooled_output,
|
| 919 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 920 |
+
)
|
| 921 |
+
|
| 922 |
+
|