ziansu commited on
Commit
cdd8919
·
verified ·
1 Parent(s): a971ad4

Training in progress, step 800, checkpoint

Browse files
Files changed (30) hide show
  1. checkpoint-800/README.md +202 -0
  2. checkpoint-800/adapter_config.json +34 -0
  3. checkpoint-800/adapter_model.safetensors +3 -0
  4. checkpoint-800/added_tokens.json +13 -0
  5. checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-800/global_step800/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-800/latest +1 -0
  15. checkpoint-800/rng_state_0.pth +3 -0
  16. checkpoint-800/rng_state_1.pth +3 -0
  17. checkpoint-800/rng_state_2.pth +3 -0
  18. checkpoint-800/rng_state_3.pth +3 -0
  19. checkpoint-800/rng_state_4.pth +3 -0
  20. checkpoint-800/rng_state_5.pth +3 -0
  21. checkpoint-800/rng_state_6.pth +3 -0
  22. checkpoint-800/rng_state_7.pth +3 -0
  23. checkpoint-800/scheduler.pt +3 -0
  24. checkpoint-800/special_tokens_map.json +30 -0
  25. checkpoint-800/tokenizer.json +0 -0
  26. checkpoint-800/tokenizer.model +3 -0
  27. checkpoint-800/tokenizer_config.json +133 -0
  28. checkpoint-800/trainer_state.json +1489 -0
  29. checkpoint-800/training_args.bin +3 -0
  30. checkpoint-800/zero_to_fp32.py +674 -0
checkpoint-800/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-800/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "qkv_proj",
27
+ "gate_up_proj",
28
+ "o_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-800/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cb13bc9535fc4f4947ff92fd0c6104705259a0b6441692798111e563d4f3b7e
3
+ size 25200088
checkpoint-800/added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f033710e34e0876b8f8d0acf0fab5f2f2ebf7c9d642e7fefc4f41b282addd0df
3
+ size 18881328
checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8df1939f7caddf72c8873b6345b88ea1b05f930469f15ef2d6ad04cd8f004e7
3
+ size 18881328
checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e18d96cb4da8b0a9af5ba22d9a26cb9e8392149f63b85e400176a293c5258e2
3
+ size 18881328
checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89211551a7e03370032a19afd0f46d2c0c0005729d464f1cf46a96180cc4b104
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30a885fdb4ac08ff34eefdca88fdcfe199120225c7ef2e9873a61f8950260763
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41cd1e0fc4ef0aa722e8814589c3700e5d5317b2ecea22cae99fabd5bccb13b6
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:367e981ee0429d61f511c3db7d4dc52154c18df188f9c5779954dfb5f5f65dd8
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc73d44ceb28a04f2d92332827bdcaba0deba4b15cbf2984c6b1f3f7e826da70
3
+ size 18881392
checkpoint-800/global_step800/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01c47893af04bcd8a4fde07fedf7994c39f66b3d603f6424061753b8a83a583f
3
+ size 25379244
checkpoint-800/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step800
checkpoint-800/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a0c9979566a5d89cb3c766336548670ec6f2291deba1b7ab1764c12d3187b24
3
+ size 15984
checkpoint-800/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03e36a570d6158fc25d1cf5d9f8f450fc64c5a7683330277f89ff76d5f2fc6cd
3
+ size 15984
checkpoint-800/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4f619cbef4b74f1680d667c8788285a602392e63bdf3760ef3a59ec8864d483
3
+ size 15984
checkpoint-800/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc037fba93ace1bf7ce01b1a5f7d785698d47b4cc2cedf2300bbf7a41ebf05c
3
+ size 15984
checkpoint-800/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ab728c2461d6d1c64f04d7cbfdfcbfa7bd7ad0ef6e19d52458501ee81b27128
3
+ size 15984
checkpoint-800/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27530e653ebf5997ae3159cdcde264607e6a6f86b7e3c7a1b3a1e8301cd43d03
3
+ size 15984
checkpoint-800/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1fddaeb1257697bd7c0101abf1ab23f2925d0d9165cd8bddfbd22f8444db2b7
3
+ size 15984
checkpoint-800/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942af3734a320fe12a3205a47ca1cdc7d1f0996bfde86c020a35545ccd2fd418
3
+ size 15984
checkpoint-800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70738be5abb38e8cfb91cc830ac49dd9920dd3cf34dfffcb1efb26bab828bcb1
3
+ size 1064
checkpoint-800/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-800/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-800/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-800/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-800/trainer_state.json ADDED
@@ -0,0 +1,1489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.7350407717928104,
5
+ "eval_steps": 50,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00918800964741013,
13
+ "grad_norm": 0.036612071096897125,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 15.01579761505127,
16
+ "logits/rejected": 15.359031677246094,
17
+ "logps/chosen": -0.2681262791156769,
18
+ "logps/rejected": -0.31947994232177734,
19
+ "loss": 0.9551,
20
+ "rewards/accuracies": 0.4749999940395355,
21
+ "rewards/chosen": -0.40218934416770935,
22
+ "rewards/margins": 0.07703053951263428,
23
+ "rewards/rejected": -0.479219913482666,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.01837601929482026,
28
+ "grad_norm": 0.05575725808739662,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.570712089538574,
31
+ "logits/rejected": 15.321355819702148,
32
+ "logps/chosen": -0.2867889404296875,
33
+ "logps/rejected": -0.3514837622642517,
34
+ "loss": 0.923,
35
+ "rewards/accuracies": 0.5874999761581421,
36
+ "rewards/chosen": -0.43018341064453125,
37
+ "rewards/margins": 0.09704220294952393,
38
+ "rewards/rejected": -0.5272256135940552,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.02756402894223039,
43
+ "grad_norm": 0.0492466576397419,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.748420715332031,
46
+ "logits/rejected": 14.969354629516602,
47
+ "logps/chosen": -0.28405922651290894,
48
+ "logps/rejected": -0.32855403423309326,
49
+ "loss": 0.9357,
50
+ "rewards/accuracies": 0.5,
51
+ "rewards/chosen": -0.426088809967041,
52
+ "rewards/margins": 0.06674225628376007,
53
+ "rewards/rejected": -0.4928310811519623,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.03675203858964052,
58
+ "grad_norm": 0.05719422921538353,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.28278923034668,
61
+ "logits/rejected": 14.76964282989502,
62
+ "logps/chosen": -0.27940627932548523,
63
+ "logps/rejected": -0.3408831059932709,
64
+ "loss": 0.9215,
65
+ "rewards/accuracies": 0.5249999761581421,
66
+ "rewards/chosen": -0.41910940408706665,
67
+ "rewards/margins": 0.09221524000167847,
68
+ "rewards/rejected": -0.5113246440887451,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04594004823705065,
73
+ "grad_norm": 0.06247895210981369,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.943578720092773,
76
+ "logits/rejected": 14.936178207397461,
77
+ "logps/chosen": -0.2819541394710541,
78
+ "logps/rejected": -0.3245392441749573,
79
+ "loss": 0.9464,
80
+ "rewards/accuracies": 0.4749999940395355,
81
+ "rewards/chosen": -0.4229312539100647,
82
+ "rewards/margins": 0.06387762725353241,
83
+ "rewards/rejected": -0.4868088662624359,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04594004823705065,
88
+ "eval_logits/chosen": 14.7594575881958,
89
+ "eval_logits/rejected": 15.193694114685059,
90
+ "eval_logps/chosen": -0.2807807922363281,
91
+ "eval_logps/rejected": -0.36209535598754883,
92
+ "eval_loss": 0.9397181868553162,
93
+ "eval_rewards/accuracies": 0.5681818127632141,
94
+ "eval_rewards/chosen": -0.4211711883544922,
95
+ "eval_rewards/margins": 0.12197184562683105,
96
+ "eval_rewards/rejected": -0.5431429743766785,
97
+ "eval_runtime": 24.9762,
98
+ "eval_samples_per_second": 28.187,
99
+ "eval_steps_per_second": 3.523,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.05512805788446078,
104
+ "grad_norm": 0.11519577354192734,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.996228218078613,
107
+ "logits/rejected": 15.37781810760498,
108
+ "logps/chosen": -0.2809831202030182,
109
+ "logps/rejected": -0.35486167669296265,
110
+ "loss": 0.9318,
111
+ "rewards/accuracies": 0.5625,
112
+ "rewards/chosen": -0.4214746952056885,
113
+ "rewards/margins": 0.1108178049325943,
114
+ "rewards/rejected": -0.5322924852371216,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.06431606753187091,
119
+ "grad_norm": 0.06691388040781021,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.612454414367676,
122
+ "logits/rejected": 15.678136825561523,
123
+ "logps/chosen": -0.2569667100906372,
124
+ "logps/rejected": -0.40047627687454224,
125
+ "loss": 0.9158,
126
+ "rewards/accuracies": 0.75,
127
+ "rewards/chosen": -0.3854501247406006,
128
+ "rewards/margins": 0.21526429057121277,
129
+ "rewards/rejected": -0.600714385509491,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.07350407717928104,
134
+ "grad_norm": 0.05976058170199394,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 14.873895645141602,
137
+ "logits/rejected": 15.50474739074707,
138
+ "logps/chosen": -0.28742527961730957,
139
+ "logps/rejected": -0.37555089592933655,
140
+ "loss": 0.9372,
141
+ "rewards/accuracies": 0.5249999761581421,
142
+ "rewards/chosen": -0.43113788962364197,
143
+ "rewards/margins": 0.13218846917152405,
144
+ "rewards/rejected": -0.5633264183998108,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.08269208682669117,
149
+ "grad_norm": 0.0602131113409996,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 14.356691360473633,
152
+ "logits/rejected": 14.895658493041992,
153
+ "logps/chosen": -0.2613506317138672,
154
+ "logps/rejected": -0.3317110538482666,
155
+ "loss": 0.9324,
156
+ "rewards/accuracies": 0.5625,
157
+ "rewards/chosen": -0.3920259475708008,
158
+ "rewards/margins": 0.10554064810276031,
159
+ "rewards/rejected": -0.4975665509700775,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.0918800964741013,
164
+ "grad_norm": 0.07126503437757492,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.862826347351074,
167
+ "logits/rejected": 15.257089614868164,
168
+ "logps/chosen": -0.2707213759422302,
169
+ "logps/rejected": -0.3511395752429962,
170
+ "loss": 0.9353,
171
+ "rewards/accuracies": 0.637499988079071,
172
+ "rewards/chosen": -0.4060820937156677,
173
+ "rewards/margins": 0.1206272691488266,
174
+ "rewards/rejected": -0.5267094373703003,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.0918800964741013,
179
+ "eval_logits/chosen": 14.664334297180176,
180
+ "eval_logits/rejected": 15.113536834716797,
181
+ "eval_logps/chosen": -0.2750833034515381,
182
+ "eval_logps/rejected": -0.36540210247039795,
183
+ "eval_loss": 0.9324077367782593,
184
+ "eval_rewards/accuracies": 0.5795454382896423,
185
+ "eval_rewards/chosen": -0.41262495517730713,
186
+ "eval_rewards/margins": 0.1354781985282898,
187
+ "eval_rewards/rejected": -0.5481031537055969,
188
+ "eval_runtime": 24.4286,
189
+ "eval_samples_per_second": 28.819,
190
+ "eval_steps_per_second": 3.602,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.10106810612151143,
195
+ "grad_norm": 0.07136944681406021,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 14.942098617553711,
198
+ "logits/rejected": 15.138586044311523,
199
+ "logps/chosen": -0.2860812246799469,
200
+ "logps/rejected": -0.36259371042251587,
201
+ "loss": 0.934,
202
+ "rewards/accuracies": 0.574999988079071,
203
+ "rewards/chosen": -0.42912182211875916,
204
+ "rewards/margins": 0.11476878076791763,
205
+ "rewards/rejected": -0.5438905954360962,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.11025611576892155,
210
+ "grad_norm": 0.07038908451795578,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 14.488851547241211,
213
+ "logits/rejected": 14.702054023742676,
214
+ "logps/chosen": -0.2662215232849121,
215
+ "logps/rejected": -0.3013685941696167,
216
+ "loss": 0.9202,
217
+ "rewards/accuracies": 0.4749999940395355,
218
+ "rewards/chosen": -0.39933228492736816,
219
+ "rewards/margins": 0.05272058770060539,
220
+ "rewards/rejected": -0.45205289125442505,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.11944412541633169,
225
+ "grad_norm": 0.06875801086425781,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 14.075657844543457,
228
+ "logits/rejected": 14.696513175964355,
229
+ "logps/chosen": -0.250360369682312,
230
+ "logps/rejected": -0.3504650592803955,
231
+ "loss": 0.9266,
232
+ "rewards/accuracies": 0.625,
233
+ "rewards/chosen": -0.375540554523468,
234
+ "rewards/margins": 0.15015706419944763,
235
+ "rewards/rejected": -0.5256975889205933,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.12863213506374183,
240
+ "grad_norm": 0.0984601378440857,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 13.738212585449219,
243
+ "logits/rejected": 14.311574935913086,
244
+ "logps/chosen": -0.26711025834083557,
245
+ "logps/rejected": -0.3587702810764313,
246
+ "loss": 0.9185,
247
+ "rewards/accuracies": 0.512499988079071,
248
+ "rewards/chosen": -0.40066537261009216,
249
+ "rewards/margins": 0.13749003410339355,
250
+ "rewards/rejected": -0.5381554365158081,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.13782014471115195,
255
+ "grad_norm": 0.10201425850391388,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 13.7462797164917,
258
+ "logits/rejected": 14.230626106262207,
259
+ "logps/chosen": -0.25559619069099426,
260
+ "logps/rejected": -0.3708702623844147,
261
+ "loss": 0.9106,
262
+ "rewards/accuracies": 0.5874999761581421,
263
+ "rewards/chosen": -0.3833943009376526,
264
+ "rewards/margins": 0.17291104793548584,
265
+ "rewards/rejected": -0.5563054084777832,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.13782014471115195,
270
+ "eval_logits/chosen": 13.458538055419922,
271
+ "eval_logits/rejected": 13.998083114624023,
272
+ "eval_logps/chosen": -0.2759075462818146,
273
+ "eval_logps/rejected": -0.3873325288295746,
274
+ "eval_loss": 0.9164085388183594,
275
+ "eval_rewards/accuracies": 0.5795454382896423,
276
+ "eval_rewards/chosen": -0.41386130452156067,
277
+ "eval_rewards/margins": 0.1671374887228012,
278
+ "eval_rewards/rejected": -0.5809988379478455,
279
+ "eval_runtime": 24.4393,
280
+ "eval_samples_per_second": 28.806,
281
+ "eval_steps_per_second": 3.601,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.14700815435856207,
286
+ "grad_norm": 0.11537656933069229,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 12.686149597167969,
289
+ "logits/rejected": 13.478736877441406,
290
+ "logps/chosen": -0.23941929638385773,
291
+ "logps/rejected": -0.3713286519050598,
292
+ "loss": 0.9094,
293
+ "rewards/accuracies": 0.625,
294
+ "rewards/chosen": -0.3591288924217224,
295
+ "rewards/margins": 0.1978640854358673,
296
+ "rewards/rejected": -0.5569929480552673,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1561961640059722,
301
+ "grad_norm": 0.1196313351392746,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 13.221656799316406,
304
+ "logits/rejected": 13.317082405090332,
305
+ "logps/chosen": -0.3033878207206726,
306
+ "logps/rejected": -0.3784424960613251,
307
+ "loss": 0.9057,
308
+ "rewards/accuracies": 0.5375000238418579,
309
+ "rewards/chosen": -0.4550817608833313,
310
+ "rewards/margins": 0.11258199065923691,
311
+ "rewards/rejected": -0.5676637887954712,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.16538417365338234,
316
+ "grad_norm": 0.18745549023151398,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 11.797627449035645,
319
+ "logits/rejected": 12.031414985656738,
320
+ "logps/chosen": -0.2746419608592987,
321
+ "logps/rejected": -0.3629845976829529,
322
+ "loss": 0.8954,
323
+ "rewards/accuracies": 0.5249999761581421,
324
+ "rewards/chosen": -0.41196292638778687,
325
+ "rewards/margins": 0.13251398503780365,
326
+ "rewards/rejected": -0.5444768667221069,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.17457218330079247,
331
+ "grad_norm": 0.1806156188249588,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 10.275301933288574,
334
+ "logits/rejected": 10.937273025512695,
335
+ "logps/chosen": -0.2880379557609558,
336
+ "logps/rejected": -0.4154580533504486,
337
+ "loss": 0.8875,
338
+ "rewards/accuracies": 0.625,
339
+ "rewards/chosen": -0.43205690383911133,
340
+ "rewards/margins": 0.19113019108772278,
341
+ "rewards/rejected": -0.6231871247291565,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.1837601929482026,
346
+ "grad_norm": 0.1839464157819748,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 10.020039558410645,
349
+ "logits/rejected": 10.66059398651123,
350
+ "logps/chosen": -0.3136019706726074,
351
+ "logps/rejected": -0.4385503828525543,
352
+ "loss": 0.8647,
353
+ "rewards/accuracies": 0.6000000238418579,
354
+ "rewards/chosen": -0.47040295600891113,
355
+ "rewards/margins": 0.18742261826992035,
356
+ "rewards/rejected": -0.6578255891799927,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.1837601929482026,
361
+ "eval_logits/chosen": 9.442557334899902,
362
+ "eval_logits/rejected": 10.053345680236816,
363
+ "eval_logps/chosen": -0.3080674409866333,
364
+ "eval_logps/rejected": -0.4899139702320099,
365
+ "eval_loss": 0.8702690005302429,
366
+ "eval_rewards/accuracies": 0.6931818127632141,
367
+ "eval_rewards/chosen": -0.46210116147994995,
368
+ "eval_rewards/margins": 0.27276986837387085,
369
+ "eval_rewards/rejected": -0.7348710894584656,
370
+ "eval_runtime": 24.4185,
371
+ "eval_samples_per_second": 28.831,
372
+ "eval_steps_per_second": 3.604,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.19294820259561274,
377
+ "grad_norm": 0.269613116979599,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 7.941342353820801,
380
+ "logits/rejected": 8.542920112609863,
381
+ "logps/chosen": -0.3083941638469696,
382
+ "logps/rejected": -0.5024437308311462,
383
+ "loss": 0.8471,
384
+ "rewards/accuracies": 0.612500011920929,
385
+ "rewards/chosen": -0.4625912606716156,
386
+ "rewards/margins": 0.29107433557510376,
387
+ "rewards/rejected": -0.7536656856536865,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.20213621224302286,
392
+ "grad_norm": 0.2640094459056854,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 7.587499141693115,
395
+ "logits/rejected": 7.592519283294678,
396
+ "logps/chosen": -0.3381899893283844,
397
+ "logps/rejected": -0.48494213819503784,
398
+ "loss": 0.8427,
399
+ "rewards/accuracies": 0.5375000238418579,
400
+ "rewards/chosen": -0.5072849988937378,
401
+ "rewards/margins": 0.22012826800346375,
402
+ "rewards/rejected": -0.7274132966995239,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.21132422189043298,
407
+ "grad_norm": 0.29708293080329895,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 6.250656604766846,
410
+ "logits/rejected": 6.7652716636657715,
411
+ "logps/chosen": -0.3644888997077942,
412
+ "logps/rejected": -0.5470594167709351,
413
+ "loss": 0.8201,
414
+ "rewards/accuracies": 0.6499999761581421,
415
+ "rewards/chosen": -0.5467333793640137,
416
+ "rewards/margins": 0.2738557755947113,
417
+ "rewards/rejected": -0.8205891847610474,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.2205122315378431,
422
+ "grad_norm": 0.35299497842788696,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 4.6331706047058105,
425
+ "logits/rejected": 4.710076332092285,
426
+ "logps/chosen": -0.3634452223777771,
427
+ "logps/rejected": -0.7193974256515503,
428
+ "loss": 0.7877,
429
+ "rewards/accuracies": 0.675000011920929,
430
+ "rewards/chosen": -0.545167863368988,
431
+ "rewards/margins": 0.5339283347129822,
432
+ "rewards/rejected": -1.0790963172912598,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.22970024118525326,
437
+ "grad_norm": 0.4265730082988739,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 4.992984771728516,
440
+ "logits/rejected": 4.606354713439941,
441
+ "logps/chosen": -0.413116455078125,
442
+ "logps/rejected": -0.7104976177215576,
443
+ "loss": 0.7902,
444
+ "rewards/accuracies": 0.5874999761581421,
445
+ "rewards/chosen": -0.6196746826171875,
446
+ "rewards/margins": 0.4460717737674713,
447
+ "rewards/rejected": -1.0657463073730469,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.22970024118525326,
452
+ "eval_logits/chosen": 4.127804279327393,
453
+ "eval_logits/rejected": 3.742251396179199,
454
+ "eval_logps/chosen": -0.420327365398407,
455
+ "eval_logps/rejected": -0.7902651429176331,
456
+ "eval_loss": 0.7682384252548218,
457
+ "eval_rewards/accuracies": 0.7159090638160706,
458
+ "eval_rewards/chosen": -0.6304910182952881,
459
+ "eval_rewards/margins": 0.5549066662788391,
460
+ "eval_rewards/rejected": -1.185397744178772,
461
+ "eval_runtime": 24.4318,
462
+ "eval_samples_per_second": 28.815,
463
+ "eval_steps_per_second": 3.602,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.23888825083266338,
468
+ "grad_norm": 0.7236106395721436,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 2.454423427581787,
471
+ "logits/rejected": 1.816563367843628,
472
+ "logps/chosen": -0.4492695927619934,
473
+ "logps/rejected": -0.8738088607788086,
474
+ "loss": 0.6911,
475
+ "rewards/accuracies": 0.6499999761581421,
476
+ "rewards/chosen": -0.6739044189453125,
477
+ "rewards/margins": 0.6368088126182556,
478
+ "rewards/rejected": -1.3107131719589233,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.2480762604800735,
483
+ "grad_norm": 0.5856125950813293,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 3.2105612754821777,
486
+ "logits/rejected": 2.5531132221221924,
487
+ "logps/chosen": -0.537078320980072,
488
+ "logps/rejected": -1.2025481462478638,
489
+ "loss": 0.6774,
490
+ "rewards/accuracies": 0.625,
491
+ "rewards/chosen": -0.80561763048172,
492
+ "rewards/margins": 0.9982045888900757,
493
+ "rewards/rejected": -1.8038222789764404,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.25726427012748365,
498
+ "grad_norm": 0.7396731972694397,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 2.0327231884002686,
501
+ "logits/rejected": 1.4601097106933594,
502
+ "logps/chosen": -0.47658151388168335,
503
+ "logps/rejected": -1.3808696269989014,
504
+ "loss": 0.628,
505
+ "rewards/accuracies": 0.6875,
506
+ "rewards/chosen": -0.7148722410202026,
507
+ "rewards/margins": 1.3564319610595703,
508
+ "rewards/rejected": -2.0713045597076416,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.2664522797748938,
513
+ "grad_norm": 2.412203550338745,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 1.2262591123580933,
516
+ "logits/rejected": 0.22599482536315918,
517
+ "logps/chosen": -0.5671601891517639,
518
+ "logps/rejected": -1.6760343313217163,
519
+ "loss": 0.5988,
520
+ "rewards/accuracies": 0.7250000238418579,
521
+ "rewards/chosen": -0.8507402539253235,
522
+ "rewards/margins": 1.6633113622665405,
523
+ "rewards/rejected": -2.5140514373779297,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.2756402894223039,
528
+ "grad_norm": 1.0477895736694336,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 1.9952911138534546,
531
+ "logits/rejected": 1.1298446655273438,
532
+ "logps/chosen": -0.6152974367141724,
533
+ "logps/rejected": -2.128481388092041,
534
+ "loss": 0.5927,
535
+ "rewards/accuracies": 0.6625000238418579,
536
+ "rewards/chosen": -0.9229460954666138,
537
+ "rewards/margins": 2.2697763442993164,
538
+ "rewards/rejected": -3.192722797393799,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.2756402894223039,
543
+ "eval_logits/chosen": 1.6342910528182983,
544
+ "eval_logits/rejected": 0.633538007736206,
545
+ "eval_logps/chosen": -0.606099545955658,
546
+ "eval_logps/rejected": -1.882785439491272,
547
+ "eval_loss": 0.5978505611419678,
548
+ "eval_rewards/accuracies": 0.7159090638160706,
549
+ "eval_rewards/chosen": -0.909149169921875,
550
+ "eval_rewards/margins": 1.9150291681289673,
551
+ "eval_rewards/rejected": -2.824178457260132,
552
+ "eval_runtime": 24.4299,
553
+ "eval_samples_per_second": 28.817,
554
+ "eval_steps_per_second": 3.602,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.284828299069714,
559
+ "grad_norm": 3.0767388343811035,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.0374902486801147,
562
+ "logits/rejected": 0.6220051646232605,
563
+ "logps/chosen": -0.6778531074523926,
564
+ "logps/rejected": -1.8290255069732666,
565
+ "loss": 0.5792,
566
+ "rewards/accuracies": 0.625,
567
+ "rewards/chosen": -1.0167796611785889,
568
+ "rewards/margins": 1.726758599281311,
569
+ "rewards/rejected": -2.7435383796691895,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.29401630871712414,
574
+ "grad_norm": 0.6015120148658752,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 1.0050956010818481,
577
+ "logits/rejected": -0.016118621453642845,
578
+ "logps/chosen": -0.6865260004997253,
579
+ "logps/rejected": -2.113417148590088,
580
+ "loss": 0.5384,
581
+ "rewards/accuracies": 0.762499988079071,
582
+ "rewards/chosen": -1.0297890901565552,
583
+ "rewards/margins": 2.140336513519287,
584
+ "rewards/rejected": -3.1701254844665527,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.30320431836453426,
589
+ "grad_norm": 0.7415631413459778,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 0.5536144971847534,
592
+ "logits/rejected": -0.1644023358821869,
593
+ "logps/chosen": -0.8181726336479187,
594
+ "logps/rejected": -2.581185817718506,
595
+ "loss": 0.5671,
596
+ "rewards/accuracies": 0.75,
597
+ "rewards/chosen": -1.2272589206695557,
598
+ "rewards/margins": 2.644519805908203,
599
+ "rewards/rejected": -3.871778964996338,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.3123923280119444,
604
+ "grad_norm": 0.8956871628761292,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.6062015295028687,
607
+ "logits/rejected": 0.9243733286857605,
608
+ "logps/chosen": -0.8991573452949524,
609
+ "logps/rejected": -2.935060977935791,
610
+ "loss": 0.5124,
611
+ "rewards/accuracies": 0.7250000238418579,
612
+ "rewards/chosen": -1.348736047744751,
613
+ "rewards/margins": 3.0538551807403564,
614
+ "rewards/rejected": -4.402591228485107,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.32158033765935456,
619
+ "grad_norm": 1.1822264194488525,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 1.8171085119247437,
622
+ "logits/rejected": 1.228049397468567,
623
+ "logps/chosen": -0.8822734951972961,
624
+ "logps/rejected": -2.4744174480438232,
625
+ "loss": 0.516,
626
+ "rewards/accuracies": 0.7250000238418579,
627
+ "rewards/chosen": -1.3234103918075562,
628
+ "rewards/margins": 2.388216018676758,
629
+ "rewards/rejected": -3.7116265296936035,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.32158033765935456,
634
+ "eval_logits/chosen": 1.1368330717086792,
635
+ "eval_logits/rejected": 0.2795785665512085,
636
+ "eval_logps/chosen": -0.9485350251197815,
637
+ "eval_logps/rejected": -2.6484899520874023,
638
+ "eval_loss": 0.5133901238441467,
639
+ "eval_rewards/accuracies": 0.7727272510528564,
640
+ "eval_rewards/chosen": -1.4228025674819946,
641
+ "eval_rewards/margins": 2.5499324798583984,
642
+ "eval_rewards/rejected": -3.9727354049682617,
643
+ "eval_runtime": 24.4277,
644
+ "eval_samples_per_second": 28.82,
645
+ "eval_steps_per_second": 3.602,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.3307683473067647,
650
+ "grad_norm": 2.5278775691986084,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 1.1921958923339844,
653
+ "logits/rejected": 0.7565670013427734,
654
+ "logps/chosen": -1.4180412292480469,
655
+ "logps/rejected": -3.0890870094299316,
656
+ "loss": 0.4811,
657
+ "rewards/accuracies": 0.800000011920929,
658
+ "rewards/chosen": -2.1270618438720703,
659
+ "rewards/margins": 2.5065689086914062,
660
+ "rewards/rejected": -4.633630752563477,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.3399563569541748,
665
+ "grad_norm": 1.7325788736343384,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 0.997096836566925,
668
+ "logits/rejected": 0.4399908483028412,
669
+ "logps/chosen": -1.9010308980941772,
670
+ "logps/rejected": -3.6025185585021973,
671
+ "loss": 0.4326,
672
+ "rewards/accuracies": 0.824999988079071,
673
+ "rewards/chosen": -2.851546287536621,
674
+ "rewards/margins": 2.552231550216675,
675
+ "rewards/rejected": -5.403778076171875,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.34914436660158493,
680
+ "grad_norm": 4.608370304107666,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 1.0715999603271484,
683
+ "logits/rejected": 0.6113725900650024,
684
+ "logps/chosen": -2.4032845497131348,
685
+ "logps/rejected": -3.9940528869628906,
686
+ "loss": 0.4027,
687
+ "rewards/accuracies": 0.875,
688
+ "rewards/chosen": -3.6049270629882812,
689
+ "rewards/margins": 2.3861520290374756,
690
+ "rewards/rejected": -5.991078853607178,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.35833237624899505,
695
+ "grad_norm": 4.600816249847412,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 1.4443682432174683,
698
+ "logits/rejected": 0.8617011904716492,
699
+ "logps/chosen": -2.349093198776245,
700
+ "logps/rejected": -3.9943203926086426,
701
+ "loss": 0.4118,
702
+ "rewards/accuracies": 0.8125,
703
+ "rewards/chosen": -3.5236401557922363,
704
+ "rewards/margins": 2.467839479446411,
705
+ "rewards/rejected": -5.991480350494385,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3675203858964052,
710
+ "grad_norm": 2.1458094120025635,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 1.3029582500457764,
713
+ "logits/rejected": 0.7705980539321899,
714
+ "logps/chosen": -2.192617416381836,
715
+ "logps/rejected": -3.8413078784942627,
716
+ "loss": 0.3557,
717
+ "rewards/accuracies": 0.8500000238418579,
718
+ "rewards/chosen": -3.288925886154175,
719
+ "rewards/margins": 2.4730350971221924,
720
+ "rewards/rejected": -5.761960506439209,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3675203858964052,
725
+ "eval_logits/chosen": 0.8742353320121765,
726
+ "eval_logits/rejected": 0.14320053160190582,
727
+ "eval_logps/chosen": -2.0894505977630615,
728
+ "eval_logps/rejected": -4.20783805847168,
729
+ "eval_loss": 0.4082850515842438,
730
+ "eval_rewards/accuracies": 0.8863636255264282,
731
+ "eval_rewards/chosen": -3.1341757774353027,
732
+ "eval_rewards/margins": 3.1775810718536377,
733
+ "eval_rewards/rejected": -6.311756610870361,
734
+ "eval_runtime": 24.4316,
735
+ "eval_samples_per_second": 28.815,
736
+ "eval_steps_per_second": 3.602,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.3767083955438153,
741
+ "grad_norm": 2.5496387481689453,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 1.9024279117584229,
744
+ "logits/rejected": 1.4777928590774536,
745
+ "logps/chosen": -2.7541470527648926,
746
+ "logps/rejected": -4.542642116546631,
747
+ "loss": 0.4184,
748
+ "rewards/accuracies": 0.887499988079071,
749
+ "rewards/chosen": -4.13122034072876,
750
+ "rewards/margins": 2.6827428340911865,
751
+ "rewards/rejected": -6.813962459564209,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.3858964051912255,
756
+ "grad_norm": 2.6187174320220947,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 1.9345887899398804,
759
+ "logits/rejected": 1.4047685861587524,
760
+ "logps/chosen": -2.389430522918701,
761
+ "logps/rejected": -4.439882755279541,
762
+ "loss": 0.4096,
763
+ "rewards/accuracies": 0.875,
764
+ "rewards/chosen": -3.5841457843780518,
765
+ "rewards/margins": 3.0756776332855225,
766
+ "rewards/rejected": -6.659823417663574,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.3950844148386356,
771
+ "grad_norm": 3.762899398803711,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 1.2521915435791016,
774
+ "logits/rejected": 0.7238092422485352,
775
+ "logps/chosen": -2.5571534633636475,
776
+ "logps/rejected": -4.675185203552246,
777
+ "loss": 0.4083,
778
+ "rewards/accuracies": 0.862500011920929,
779
+ "rewards/chosen": -3.835730791091919,
780
+ "rewards/margins": 3.1770474910736084,
781
+ "rewards/rejected": -7.012777805328369,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.4042724244860457,
786
+ "grad_norm": 3.2343404293060303,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 1.9626567363739014,
789
+ "logits/rejected": 1.3136894702911377,
790
+ "logps/chosen": -2.892967939376831,
791
+ "logps/rejected": -5.003688335418701,
792
+ "loss": 0.3783,
793
+ "rewards/accuracies": 0.8374999761581421,
794
+ "rewards/chosen": -4.339452266693115,
795
+ "rewards/margins": 3.1660804748535156,
796
+ "rewards/rejected": -7.505532264709473,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.41346043413345585,
801
+ "grad_norm": 3.2979824542999268,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 1.159234881401062,
804
+ "logits/rejected": 0.5396692752838135,
805
+ "logps/chosen": -2.7545204162597656,
806
+ "logps/rejected": -5.4179182052612305,
807
+ "loss": 0.347,
808
+ "rewards/accuracies": 0.9375,
809
+ "rewards/chosen": -4.131781101226807,
810
+ "rewards/margins": 3.9950966835021973,
811
+ "rewards/rejected": -8.126876831054688,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.41346043413345585,
816
+ "eval_logits/chosen": 0.9304068088531494,
817
+ "eval_logits/rejected": 0.30015668272972107,
818
+ "eval_logps/chosen": -2.485308885574341,
819
+ "eval_logps/rejected": -4.880238056182861,
820
+ "eval_loss": 0.36501914262771606,
821
+ "eval_rewards/accuracies": 0.9204545617103577,
822
+ "eval_rewards/chosen": -3.7279627323150635,
823
+ "eval_rewards/margins": 3.592393636703491,
824
+ "eval_rewards/rejected": -7.320356845855713,
825
+ "eval_runtime": 24.4234,
826
+ "eval_samples_per_second": 28.825,
827
+ "eval_steps_per_second": 3.603,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.42264844378086597,
832
+ "grad_norm": 3.155860185623169,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 1.633522391319275,
835
+ "logits/rejected": 1.0575059652328491,
836
+ "logps/chosen": -2.7214303016662598,
837
+ "logps/rejected": -4.766176223754883,
838
+ "loss": 0.3689,
839
+ "rewards/accuracies": 0.9125000238418579,
840
+ "rewards/chosen": -4.082144737243652,
841
+ "rewards/margins": 3.0671191215515137,
842
+ "rewards/rejected": -7.149264335632324,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.4318364534282761,
847
+ "grad_norm": 2.9949357509613037,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 1.3139212131500244,
850
+ "logits/rejected": 0.5838541388511658,
851
+ "logps/chosen": -2.5324313640594482,
852
+ "logps/rejected": -4.993292808532715,
853
+ "loss": 0.3587,
854
+ "rewards/accuracies": 0.8999999761581421,
855
+ "rewards/chosen": -3.7986464500427246,
856
+ "rewards/margins": 3.6912925243377686,
857
+ "rewards/rejected": -7.489938259124756,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.4410244630756862,
862
+ "grad_norm": 2.4548208713531494,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 1.2342166900634766,
865
+ "logits/rejected": 0.8118699193000793,
866
+ "logps/chosen": -2.876863479614258,
867
+ "logps/rejected": -5.457588195800781,
868
+ "loss": 0.2922,
869
+ "rewards/accuracies": 0.9624999761581421,
870
+ "rewards/chosen": -4.315295219421387,
871
+ "rewards/margins": 3.871086597442627,
872
+ "rewards/rejected": -8.186381340026855,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.45021247272309634,
877
+ "grad_norm": 2.0953762531280518,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 1.8121936321258545,
880
+ "logits/rejected": 1.454637050628662,
881
+ "logps/chosen": -3.2022106647491455,
882
+ "logps/rejected": -5.47930908203125,
883
+ "loss": 0.3086,
884
+ "rewards/accuracies": 0.9375,
885
+ "rewards/chosen": -4.803316116333008,
886
+ "rewards/margins": 3.4156479835510254,
887
+ "rewards/rejected": -8.218963623046875,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.4594004823705065,
892
+ "grad_norm": 2.4918301105499268,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 1.5386875867843628,
895
+ "logits/rejected": 1.2544763088226318,
896
+ "logps/chosen": -3.2174277305603027,
897
+ "logps/rejected": -6.012864112854004,
898
+ "loss": 0.3128,
899
+ "rewards/accuracies": 0.9125000238418579,
900
+ "rewards/chosen": -4.826140880584717,
901
+ "rewards/margins": 4.193154335021973,
902
+ "rewards/rejected": -9.019296646118164,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.4594004823705065,
907
+ "eval_logits/chosen": 0.8257808685302734,
908
+ "eval_logits/rejected": 0.27475622296333313,
909
+ "eval_logps/chosen": -2.755974054336548,
910
+ "eval_logps/rejected": -5.469714641571045,
911
+ "eval_loss": 0.32884541153907776,
912
+ "eval_rewards/accuracies": 0.9204545617103577,
913
+ "eval_rewards/chosen": -4.133961200714111,
914
+ "eval_rewards/margins": 4.070610523223877,
915
+ "eval_rewards/rejected": -8.204572677612305,
916
+ "eval_runtime": 24.4191,
917
+ "eval_samples_per_second": 28.83,
918
+ "eval_steps_per_second": 3.604,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.46858849201791664,
923
+ "grad_norm": 4.017474174499512,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 1.8042447566986084,
926
+ "logits/rejected": 1.4390740394592285,
927
+ "logps/chosen": -3.4311797618865967,
928
+ "logps/rejected": -6.114380359649658,
929
+ "loss": 0.335,
930
+ "rewards/accuracies": 0.925000011920929,
931
+ "rewards/chosen": -5.1467695236206055,
932
+ "rewards/margins": 4.0248003005981445,
933
+ "rewards/rejected": -9.171568870544434,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.47777650166532676,
938
+ "grad_norm": 5.516397953033447,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 1.1141811609268188,
941
+ "logits/rejected": 0.7766789197921753,
942
+ "logps/chosen": -3.1831612586975098,
943
+ "logps/rejected": -5.615653991699219,
944
+ "loss": 0.3306,
945
+ "rewards/accuracies": 0.887499988079071,
946
+ "rewards/chosen": -4.774742603302002,
947
+ "rewards/margins": 3.6487393379211426,
948
+ "rewards/rejected": -8.423480987548828,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.4869645113127369,
953
+ "grad_norm": 4.1005635261535645,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 1.5796890258789062,
956
+ "logits/rejected": 1.1561863422393799,
957
+ "logps/chosen": -3.286179304122925,
958
+ "logps/rejected": -5.805339813232422,
959
+ "loss": 0.3151,
960
+ "rewards/accuracies": 0.9375,
961
+ "rewards/chosen": -4.929268836975098,
962
+ "rewards/margins": 3.778740644454956,
963
+ "rewards/rejected": -8.708009719848633,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.496152520960147,
968
+ "grad_norm": 2.8616511821746826,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 0.6956934928894043,
971
+ "logits/rejected": 0.1268310248851776,
972
+ "logps/chosen": -2.8933937549591064,
973
+ "logps/rejected": -5.794272422790527,
974
+ "loss": 0.2995,
975
+ "rewards/accuracies": 0.9375,
976
+ "rewards/chosen": -4.340090274810791,
977
+ "rewards/margins": 4.351318836212158,
978
+ "rewards/rejected": -8.691408157348633,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.5053405306075571,
983
+ "grad_norm": 2.237276315689087,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 1.7460235357284546,
986
+ "logits/rejected": 0.9990445375442505,
987
+ "logps/chosen": -2.860546827316284,
988
+ "logps/rejected": -5.517810821533203,
989
+ "loss": 0.3203,
990
+ "rewards/accuracies": 0.887499988079071,
991
+ "rewards/chosen": -4.290820121765137,
992
+ "rewards/margins": 3.985896348953247,
993
+ "rewards/rejected": -8.276716232299805,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.5053405306075571,
998
+ "eval_logits/chosen": 0.8703196048736572,
999
+ "eval_logits/rejected": 0.3152187466621399,
1000
+ "eval_logps/chosen": -2.709866523742676,
1001
+ "eval_logps/rejected": -5.687611103057861,
1002
+ "eval_loss": 0.304200142621994,
1003
+ "eval_rewards/accuracies": 0.9204545617103577,
1004
+ "eval_rewards/chosen": -4.064799785614014,
1005
+ "eval_rewards/margins": 4.466617107391357,
1006
+ "eval_rewards/rejected": -8.531416893005371,
1007
+ "eval_runtime": 24.6083,
1008
+ "eval_samples_per_second": 28.608,
1009
+ "eval_steps_per_second": 3.576,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.5145285402549673,
1014
+ "grad_norm": 3.7983174324035645,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 1.084142804145813,
1017
+ "logits/rejected": 0.9131366610527039,
1018
+ "logps/chosen": -3.4958484172821045,
1019
+ "logps/rejected": -7.143038749694824,
1020
+ "loss": 0.2728,
1021
+ "rewards/accuracies": 0.9624999761581421,
1022
+ "rewards/chosen": -5.243772506713867,
1023
+ "rewards/margins": 5.470786094665527,
1024
+ "rewards/rejected": -10.714558601379395,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.5237165499023774,
1029
+ "grad_norm": 2.398188829421997,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 1.2777886390686035,
1032
+ "logits/rejected": 0.6827106475830078,
1033
+ "logps/chosen": -3.4014134407043457,
1034
+ "logps/rejected": -6.260494232177734,
1035
+ "loss": 0.2833,
1036
+ "rewards/accuracies": 0.9375,
1037
+ "rewards/chosen": -5.102120399475098,
1038
+ "rewards/margins": 4.288620948791504,
1039
+ "rewards/rejected": -9.390741348266602,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.5329045595497875,
1044
+ "grad_norm": 4.97003173828125,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 1.6978384256362915,
1047
+ "logits/rejected": 1.1092720031738281,
1048
+ "logps/chosen": -3.179011106491089,
1049
+ "logps/rejected": -6.802459716796875,
1050
+ "loss": 0.2942,
1051
+ "rewards/accuracies": 0.925000011920929,
1052
+ "rewards/chosen": -4.768516540527344,
1053
+ "rewards/margins": 5.435172080993652,
1054
+ "rewards/rejected": -10.203688621520996,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.5420925691971976,
1059
+ "grad_norm": 4.482264995574951,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 1.0245933532714844,
1062
+ "logits/rejected": 0.7797524929046631,
1063
+ "logps/chosen": -3.2393958568573,
1064
+ "logps/rejected": -5.916412353515625,
1065
+ "loss": 0.3347,
1066
+ "rewards/accuracies": 0.925000011920929,
1067
+ "rewards/chosen": -4.859094142913818,
1068
+ "rewards/margins": 4.015524864196777,
1069
+ "rewards/rejected": -8.874618530273438,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.5512805788446078,
1074
+ "grad_norm": 3.913116931915283,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 1.3320618867874146,
1077
+ "logits/rejected": 0.9762558937072754,
1078
+ "logps/chosen": -3.2751450538635254,
1079
+ "logps/rejected": -6.7808518409729,
1080
+ "loss": 0.2776,
1081
+ "rewards/accuracies": 0.875,
1082
+ "rewards/chosen": -4.912716865539551,
1083
+ "rewards/margins": 5.258560657501221,
1084
+ "rewards/rejected": -10.17127799987793,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.5512805788446078,
1089
+ "eval_logits/chosen": 0.9448758959770203,
1090
+ "eval_logits/rejected": 0.42817041277885437,
1091
+ "eval_logps/chosen": -2.835143804550171,
1092
+ "eval_logps/rejected": -6.087582588195801,
1093
+ "eval_loss": 0.28658536076545715,
1094
+ "eval_rewards/accuracies": 0.9204545617103577,
1095
+ "eval_rewards/chosen": -4.252715587615967,
1096
+ "eval_rewards/margins": 4.878659248352051,
1097
+ "eval_rewards/rejected": -9.13137435913086,
1098
+ "eval_runtime": 24.4325,
1099
+ "eval_samples_per_second": 28.814,
1100
+ "eval_steps_per_second": 3.602,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.560468588492018,
1105
+ "grad_norm": 3.8335089683532715,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 1.295569658279419,
1108
+ "logits/rejected": 1.0852326154708862,
1109
+ "logps/chosen": -3.4870052337646484,
1110
+ "logps/rejected": -6.572986602783203,
1111
+ "loss": 0.3243,
1112
+ "rewards/accuracies": 0.8999999761581421,
1113
+ "rewards/chosen": -5.230508327484131,
1114
+ "rewards/margins": 4.628971576690674,
1115
+ "rewards/rejected": -9.859478950500488,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.569656598139428,
1120
+ "grad_norm": 3.095102071762085,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 1.8339803218841553,
1123
+ "logits/rejected": 1.467551589012146,
1124
+ "logps/chosen": -3.6670470237731934,
1125
+ "logps/rejected": -6.880410194396973,
1126
+ "loss": 0.2615,
1127
+ "rewards/accuracies": 0.862500011920929,
1128
+ "rewards/chosen": -5.500569820404053,
1129
+ "rewards/margins": 4.820044040679932,
1130
+ "rewards/rejected": -10.3206148147583,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.5788446077868382,
1135
+ "grad_norm": 4.381973743438721,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 2.390763521194458,
1138
+ "logits/rejected": 2.155505418777466,
1139
+ "logps/chosen": -3.3569788932800293,
1140
+ "logps/rejected": -6.319291114807129,
1141
+ "loss": 0.2649,
1142
+ "rewards/accuracies": 0.862500011920929,
1143
+ "rewards/chosen": -5.035468101501465,
1144
+ "rewards/margins": 4.4434685707092285,
1145
+ "rewards/rejected": -9.478937149047852,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5880326174342483,
1150
+ "grad_norm": 3.9204964637756348,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 1.4343383312225342,
1153
+ "logits/rejected": 1.1991338729858398,
1154
+ "logps/chosen": -3.654259443283081,
1155
+ "logps/rejected": -6.873109340667725,
1156
+ "loss": 0.2761,
1157
+ "rewards/accuracies": 0.9125000238418579,
1158
+ "rewards/chosen": -5.481389045715332,
1159
+ "rewards/margins": 4.828273773193359,
1160
+ "rewards/rejected": -10.309663772583008,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5972206270816585,
1165
+ "grad_norm": 3.179067373275757,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 2.0368576049804688,
1168
+ "logits/rejected": 1.8037185668945312,
1169
+ "logps/chosen": -3.791682720184326,
1170
+ "logps/rejected": -6.912911415100098,
1171
+ "loss": 0.2739,
1172
+ "rewards/accuracies": 0.925000011920929,
1173
+ "rewards/chosen": -5.68752384185791,
1174
+ "rewards/margins": 4.68184232711792,
1175
+ "rewards/rejected": -10.369367599487305,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5972206270816585,
1180
+ "eval_logits/chosen": 1.0889618396759033,
1181
+ "eval_logits/rejected": 0.5887767672538757,
1182
+ "eval_logps/chosen": -3.0191192626953125,
1183
+ "eval_logps/rejected": -6.388964653015137,
1184
+ "eval_loss": 0.27443525195121765,
1185
+ "eval_rewards/accuracies": 0.9204545617103577,
1186
+ "eval_rewards/chosen": -4.528679370880127,
1187
+ "eval_rewards/margins": 5.054768085479736,
1188
+ "eval_rewards/rejected": -9.583446502685547,
1189
+ "eval_runtime": 24.4235,
1190
+ "eval_samples_per_second": 28.825,
1191
+ "eval_steps_per_second": 3.603,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.6064086367290685,
1196
+ "grad_norm": 2.804940700531006,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 1.8347485065460205,
1199
+ "logits/rejected": 1.3636573553085327,
1200
+ "logps/chosen": -3.398799419403076,
1201
+ "logps/rejected": -6.337627410888672,
1202
+ "loss": 0.2678,
1203
+ "rewards/accuracies": 0.949999988079071,
1204
+ "rewards/chosen": -5.098199367523193,
1205
+ "rewards/margins": 4.408241271972656,
1206
+ "rewards/rejected": -9.506441116333008,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.6155966463764787,
1211
+ "grad_norm": 3.7368969917297363,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 1.6734691858291626,
1214
+ "logits/rejected": 1.0945308208465576,
1215
+ "logps/chosen": -3.354790210723877,
1216
+ "logps/rejected": -6.3691864013671875,
1217
+ "loss": 0.294,
1218
+ "rewards/accuracies": 0.925000011920929,
1219
+ "rewards/chosen": -5.0321855545043945,
1220
+ "rewards/margins": 4.521594524383545,
1221
+ "rewards/rejected": -9.553780555725098,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.6247846560238888,
1226
+ "grad_norm": 4.483130931854248,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 1.640228509902954,
1229
+ "logits/rejected": 1.1519067287445068,
1230
+ "logps/chosen": -3.4700570106506348,
1231
+ "logps/rejected": -6.6276445388793945,
1232
+ "loss": 0.23,
1233
+ "rewards/accuracies": 0.925000011920929,
1234
+ "rewards/chosen": -5.205085277557373,
1235
+ "rewards/margins": 4.736380577087402,
1236
+ "rewards/rejected": -9.941465377807617,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.633972665671299,
1241
+ "grad_norm": 8.508203506469727,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 1.0501906871795654,
1244
+ "logits/rejected": 0.5691097974777222,
1245
+ "logps/chosen": -3.4982333183288574,
1246
+ "logps/rejected": -7.144225120544434,
1247
+ "loss": 0.2808,
1248
+ "rewards/accuracies": 0.925000011920929,
1249
+ "rewards/chosen": -5.247350215911865,
1250
+ "rewards/margins": 5.468987464904785,
1251
+ "rewards/rejected": -10.716337203979492,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.6431606753187091,
1256
+ "grad_norm": 2.271857738494873,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 1.2119544744491577,
1259
+ "logits/rejected": 0.7247776389122009,
1260
+ "logps/chosen": -4.096956253051758,
1261
+ "logps/rejected": -7.4536261558532715,
1262
+ "loss": 0.2808,
1263
+ "rewards/accuracies": 0.8999999761581421,
1264
+ "rewards/chosen": -6.145434379577637,
1265
+ "rewards/margins": 5.035003662109375,
1266
+ "rewards/rejected": -11.180438995361328,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.6431606753187091,
1271
+ "eval_logits/chosen": 1.085008978843689,
1272
+ "eval_logits/rejected": 0.5991834998130798,
1273
+ "eval_logps/chosen": -3.179896354675293,
1274
+ "eval_logps/rejected": -6.738409519195557,
1275
+ "eval_loss": 0.26070258021354675,
1276
+ "eval_rewards/accuracies": 0.9090909361839294,
1277
+ "eval_rewards/chosen": -4.7698445320129395,
1278
+ "eval_rewards/margins": 5.337769031524658,
1279
+ "eval_rewards/rejected": -10.107613563537598,
1280
+ "eval_runtime": 24.465,
1281
+ "eval_samples_per_second": 28.776,
1282
+ "eval_steps_per_second": 3.597,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.6523486849661192,
1287
+ "grad_norm": 4.058814525604248,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 1.2182409763336182,
1290
+ "logits/rejected": 1.0481547117233276,
1291
+ "logps/chosen": -3.532151699066162,
1292
+ "logps/rejected": -7.4123854637146,
1293
+ "loss": 0.2565,
1294
+ "rewards/accuracies": 0.9125000238418579,
1295
+ "rewards/chosen": -5.2982282638549805,
1296
+ "rewards/margins": 5.8203511238098145,
1297
+ "rewards/rejected": -11.118578910827637,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.6615366946135294,
1302
+ "grad_norm": 3.857574939727783,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 0.8797380328178406,
1305
+ "logits/rejected": 0.6432709693908691,
1306
+ "logps/chosen": -3.3780128955841064,
1307
+ "logps/rejected": -6.922214508056641,
1308
+ "loss": 0.2321,
1309
+ "rewards/accuracies": 0.9125000238418579,
1310
+ "rewards/chosen": -5.067019462585449,
1311
+ "rewards/margins": 5.3163018226623535,
1312
+ "rewards/rejected": -10.383320808410645,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.6707247042609394,
1317
+ "grad_norm": 3.7125725746154785,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 1.447474479675293,
1320
+ "logits/rejected": 1.1114810705184937,
1321
+ "logps/chosen": -3.682945728302002,
1322
+ "logps/rejected": -7.297152519226074,
1323
+ "loss": 0.2812,
1324
+ "rewards/accuracies": 0.9375,
1325
+ "rewards/chosen": -5.524418830871582,
1326
+ "rewards/margins": 5.421310901641846,
1327
+ "rewards/rejected": -10.94572925567627,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.6799127139083496,
1332
+ "grad_norm": 2.026604652404785,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 1.9674856662750244,
1335
+ "logits/rejected": 1.593400239944458,
1336
+ "logps/chosen": -3.3987834453582764,
1337
+ "logps/rejected": -6.970278263092041,
1338
+ "loss": 0.2603,
1339
+ "rewards/accuracies": 0.9375,
1340
+ "rewards/chosen": -5.098175048828125,
1341
+ "rewards/margins": 5.357242107391357,
1342
+ "rewards/rejected": -10.45541763305664,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.6891007235557597,
1347
+ "grad_norm": 2.357570171356201,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 1.9729163646697998,
1350
+ "logits/rejected": 1.8791675567626953,
1351
+ "logps/chosen": -3.3879425525665283,
1352
+ "logps/rejected": -6.712514400482178,
1353
+ "loss": 0.2348,
1354
+ "rewards/accuracies": 0.862500011920929,
1355
+ "rewards/chosen": -5.081913948059082,
1356
+ "rewards/margins": 4.986858367919922,
1357
+ "rewards/rejected": -10.068772315979004,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.6891007235557597,
1362
+ "eval_logits/chosen": 1.1882920265197754,
1363
+ "eval_logits/rejected": 0.7092404961585999,
1364
+ "eval_logps/chosen": -2.855703592300415,
1365
+ "eval_logps/rejected": -6.557665824890137,
1366
+ "eval_loss": 0.25226154923439026,
1367
+ "eval_rewards/accuracies": 0.9090909361839294,
1368
+ "eval_rewards/chosen": -4.283555507659912,
1369
+ "eval_rewards/margins": 5.552942276000977,
1370
+ "eval_rewards/rejected": -9.836498260498047,
1371
+ "eval_runtime": 24.4236,
1372
+ "eval_samples_per_second": 28.825,
1373
+ "eval_steps_per_second": 3.603,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.6982887332031699,
1378
+ "grad_norm": 3.1369588375091553,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 1.908418893814087,
1381
+ "logits/rejected": 1.637202262878418,
1382
+ "logps/chosen": -3.941102981567383,
1383
+ "logps/rejected": -7.562623023986816,
1384
+ "loss": 0.2412,
1385
+ "rewards/accuracies": 0.887499988079071,
1386
+ "rewards/chosen": -5.911653995513916,
1387
+ "rewards/margins": 5.432280540466309,
1388
+ "rewards/rejected": -11.343935012817383,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.70747674285058,
1393
+ "grad_norm": 4.2312703132629395,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 1.3125172853469849,
1396
+ "logits/rejected": 0.933386504650116,
1397
+ "logps/chosen": -3.5281143188476562,
1398
+ "logps/rejected": -7.116488456726074,
1399
+ "loss": 0.2528,
1400
+ "rewards/accuracies": 0.9624999761581421,
1401
+ "rewards/chosen": -5.292171001434326,
1402
+ "rewards/margins": 5.382561683654785,
1403
+ "rewards/rejected": -10.674734115600586,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.7166647524979901,
1408
+ "grad_norm": 5.6951799392700195,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 2.295801877975464,
1411
+ "logits/rejected": 1.8810745477676392,
1412
+ "logps/chosen": -3.3887531757354736,
1413
+ "logps/rejected": -6.8857245445251465,
1414
+ "loss": 0.2672,
1415
+ "rewards/accuracies": 0.8999999761581421,
1416
+ "rewards/chosen": -5.083128929138184,
1417
+ "rewards/margins": 5.245457649230957,
1418
+ "rewards/rejected": -10.32858657836914,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.7258527621454003,
1423
+ "grad_norm": 3.734528064727783,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 1.6154979467391968,
1426
+ "logits/rejected": 1.1886816024780273,
1427
+ "logps/chosen": -3.379617214202881,
1428
+ "logps/rejected": -7.1727166175842285,
1429
+ "loss": 0.2315,
1430
+ "rewards/accuracies": 0.8999999761581421,
1431
+ "rewards/chosen": -5.069426536560059,
1432
+ "rewards/margins": 5.689648628234863,
1433
+ "rewards/rejected": -10.759074211120605,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.7350407717928104,
1438
+ "grad_norm": 3.2450063228607178,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 1.9270827770233154,
1441
+ "logits/rejected": 1.5745903253555298,
1442
+ "logps/chosen": -3.9242210388183594,
1443
+ "logps/rejected": -7.254105567932129,
1444
+ "loss": 0.2301,
1445
+ "rewards/accuracies": 0.887499988079071,
1446
+ "rewards/chosen": -5.886331081390381,
1447
+ "rewards/margins": 4.9948272705078125,
1448
+ "rewards/rejected": -10.881157875061035,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.7350407717928104,
1453
+ "eval_logits/chosen": 1.228877067565918,
1454
+ "eval_logits/rejected": 0.7780414819717407,
1455
+ "eval_logps/chosen": -3.096149444580078,
1456
+ "eval_logps/rejected": -6.9255452156066895,
1457
+ "eval_loss": 0.23762211203575134,
1458
+ "eval_rewards/accuracies": 0.9090909361839294,
1459
+ "eval_rewards/chosen": -4.644224166870117,
1460
+ "eval_rewards/margins": 5.744093894958496,
1461
+ "eval_rewards/rejected": -10.388318061828613,
1462
+ "eval_runtime": 24.4202,
1463
+ "eval_samples_per_second": 28.829,
1464
+ "eval_steps_per_second": 3.604,
1465
+ "step": 800
1466
+ }
1467
+ ],
1468
+ "logging_steps": 10,
1469
+ "max_steps": 1500,
1470
+ "num_input_tokens_seen": 0,
1471
+ "num_train_epochs": 2,
1472
+ "save_steps": 50,
1473
+ "stateful_callbacks": {
1474
+ "TrainerControl": {
1475
+ "args": {
1476
+ "should_epoch_stop": false,
1477
+ "should_evaluate": false,
1478
+ "should_log": false,
1479
+ "should_save": true,
1480
+ "should_training_stop": false
1481
+ },
1482
+ "attributes": {}
1483
+ }
1484
+ },
1485
+ "total_flos": 1.945236431907586e+18,
1486
+ "train_batch_size": 1,
1487
+ "trial_name": null,
1488
+ "trial_params": null
1489
+ }
checkpoint-800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e758dd0e4a754b8adb96ec29d9d5e6d185c2cfb0f0a27add29180a481d3863
3
+ size 7224
checkpoint-800/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)