pyrac commited on
Commit
2cc60df
·
verified ·
1 Parent(s): 668ba75

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:132020
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
13
+ widget:
14
+ - source_sentence: Les membres de l'équipe ont été attentifs et très professionnels
15
+ dans leur manière de gérer nos besoins.
16
+ sentences:
17
+ - C’était tout à fait correct, mais pas très chaleureux.
18
+ - Une chambre mal située, très loin de tout, et vraiment pas agréable.
19
+ - Le service était moyen, ni excellent ni vraiment mauvais.
20
+ - source_sentence: Les employés étaient réactifs et nous ont aidés à chaque étape
21
+ du processus.
22
+ sentences:
23
+ - Leur manque d’implication et d’organisation était frustrant.
24
+ - L’expérience avec le personnel était moyenne, sans surprise.
25
+ - Manque de signalisation dans le parking.
26
+ - source_sentence: Les employés ont dépassé nos attentes en termes de professionnalisme
27
+ et de réactivité.
28
+ sentences:
29
+ - Parking mal entretenu, sale et peu accueillant.
30
+ - Nous avons trouvé les collaborateurs peu investis dans leur travail.
31
+ - Le personnel était super gentil et efficace, une vraie bonne surprise.
32
+ - source_sentence: Les employés semblaient démotivés et peu impliqués dans leur travail.
33
+ sentences:
34
+ - La chambre n'était pas adaptée à nos attentes, c’était frustrant.
35
+ - L'équipe semblait désorganisée et peu concernée par les besoins des clients.
36
+ - Le service était présent mais manquait de chaleur humaine.
37
+ - source_sentence: On aurait aimé plus d’implication de la part des employés, c’était
38
+ moyen.
39
+ sentences:
40
+ - Rien de particulier à dire, le service était correct.
41
+ - On a été forcé d’accepter cette chambre, ce n'était pas du tout ce qu’on avait
42
+ demandé.
43
+ - Le service était assez médiocre, mais pas désastreux non plus.
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - cosine_accuracy
48
+ model-index:
49
+ - name: MPNet base trained on AllNLI triplets
50
+ results:
51
+ - task:
52
+ type: triplet
53
+ name: Triplet
54
+ dataset:
55
+ name: all nli dev
56
+ type: all-nli-dev
57
+ metrics:
58
+ - type: cosine_accuracy
59
+ value: 1.0
60
+ name: Cosine Accuracy
61
+ - task:
62
+ type: triplet
63
+ name: Triplet
64
+ dataset:
65
+ name: all nli test
66
+ type: all-nli-test
67
+ metrics:
68
+ - type: cosine_accuracy
69
+ value: 1.0
70
+ name: Cosine Accuracy
71
+ ---
72
+
73
+ # MPNet base trained on AllNLI triplets
74
+
75
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
76
+
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+ - **Model Type:** Sentence Transformer
81
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
82
+ - **Maximum Sequence Length:** 128 tokens
83
+ - **Output Dimensionality:** 768 dimensions
84
+ - **Similarity Function:** Cosine Similarity
85
+ <!-- - **Training Dataset:** Unknown -->
86
+ - **Language:** en
87
+ - **License:** apache-2.0
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
100
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("pyrac/rse_engagement_des_collaborateurs")
120
+ # Run inference
121
+ sentences = [
122
+ 'On aurait aimé plus d’implication de la part des employés, c’était moyen.',
123
+ 'Le service était assez médiocre, mais pas désastreux non plus.',
124
+ "On a été forcé d’accepter cette chambre, ce n'était pas du tout ce qu’on avait demandé.",
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 768]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Triplet
165
+
166
+ * Datasets: `all-nli-dev` and `all-nli-test`
167
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
168
+
169
+ | Metric | all-nli-dev | all-nli-test |
170
+ |:--------------------|:------------|:-------------|
171
+ | **cosine_accuracy** | **1.0** | **1.0** |
172
+
173
+ <!--
174
+ ## Bias, Risks and Limitations
175
+
176
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
177
+ -->
178
+
179
+ <!--
180
+ ### Recommendations
181
+
182
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
183
+ -->
184
+
185
+ ## Training Details
186
+
187
+ ### Training Dataset
188
+
189
+ #### Unnamed Dataset
190
+
191
+ * Size: 132,020 training samples
192
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
193
+ * Approximate statistics based on the first 1000 samples:
194
+ | | anchor | positive | negative |
195
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
196
+ | type | string | string | string |
197
+ | details | <ul><li>min: 11 tokens</li><li>mean: 18.6 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 16.93 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.87 tokens</li><li>max: 31 tokens</li></ul> |
198
+ * Samples:
199
+ | anchor | positive | negative |
200
+ |:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
201
+ | <code>L’équipe était tellement sympa et réactive, c’était vraiment agréable.</code> | <code>Nous avons été agréablement surpris par l’attention portée aux détails par le personnel.</code> | <code>Très bon service de navette depuis le parking.</code> |
202
+ | <code>C’était un service classique, ni particulièrement bon ni mauvais.</code> | <code>Le sourire et la disponibilité des employés ont illuminé notre séjour.</code> | <code>Cette chambre nous a totalement déçus, c’était tout sauf confortable.</code> |
203
+ | <code>Le service était correct, rien de plus.</code> | <code>Les employés étaient lents et mal organisés, cela a beaucoup gêné notre séjour.</code> | <code>La sécurité est assurée avec un gardien présent.</code> |
204
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
205
+ ```json
206
+ {
207
+ "scale": 20.0,
208
+ "similarity_fct": "cos_sim"
209
+ }
210
+ ```
211
+
212
+ ### Evaluation Dataset
213
+
214
+ #### Unnamed Dataset
215
+
216
+ * Size: 16,502 evaluation samples
217
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
218
+ * Approximate statistics based on the first 1000 samples:
219
+ | | anchor | positive | negative |
220
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
221
+ | type | string | string | string |
222
+ | details | <ul><li>min: 10 tokens</li><li>mean: 18.49 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 16.97 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.86 tokens</li><li>max: 31 tokens</li></ul> |
223
+ * Samples:
224
+ | anchor | positive | negative |
225
+ |:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
226
+ | <code>Les employés semblaient démotivés et peu impliqués dans leur travail.</code> | <code>L'équipe semblait désorganisée et peu concernée par les besoins des clients.</code> | <code>La chambre n'était pas adaptée à nos attentes, c’était frustrant.</code> |
227
+ | <code>Le service était correct, mais il manquait un peu de chaleur humaine.</code> | <code>Un service qui n’a pas marqué mais qui reste acceptable.</code> | <code>Une chambre que nous n’avions pas demandée, c'était une vraie déception.</code> |
228
+ | <code>Les employés semblaient désintéressés, ça a un peu gâché l’expérience.</code> | <code>Le service était fonctionnel, mais pas très personnalisé.</code> | <code>Stationnement facile et rapide, un plaisir.</code> |
229
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
230
+ ```json
231
+ {
232
+ "scale": 20.0,
233
+ "similarity_fct": "cos_sim"
234
+ }
235
+ ```
236
+
237
+ ### Training Hyperparameters
238
+ #### Non-Default Hyperparameters
239
+
240
+ - `eval_strategy`: steps
241
+ - `per_device_train_batch_size`: 64
242
+ - `per_device_eval_batch_size`: 64
243
+ - `num_train_epochs`: 1
244
+ - `warmup_ratio`: 0.1
245
+ - `bf16`: True
246
+ - `batch_sampler`: no_duplicates
247
+
248
+ #### All Hyperparameters
249
+ <details><summary>Click to expand</summary>
250
+
251
+ - `overwrite_output_dir`: False
252
+ - `do_predict`: False
253
+ - `eval_strategy`: steps
254
+ - `prediction_loss_only`: True
255
+ - `per_device_train_batch_size`: 64
256
+ - `per_device_eval_batch_size`: 64
257
+ - `per_gpu_train_batch_size`: None
258
+ - `per_gpu_eval_batch_size`: None
259
+ - `gradient_accumulation_steps`: 1
260
+ - `eval_accumulation_steps`: None
261
+ - `torch_empty_cache_steps`: None
262
+ - `learning_rate`: 5e-05
263
+ - `weight_decay`: 0.0
264
+ - `adam_beta1`: 0.9
265
+ - `adam_beta2`: 0.999
266
+ - `adam_epsilon`: 1e-08
267
+ - `max_grad_norm`: 1.0
268
+ - `num_train_epochs`: 1
269
+ - `max_steps`: -1
270
+ - `lr_scheduler_type`: linear
271
+ - `lr_scheduler_kwargs`: {}
272
+ - `warmup_ratio`: 0.1
273
+ - `warmup_steps`: 0
274
+ - `log_level`: passive
275
+ - `log_level_replica`: warning
276
+ - `log_on_each_node`: True
277
+ - `logging_nan_inf_filter`: True
278
+ - `save_safetensors`: True
279
+ - `save_on_each_node`: False
280
+ - `save_only_model`: False
281
+ - `restore_callback_states_from_checkpoint`: False
282
+ - `no_cuda`: False
283
+ - `use_cpu`: False
284
+ - `use_mps_device`: False
285
+ - `seed`: 42
286
+ - `data_seed`: None
287
+ - `jit_mode_eval`: False
288
+ - `use_ipex`: False
289
+ - `bf16`: True
290
+ - `fp16`: False
291
+ - `fp16_opt_level`: O1
292
+ - `half_precision_backend`: auto
293
+ - `bf16_full_eval`: False
294
+ - `fp16_full_eval`: False
295
+ - `tf32`: None
296
+ - `local_rank`: 0
297
+ - `ddp_backend`: None
298
+ - `tpu_num_cores`: None
299
+ - `tpu_metrics_debug`: False
300
+ - `debug`: []
301
+ - `dataloader_drop_last`: False
302
+ - `dataloader_num_workers`: 0
303
+ - `dataloader_prefetch_factor`: None
304
+ - `past_index`: -1
305
+ - `disable_tqdm`: False
306
+ - `remove_unused_columns`: True
307
+ - `label_names`: None
308
+ - `load_best_model_at_end`: False
309
+ - `ignore_data_skip`: False
310
+ - `fsdp`: []
311
+ - `fsdp_min_num_params`: 0
312
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
313
+ - `fsdp_transformer_layer_cls_to_wrap`: None
314
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
315
+ - `deepspeed`: None
316
+ - `label_smoothing_factor`: 0.0
317
+ - `optim`: adamw_torch
318
+ - `optim_args`: None
319
+ - `adafactor`: False
320
+ - `group_by_length`: False
321
+ - `length_column_name`: length
322
+ - `ddp_find_unused_parameters`: None
323
+ - `ddp_bucket_cap_mb`: None
324
+ - `ddp_broadcast_buffers`: False
325
+ - `dataloader_pin_memory`: True
326
+ - `dataloader_persistent_workers`: False
327
+ - `skip_memory_metrics`: True
328
+ - `use_legacy_prediction_loop`: False
329
+ - `push_to_hub`: False
330
+ - `resume_from_checkpoint`: None
331
+ - `hub_model_id`: None
332
+ - `hub_strategy`: every_save
333
+ - `hub_private_repo`: None
334
+ - `hub_always_push`: False
335
+ - `gradient_checkpointing`: False
336
+ - `gradient_checkpointing_kwargs`: None
337
+ - `include_inputs_for_metrics`: False
338
+ - `include_for_metrics`: []
339
+ - `eval_do_concat_batches`: True
340
+ - `fp16_backend`: auto
341
+ - `push_to_hub_model_id`: None
342
+ - `push_to_hub_organization`: None
343
+ - `mp_parameters`:
344
+ - `auto_find_batch_size`: False
345
+ - `full_determinism`: False
346
+ - `torchdynamo`: None
347
+ - `ray_scope`: last
348
+ - `ddp_timeout`: 1800
349
+ - `torch_compile`: False
350
+ - `torch_compile_backend`: None
351
+ - `torch_compile_mode`: None
352
+ - `dispatch_batches`: None
353
+ - `split_batches`: None
354
+ - `include_tokens_per_second`: False
355
+ - `include_num_input_tokens_seen`: False
356
+ - `neftune_noise_alpha`: None
357
+ - `optim_target_modules`: None
358
+ - `batch_eval_metrics`: False
359
+ - `eval_on_start`: False
360
+ - `use_liger_kernel`: False
361
+ - `eval_use_gather_object`: False
362
+ - `average_tokens_across_devices`: False
363
+ - `prompts`: None
364
+ - `batch_sampler`: no_duplicates
365
+ - `multi_dataset_batch_sampler`: proportional
366
+
367
+ </details>
368
+
369
+ ### Training Logs
370
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy | all-nli-test_cosine_accuracy |
371
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|
372
+ | 0.0485 | 100 | 5.2586 | 4.1160 | 1.0 | - |
373
+ | 0.0969 | 200 | 4.1542 | 4.1071 | 1.0 | - |
374
+ | 0.1454 | 300 | 4.1483 | 4.1009 | 1.0 | - |
375
+ | 0.1939 | 400 | 4.1327 | 4.0772 | 1.0 | - |
376
+ | 0.2424 | 500 | 4.1122 | 4.0561 | 1.0 | - |
377
+ | 0.2908 | 600 | 4.1027 | 4.0457 | 1.0 | - |
378
+ | 0.3393 | 700 | 4.0877 | 4.0345 | 1.0 | - |
379
+ | 0.3878 | 800 | 4.0863 | 4.0216 | 1.0 | - |
380
+ | 0.4363 | 900 | 4.0785 | 4.0196 | 1.0 | - |
381
+ | 0.4847 | 1000 | 4.0661 | 4.0182 | 1.0 | - |
382
+ | 0.5332 | 1100 | 4.0637 | 4.0163 | 1.0 | - |
383
+ | 0.5817 | 1200 | 4.0606 | 4.0130 | 1.0 | - |
384
+ | 0.6302 | 1300 | 4.0601 | 4.0086 | 1.0 | - |
385
+ | 0.6786 | 1400 | 4.0516 | 4.0037 | 1.0 | - |
386
+ | 0.7271 | 1500 | 4.0472 | 4.0015 | 1.0 | - |
387
+ | 0.7756 | 1600 | 4.0465 | 4.0008 | 1.0 | - |
388
+ | 0.8240 | 1700 | 4.0421 | 4.0007 | 1.0 | - |
389
+ | 0.8725 | 1800 | 4.0463 | 3.9944 | 1.0 | - |
390
+ | 0.9210 | 1900 | 4.035 | 3.9919 | 1.0 | - |
391
+ | 0.9695 | 2000 | 4.0408 | 3.9909 | 1.0 | - |
392
+ | -1 | -1 | - | - | - | 1.0 |
393
+
394
+
395
+ ### Framework Versions
396
+ - Python: 3.12.3
397
+ - Sentence Transformers: 3.4.1
398
+ - Transformers: 4.48.3
399
+ - PyTorch: 2.6.0+cu124
400
+ - Accelerate: 1.3.0
401
+ - Datasets: 3.2.0
402
+ - Tokenizers: 0.21.0
403
+
404
+ ## Citation
405
+
406
+ ### BibTeX
407
+
408
+ #### Sentence Transformers
409
+ ```bibtex
410
+ @inproceedings{reimers-2019-sentence-bert,
411
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
412
+ author = "Reimers, Nils and Gurevych, Iryna",
413
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
414
+ month = "11",
415
+ year = "2019",
416
+ publisher = "Association for Computational Linguistics",
417
+ url = "https://arxiv.org/abs/1908.10084",
418
+ }
419
+ ```
420
+
421
+ #### MultipleNegativesRankingLoss
422
+ ```bibtex
423
+ @misc{henderson2017efficient,
424
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
425
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
426
+ year={2017},
427
+ eprint={1705.00652},
428
+ archivePrefix={arXiv},
429
+ primaryClass={cs.CL}
430
+ }
431
+ ```
432
+
433
+ <!--
434
+ ## Glossary
435
+
436
+ *Clearly define terms in order to be accessible across audiences.*
437
+ -->
438
+
439
+ <!--
440
+ ## Model Card Authors
441
+
442
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Contact
447
+
448
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
449
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.3",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ca03205aded7c7406e264668af6073abf8b3a0de7e351142b5bfe86268ccf58
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }