Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,72 @@
|
|
2 |
tags:
|
3 |
- model_hub_mixin
|
4 |
- pytorch_model_hub_mixin
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- model_hub_mixin
|
4 |
- pytorch_model_hub_mixin
|
5 |
+
license: mit
|
6 |
+
library_name: pytorch
|
7 |
---
|
8 |
|
9 |
+
# FaceNet
|
10 |
+
|
11 |
+
## Model Description
|
12 |
+
facenet uses an Inception Residual Masking Network pretrained on VGGFace2 to classify facial identities. Facenet also exposes a 512 latent facial embedding space.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
- **Model Type**: Convolutional Neural Network (CNN)
|
16 |
+
- **Architecture**: Inception Residual masking network. Output layer classifies facial identities. Also provides a 512 dimensional representation layer
|
17 |
+
- **Input Size**: 112 x 112 pixels
|
18 |
+
- **Framework**: PyTorch
|
19 |
+
|
20 |
+
## Model Sources
|
21 |
+
- **Repository**: [GitHub Repository](https://github.com/timesler/facenet-pytorch/tree/master)
|
22 |
+
- **Paper**: [FaceNet: A Unified Embedding for Face Recognition and Clustering](https://arxiv.org/abs/1503.03832)
|
23 |
+
|
24 |
+
## Citation
|
25 |
+
If you use this model in your research or application, please cite the following paper:
|
26 |
+
|
27 |
+
F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, arXiv:1503.03832, 2015.
|
28 |
+
|
29 |
+
```
|
30 |
+
@inproceedings{schroff2015facenet,
|
31 |
+
title={Facenet: A unified embedding for face recognition and clustering},
|
32 |
+
author={Schroff, Florian and Kalenichenko, Dmitry and Philbin, James},
|
33 |
+
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
34 |
+
pages={815--823},
|
35 |
+
year={2015}
|
36 |
+
}
|
37 |
+
```
|
38 |
+
|
39 |
+
## Acknowledgements
|
40 |
+
We thank Tim Esler and David Sandberg for sharing their code and training weights with a permissive license.
|
41 |
+
|
42 |
+
## Example Useage
|
43 |
+
|
44 |
+
```python
|
45 |
+
import numpy as np
|
46 |
+
import torch
|
47 |
+
import torch.nn as nn
|
48 |
+
from feat.identity_detectors.facenet.facenet_model import InceptionResnetV1
|
49 |
+
from huggingface_hub import hf_hub_download
|
50 |
+
|
51 |
+
device = 'cpu'
|
52 |
+
identity_detector = InceptionResnetV1(
|
53 |
+
pretrained=None,
|
54 |
+
classify=False,
|
55 |
+
num_classes=None,
|
56 |
+
dropout_prob=0.6,
|
57 |
+
device=device,
|
58 |
+
)
|
59 |
+
identity_detector.logits = nn.Linear(512, 8631)
|
60 |
+
identity_model_file = hf_hub_download(repo_id='py-feat/facenet', filename="facenet_20180402_114759_vggface2.pth")
|
61 |
+
identity_detector.load_state_dict(torch.load(identity_model_file, map_location=device))
|
62 |
+
identity_detector.eval()
|
63 |
+
identity_detector.to(device)
|
64 |
+
|
65 |
+
# Test model
|
66 |
+
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224]
|
67 |
+
|
68 |
+
# 512 dimensional Facial Embeddings
|
69 |
+
identity_embeddings = identity_detector.forward(extracted_faces)
|
70 |
+
|
71 |
+
```
|
72 |
+
|
73 |
+
|