File size: 2,067 Bytes
433e00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: biodatlab/whisper-th-medium-combined
tags:
- generated_from_trainer
model-index:
- name: fine_tuned_asr_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_asr_model

This model is a fine-tuned version of [biodatlab/whisper-th-medium-combined](https://huggingface.co/biodatlab/whisper-th-medium-combined) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0906
- Cer: 5.7861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Cer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.524         | 1.4706  | 100  | 0.0896          | 4.7486  |
| 0.1451        | 2.9412  | 200  | 0.0907          | 4.9049  |
| 0.0913        | 4.4118  | 300  | 0.0863          | 4.9947  |
| 0.0587        | 5.8824  | 400  | 0.0857          | 5.8460  |
| 0.0659        | 7.3529  | 500  | 0.1056          | 10.0725 |
| 0.0551        | 8.8235  | 600  | 0.0895          | 6.0555  |
| 0.0225        | 10.2941 | 700  | 0.0991          | 5.5899  |
| 0.0281        | 11.7647 | 800  | 0.0900          | 5.3006  |
| 0.022         | 13.2353 | 900  | 0.0887          | 6.4013  |
| 0.0213        | 14.7059 | 1000 | 0.0906          | 5.7861  |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1