base_model: meta-llama/Llama-3.2-3B # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ptllama/acemath_test type: completion # pretraining_dataset: # - name: # path: ptllama/acemath_test # split: # text_column: text # column in dataset with the data, usually `text` # type: pretrain # trust_remote_code: # skip: # number of rows of data to skip over from the beginning dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./outputs/out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: axolotl-pretraining wandb_entity: wandb_watch: wandb_name: test-2e4 wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 4 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.01 cosine_min_lr_ratio: 0.1 cosine_constant_lr_ratio: 0.9 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|>