Training in progress, step 850, checkpoint
Browse files- checkpoint-850/README.md +202 -0
- checkpoint-850/adapter_config.json +34 -0
- checkpoint-850/adapter_model.safetensors +3 -0
- checkpoint-850/added_tokens.json +13 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/mp_rank_00_model_states.pt +3 -0
- checkpoint-850/latest +1 -0
- checkpoint-850/rng_state_0.pth +3 -0
- checkpoint-850/rng_state_1.pth +3 -0
- checkpoint-850/rng_state_2.pth +3 -0
- checkpoint-850/rng_state_3.pth +3 -0
- checkpoint-850/rng_state_4.pth +3 -0
- checkpoint-850/rng_state_5.pth +3 -0
- checkpoint-850/rng_state_6.pth +3 -0
- checkpoint-850/rng_state_7.pth +3 -0
- checkpoint-850/scheduler.pt +3 -0
- checkpoint-850/special_tokens_map.json +30 -0
- checkpoint-850/tokenizer.json +0 -0
- checkpoint-850/tokenizer.model +3 -0
- checkpoint-850/tokenizer_config.json +133 -0
- checkpoint-850/trainer_state.json +1580 -0
- checkpoint-850/training_args.bin +3 -0
- checkpoint-850/zero_to_fp32.py +674 -0
checkpoint-850/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-850/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"qkv_proj",
|
27 |
+
"gate_up_proj",
|
28 |
+
"o_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-850/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:065ea2f87f143869b48d6c38a544bae4a7c1d851c8604f05cf76f8939acfe83f
|
3 |
+
size 25200088
|
checkpoint-850/added_tokens.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|assistant|>": 32001,
|
3 |
+
"<|endoftext|>": 32000,
|
4 |
+
"<|end|>": 32007,
|
5 |
+
"<|placeholder1|>": 32002,
|
6 |
+
"<|placeholder2|>": 32003,
|
7 |
+
"<|placeholder3|>": 32004,
|
8 |
+
"<|placeholder4|>": 32005,
|
9 |
+
"<|placeholder5|>": 32008,
|
10 |
+
"<|placeholder6|>": 32009,
|
11 |
+
"<|system|>": 32006,
|
12 |
+
"<|user|>": 32010
|
13 |
+
}
|
checkpoint-850/global_step850/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a48065427637cbb91bbb38e62b2d28b078a8be4ccf34b933dac521dea3ee463f
|
3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffea10bb04f757da0020ebaefafd7dbe88e9436c19d9756542bf36f33bad970a
|
3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d4a15e9ab92b37b329f417dcbc3d78eec4c9fcb15043fec16962fa934985c0c
|
3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8be1311482434adfcd1d4f714d05f3fd82a0934636a5b420cd8d703939052057
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79a99ef3e7366c45d54611bd8300c6981818146f939d6dfddeab59dbf07f8369
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b255d22f5ea63ee3a648cf0096a1766ad09d0724afd4e2240ecffe4a7af4e07
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf879ee70e63316cd2dfb63301a8adcf28f0499cbfaf2f8323b5c21b922608a0
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e01e8ebb4c45bd36bd2922edac1d7d9d7665cb04a6e31b6f66ddfdf603eae4d
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:836fd0ef3ac8dc04701acb2f5e0c2bc781573e512a286bbaa49ccc4a121c826a
|
3 |
+
size 25379244
|
checkpoint-850/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step850
|
checkpoint-850/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f5c4738c31c5c9a38e1f586256d59a0e8e7d02641b9b9af2afdbe078440aeb4
|
3 |
+
size 15984
|
checkpoint-850/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d374b3390eb52ec7f6161c06272d4f26cb715692bdf2ad5374287b6de420ca3
|
3 |
+
size 15984
|
checkpoint-850/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24111edc5a6a2994166cd410155ee3c630816d0fe21c13808ebd2a2ae45bc9d8
|
3 |
+
size 15984
|
checkpoint-850/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:157b21eda1c7f898e519251deed08049767ffba123797289de56343a92ba7380
|
3 |
+
size 15984
|
checkpoint-850/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ccb615552e5845759bc13aa2ae50c0525fbf941fa76ee2e2c20cb9838fe1995
|
3 |
+
size 15984
|
checkpoint-850/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fcf720fc22147ce563d6f2c2f6f3d916a7e8b7af174b480d072b5c822e992aa
|
3 |
+
size 15984
|
checkpoint-850/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d055d3b033dc8e6fc2a19aa95162960544ab94a903988874315efe4ed5aa8e13
|
3 |
+
size 15984
|
checkpoint-850/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e03c685f2e019350bfdd41f006495a18690aacbccd7ffc1f40de827f433eb87
|
3 |
+
size 15984
|
checkpoint-850/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e018ec51f51e576ee0ab0d945ed5b24487041ac34863e79688b43f75d30d7673
|
3 |
+
size 1064
|
checkpoint-850/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
checkpoint-850/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-850/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
checkpoint-850/tokenizer_config.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<|endoftext|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "<|assistant|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<|placeholder1|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<|placeholder2|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<|placeholder3|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"32005": {
|
71 |
+
"content": "<|placeholder4|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"32006": {
|
79 |
+
"content": "<|system|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"32007": {
|
87 |
+
"content": "<|end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"32008": {
|
95 |
+
"content": "<|placeholder5|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"32009": {
|
103 |
+
"content": "<|placeholder6|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": true,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"32010": {
|
111 |
+
"content": "<|user|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": true,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
|
121 |
+
"clean_up_tokenization_spaces": false,
|
122 |
+
"eos_token": "<|end|>",
|
123 |
+
"extra_special_tokens": {},
|
124 |
+
"legacy": false,
|
125 |
+
"model_max_length": 4096,
|
126 |
+
"pad_token": "<|endoftext|>",
|
127 |
+
"padding_side": "right",
|
128 |
+
"sp_model_kwargs": {},
|
129 |
+
"split_special_tokens": false,
|
130 |
+
"tokenizer_class": "LlamaTokenizer",
|
131 |
+
"unk_token": "<unk>",
|
132 |
+
"use_default_system_prompt": false
|
133 |
+
}
|
checkpoint-850/trainer_state.json
ADDED
@@ -0,0 +1,1580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.780980820029861,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 850,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.00918800964741013,
|
13 |
+
"grad_norm": 0.036612071096897125,
|
14 |
+
"learning_rate": 4.999451708687114e-06,
|
15 |
+
"logits/chosen": 15.01579761505127,
|
16 |
+
"logits/rejected": 15.359031677246094,
|
17 |
+
"logps/chosen": -0.2681262791156769,
|
18 |
+
"logps/rejected": -0.31947994232177734,
|
19 |
+
"loss": 0.9551,
|
20 |
+
"rewards/accuracies": 0.4749999940395355,
|
21 |
+
"rewards/chosen": -0.40218934416770935,
|
22 |
+
"rewards/margins": 0.07703053951263428,
|
23 |
+
"rewards/rejected": -0.479219913482666,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.01837601929482026,
|
28 |
+
"grad_norm": 0.05575725808739662,
|
29 |
+
"learning_rate": 4.997807075247147e-06,
|
30 |
+
"logits/chosen": 14.570712089538574,
|
31 |
+
"logits/rejected": 15.321355819702148,
|
32 |
+
"logps/chosen": -0.2867889404296875,
|
33 |
+
"logps/rejected": -0.3514837622642517,
|
34 |
+
"loss": 0.923,
|
35 |
+
"rewards/accuracies": 0.5874999761581421,
|
36 |
+
"rewards/chosen": -0.43018341064453125,
|
37 |
+
"rewards/margins": 0.09704220294952393,
|
38 |
+
"rewards/rejected": -0.5272256135940552,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.02756402894223039,
|
43 |
+
"grad_norm": 0.0492466576397419,
|
44 |
+
"learning_rate": 4.9950668210706795e-06,
|
45 |
+
"logits/chosen": 14.748420715332031,
|
46 |
+
"logits/rejected": 14.969354629516602,
|
47 |
+
"logps/chosen": -0.28405922651290894,
|
48 |
+
"logps/rejected": -0.32855403423309326,
|
49 |
+
"loss": 0.9357,
|
50 |
+
"rewards/accuracies": 0.5,
|
51 |
+
"rewards/chosen": -0.426088809967041,
|
52 |
+
"rewards/margins": 0.06674225628376007,
|
53 |
+
"rewards/rejected": -0.4928310811519623,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.03675203858964052,
|
58 |
+
"grad_norm": 0.05719422921538353,
|
59 |
+
"learning_rate": 4.9912321481237616e-06,
|
60 |
+
"logits/chosen": 14.28278923034668,
|
61 |
+
"logits/rejected": 14.76964282989502,
|
62 |
+
"logps/chosen": -0.27940627932548523,
|
63 |
+
"logps/rejected": -0.3408831059932709,
|
64 |
+
"loss": 0.9215,
|
65 |
+
"rewards/accuracies": 0.5249999761581421,
|
66 |
+
"rewards/chosen": -0.41910940408706665,
|
67 |
+
"rewards/margins": 0.09221524000167847,
|
68 |
+
"rewards/rejected": -0.5113246440887451,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.04594004823705065,
|
73 |
+
"grad_norm": 0.06247895210981369,
|
74 |
+
"learning_rate": 4.986304738420684e-06,
|
75 |
+
"logits/chosen": 14.943578720092773,
|
76 |
+
"logits/rejected": 14.936178207397461,
|
77 |
+
"logps/chosen": -0.2819541394710541,
|
78 |
+
"logps/rejected": -0.3245392441749573,
|
79 |
+
"loss": 0.9464,
|
80 |
+
"rewards/accuracies": 0.4749999940395355,
|
81 |
+
"rewards/chosen": -0.4229312539100647,
|
82 |
+
"rewards/margins": 0.06387762725353241,
|
83 |
+
"rewards/rejected": -0.4868088662624359,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.04594004823705065,
|
88 |
+
"eval_logits/chosen": 14.7594575881958,
|
89 |
+
"eval_logits/rejected": 15.193694114685059,
|
90 |
+
"eval_logps/chosen": -0.2807807922363281,
|
91 |
+
"eval_logps/rejected": -0.36209535598754883,
|
92 |
+
"eval_loss": 0.9397181868553162,
|
93 |
+
"eval_rewards/accuracies": 0.5681818127632141,
|
94 |
+
"eval_rewards/chosen": -0.4211711883544922,
|
95 |
+
"eval_rewards/margins": 0.12197184562683105,
|
96 |
+
"eval_rewards/rejected": -0.5431429743766785,
|
97 |
+
"eval_runtime": 24.9762,
|
98 |
+
"eval_samples_per_second": 28.187,
|
99 |
+
"eval_steps_per_second": 3.523,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.05512805788446078,
|
104 |
+
"grad_norm": 0.11519577354192734,
|
105 |
+
"learning_rate": 4.980286753286196e-06,
|
106 |
+
"logits/chosen": 14.996228218078613,
|
107 |
+
"logits/rejected": 15.37781810760498,
|
108 |
+
"logps/chosen": -0.2809831202030182,
|
109 |
+
"logps/rejected": -0.35486167669296265,
|
110 |
+
"loss": 0.9318,
|
111 |
+
"rewards/accuracies": 0.5625,
|
112 |
+
"rewards/chosen": -0.4214746952056885,
|
113 |
+
"rewards/margins": 0.1108178049325943,
|
114 |
+
"rewards/rejected": -0.5322924852371216,
|
115 |
+
"step": 60
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06431606753187091,
|
119 |
+
"grad_norm": 0.06691388040781021,
|
120 |
+
"learning_rate": 4.973180832407471e-06,
|
121 |
+
"logits/chosen": 14.612454414367676,
|
122 |
+
"logits/rejected": 15.678136825561523,
|
123 |
+
"logps/chosen": -0.2569667100906372,
|
124 |
+
"logps/rejected": -0.40047627687454224,
|
125 |
+
"loss": 0.9158,
|
126 |
+
"rewards/accuracies": 0.75,
|
127 |
+
"rewards/chosen": -0.3854501247406006,
|
128 |
+
"rewards/margins": 0.21526429057121277,
|
129 |
+
"rewards/rejected": -0.600714385509491,
|
130 |
+
"step": 70
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.07350407717928104,
|
134 |
+
"grad_norm": 0.05976058170199394,
|
135 |
+
"learning_rate": 4.964990092676263e-06,
|
136 |
+
"logits/chosen": 14.873895645141602,
|
137 |
+
"logits/rejected": 15.50474739074707,
|
138 |
+
"logps/chosen": -0.28742527961730957,
|
139 |
+
"logps/rejected": -0.37555089592933655,
|
140 |
+
"loss": 0.9372,
|
141 |
+
"rewards/accuracies": 0.5249999761581421,
|
142 |
+
"rewards/chosen": -0.43113788962364197,
|
143 |
+
"rewards/margins": 0.13218846917152405,
|
144 |
+
"rewards/rejected": -0.5633264183998108,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.08269208682669117,
|
149 |
+
"grad_norm": 0.0602131113409996,
|
150 |
+
"learning_rate": 4.9557181268217225e-06,
|
151 |
+
"logits/chosen": 14.356691360473633,
|
152 |
+
"logits/rejected": 14.895658493041992,
|
153 |
+
"logps/chosen": -0.2613506317138672,
|
154 |
+
"logps/rejected": -0.3317110538482666,
|
155 |
+
"loss": 0.9324,
|
156 |
+
"rewards/accuracies": 0.5625,
|
157 |
+
"rewards/chosen": -0.3920259475708008,
|
158 |
+
"rewards/margins": 0.10554064810276031,
|
159 |
+
"rewards/rejected": -0.4975665509700775,
|
160 |
+
"step": 90
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.0918800964741013,
|
164 |
+
"grad_norm": 0.07126503437757492,
|
165 |
+
"learning_rate": 4.9453690018345144e-06,
|
166 |
+
"logits/chosen": 14.862826347351074,
|
167 |
+
"logits/rejected": 15.257089614868164,
|
168 |
+
"logps/chosen": -0.2707213759422302,
|
169 |
+
"logps/rejected": -0.3511395752429962,
|
170 |
+
"loss": 0.9353,
|
171 |
+
"rewards/accuracies": 0.637499988079071,
|
172 |
+
"rewards/chosen": -0.4060820937156677,
|
173 |
+
"rewards/margins": 0.1206272691488266,
|
174 |
+
"rewards/rejected": -0.5267094373703003,
|
175 |
+
"step": 100
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.0918800964741013,
|
179 |
+
"eval_logits/chosen": 14.664334297180176,
|
180 |
+
"eval_logits/rejected": 15.113536834716797,
|
181 |
+
"eval_logps/chosen": -0.2750833034515381,
|
182 |
+
"eval_logps/rejected": -0.36540210247039795,
|
183 |
+
"eval_loss": 0.9324077367782593,
|
184 |
+
"eval_rewards/accuracies": 0.5795454382896423,
|
185 |
+
"eval_rewards/chosen": -0.41262495517730713,
|
186 |
+
"eval_rewards/margins": 0.1354781985282898,
|
187 |
+
"eval_rewards/rejected": -0.5481031537055969,
|
188 |
+
"eval_runtime": 24.4286,
|
189 |
+
"eval_samples_per_second": 28.819,
|
190 |
+
"eval_steps_per_second": 3.602,
|
191 |
+
"step": 100
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.10106810612151143,
|
195 |
+
"grad_norm": 0.07136944681406021,
|
196 |
+
"learning_rate": 4.933947257182901e-06,
|
197 |
+
"logits/chosen": 14.942098617553711,
|
198 |
+
"logits/rejected": 15.138586044311523,
|
199 |
+
"logps/chosen": -0.2860812246799469,
|
200 |
+
"logps/rejected": -0.36259371042251587,
|
201 |
+
"loss": 0.934,
|
202 |
+
"rewards/accuracies": 0.574999988079071,
|
203 |
+
"rewards/chosen": -0.42912182211875916,
|
204 |
+
"rewards/margins": 0.11476878076791763,
|
205 |
+
"rewards/rejected": -0.5438905954360962,
|
206 |
+
"step": 110
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.11025611576892155,
|
210 |
+
"grad_norm": 0.07038908451795578,
|
211 |
+
"learning_rate": 4.921457902821578e-06,
|
212 |
+
"logits/chosen": 14.488851547241211,
|
213 |
+
"logits/rejected": 14.702054023742676,
|
214 |
+
"logps/chosen": -0.2662215232849121,
|
215 |
+
"logps/rejected": -0.3013685941696167,
|
216 |
+
"loss": 0.9202,
|
217 |
+
"rewards/accuracies": 0.4749999940395355,
|
218 |
+
"rewards/chosen": -0.39933228492736816,
|
219 |
+
"rewards/margins": 0.05272058770060539,
|
220 |
+
"rewards/rejected": -0.45205289125442505,
|
221 |
+
"step": 120
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.11944412541633169,
|
225 |
+
"grad_norm": 0.06875801086425781,
|
226 |
+
"learning_rate": 4.907906416994146e-06,
|
227 |
+
"logits/chosen": 14.075657844543457,
|
228 |
+
"logits/rejected": 14.696513175964355,
|
229 |
+
"logps/chosen": -0.250360369682312,
|
230 |
+
"logps/rejected": -0.3504650592803955,
|
231 |
+
"loss": 0.9266,
|
232 |
+
"rewards/accuracies": 0.625,
|
233 |
+
"rewards/chosen": -0.375540554523468,
|
234 |
+
"rewards/margins": 0.15015706419944763,
|
235 |
+
"rewards/rejected": -0.5256975889205933,
|
236 |
+
"step": 130
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.12863213506374183,
|
240 |
+
"grad_norm": 0.0984601378440857,
|
241 |
+
"learning_rate": 4.893298743830168e-06,
|
242 |
+
"logits/chosen": 13.738212585449219,
|
243 |
+
"logits/rejected": 14.311574935913086,
|
244 |
+
"logps/chosen": -0.26711025834083557,
|
245 |
+
"logps/rejected": -0.3587702810764313,
|
246 |
+
"loss": 0.9185,
|
247 |
+
"rewards/accuracies": 0.512499988079071,
|
248 |
+
"rewards/chosen": -0.40066537261009216,
|
249 |
+
"rewards/margins": 0.13749003410339355,
|
250 |
+
"rewards/rejected": -0.5381554365158081,
|
251 |
+
"step": 140
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.13782014471115195,
|
255 |
+
"grad_norm": 0.10201425850391388,
|
256 |
+
"learning_rate": 4.8776412907378845e-06,
|
257 |
+
"logits/chosen": 13.7462797164917,
|
258 |
+
"logits/rejected": 14.230626106262207,
|
259 |
+
"logps/chosen": -0.25559619069099426,
|
260 |
+
"logps/rejected": -0.3708702623844147,
|
261 |
+
"loss": 0.9106,
|
262 |
+
"rewards/accuracies": 0.5874999761581421,
|
263 |
+
"rewards/chosen": -0.3833943009376526,
|
264 |
+
"rewards/margins": 0.17291104793548584,
|
265 |
+
"rewards/rejected": -0.5563054084777832,
|
266 |
+
"step": 150
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.13782014471115195,
|
270 |
+
"eval_logits/chosen": 13.458538055419922,
|
271 |
+
"eval_logits/rejected": 13.998083114624023,
|
272 |
+
"eval_logps/chosen": -0.2759075462818146,
|
273 |
+
"eval_logps/rejected": -0.3873325288295746,
|
274 |
+
"eval_loss": 0.9164085388183594,
|
275 |
+
"eval_rewards/accuracies": 0.5795454382896423,
|
276 |
+
"eval_rewards/chosen": -0.41386130452156067,
|
277 |
+
"eval_rewards/margins": 0.1671374887228012,
|
278 |
+
"eval_rewards/rejected": -0.5809988379478455,
|
279 |
+
"eval_runtime": 24.4393,
|
280 |
+
"eval_samples_per_second": 28.806,
|
281 |
+
"eval_steps_per_second": 3.601,
|
282 |
+
"step": 150
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.14700815435856207,
|
286 |
+
"grad_norm": 0.11537656933069229,
|
287 |
+
"learning_rate": 4.860940925593703e-06,
|
288 |
+
"logits/chosen": 12.686149597167969,
|
289 |
+
"logits/rejected": 13.478736877441406,
|
290 |
+
"logps/chosen": -0.23941929638385773,
|
291 |
+
"logps/rejected": -0.3713286519050598,
|
292 |
+
"loss": 0.9094,
|
293 |
+
"rewards/accuracies": 0.625,
|
294 |
+
"rewards/chosen": -0.3591288924217224,
|
295 |
+
"rewards/margins": 0.1978640854358673,
|
296 |
+
"rewards/rejected": -0.5569929480552673,
|
297 |
+
"step": 160
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.1561961640059722,
|
301 |
+
"grad_norm": 0.1196313351392746,
|
302 |
+
"learning_rate": 4.84320497372973e-06,
|
303 |
+
"logits/chosen": 13.221656799316406,
|
304 |
+
"logits/rejected": 13.317082405090332,
|
305 |
+
"logps/chosen": -0.3033878207206726,
|
306 |
+
"logps/rejected": -0.3784424960613251,
|
307 |
+
"loss": 0.9057,
|
308 |
+
"rewards/accuracies": 0.5375000238418579,
|
309 |
+
"rewards/chosen": -0.4550817608833313,
|
310 |
+
"rewards/margins": 0.11258199065923691,
|
311 |
+
"rewards/rejected": -0.5676637887954712,
|
312 |
+
"step": 170
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.16538417365338234,
|
316 |
+
"grad_norm": 0.18745549023151398,
|
317 |
+
"learning_rate": 4.824441214720629e-06,
|
318 |
+
"logits/chosen": 11.797627449035645,
|
319 |
+
"logits/rejected": 12.031414985656738,
|
320 |
+
"logps/chosen": -0.2746419608592987,
|
321 |
+
"logps/rejected": -0.3629845976829529,
|
322 |
+
"loss": 0.8954,
|
323 |
+
"rewards/accuracies": 0.5249999761581421,
|
324 |
+
"rewards/chosen": -0.41196292638778687,
|
325 |
+
"rewards/margins": 0.13251398503780365,
|
326 |
+
"rewards/rejected": -0.5444768667221069,
|
327 |
+
"step": 180
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.17457218330079247,
|
331 |
+
"grad_norm": 0.1806156188249588,
|
332 |
+
"learning_rate": 4.804657878971252e-06,
|
333 |
+
"logits/chosen": 10.275301933288574,
|
334 |
+
"logits/rejected": 10.937273025512695,
|
335 |
+
"logps/chosen": -0.2880379557609558,
|
336 |
+
"logps/rejected": -0.4154580533504486,
|
337 |
+
"loss": 0.8875,
|
338 |
+
"rewards/accuracies": 0.625,
|
339 |
+
"rewards/chosen": -0.43205690383911133,
|
340 |
+
"rewards/margins": 0.19113019108772278,
|
341 |
+
"rewards/rejected": -0.6231871247291565,
|
342 |
+
"step": 190
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.1837601929482026,
|
346 |
+
"grad_norm": 0.1839464157819748,
|
347 |
+
"learning_rate": 4.783863644106502e-06,
|
348 |
+
"logits/chosen": 10.020039558410645,
|
349 |
+
"logits/rejected": 10.66059398651123,
|
350 |
+
"logps/chosen": -0.3136019706726074,
|
351 |
+
"logps/rejected": -0.4385503828525543,
|
352 |
+
"loss": 0.8647,
|
353 |
+
"rewards/accuracies": 0.6000000238418579,
|
354 |
+
"rewards/chosen": -0.47040295600891113,
|
355 |
+
"rewards/margins": 0.18742261826992035,
|
356 |
+
"rewards/rejected": -0.6578255891799927,
|
357 |
+
"step": 200
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.1837601929482026,
|
361 |
+
"eval_logits/chosen": 9.442557334899902,
|
362 |
+
"eval_logits/rejected": 10.053345680236816,
|
363 |
+
"eval_logps/chosen": -0.3080674409866333,
|
364 |
+
"eval_logps/rejected": -0.4899139702320099,
|
365 |
+
"eval_loss": 0.8702690005302429,
|
366 |
+
"eval_rewards/accuracies": 0.6931818127632141,
|
367 |
+
"eval_rewards/chosen": -0.46210116147994995,
|
368 |
+
"eval_rewards/margins": 0.27276986837387085,
|
369 |
+
"eval_rewards/rejected": -0.7348710894584656,
|
370 |
+
"eval_runtime": 24.4185,
|
371 |
+
"eval_samples_per_second": 28.831,
|
372 |
+
"eval_steps_per_second": 3.604,
|
373 |
+
"step": 200
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.19294820259561274,
|
377 |
+
"grad_norm": 0.269613116979599,
|
378 |
+
"learning_rate": 4.762067631165049e-06,
|
379 |
+
"logits/chosen": 7.941342353820801,
|
380 |
+
"logits/rejected": 8.542920112609863,
|
381 |
+
"logps/chosen": -0.3083941638469696,
|
382 |
+
"logps/rejected": -0.5024437308311462,
|
383 |
+
"loss": 0.8471,
|
384 |
+
"rewards/accuracies": 0.612500011920929,
|
385 |
+
"rewards/chosen": -0.4625912606716156,
|
386 |
+
"rewards/margins": 0.29107433557510376,
|
387 |
+
"rewards/rejected": -0.7536656856536865,
|
388 |
+
"step": 210
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.20213621224302286,
|
392 |
+
"grad_norm": 0.2640094459056854,
|
393 |
+
"learning_rate": 4.7392794005985324e-06,
|
394 |
+
"logits/chosen": 7.587499141693115,
|
395 |
+
"logits/rejected": 7.592519283294678,
|
396 |
+
"logps/chosen": -0.3381899893283844,
|
397 |
+
"logps/rejected": -0.48494213819503784,
|
398 |
+
"loss": 0.8427,
|
399 |
+
"rewards/accuracies": 0.5375000238418579,
|
400 |
+
"rewards/chosen": -0.5072849988937378,
|
401 |
+
"rewards/margins": 0.22012826800346375,
|
402 |
+
"rewards/rejected": -0.7274132966995239,
|
403 |
+
"step": 220
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.21132422189043298,
|
407 |
+
"grad_norm": 0.29708293080329895,
|
408 |
+
"learning_rate": 4.715508948078037e-06,
|
409 |
+
"logits/chosen": 6.250656604766846,
|
410 |
+
"logits/rejected": 6.7652716636657715,
|
411 |
+
"logps/chosen": -0.3644888997077942,
|
412 |
+
"logps/rejected": -0.5470594167709351,
|
413 |
+
"loss": 0.8201,
|
414 |
+
"rewards/accuracies": 0.6499999761581421,
|
415 |
+
"rewards/chosen": -0.5467333793640137,
|
416 |
+
"rewards/margins": 0.2738557755947113,
|
417 |
+
"rewards/rejected": -0.8205891847610474,
|
418 |
+
"step": 230
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.2205122315378431,
|
422 |
+
"grad_norm": 0.35299497842788696,
|
423 |
+
"learning_rate": 4.690766700109659e-06,
|
424 |
+
"logits/chosen": 4.6331706047058105,
|
425 |
+
"logits/rejected": 4.710076332092285,
|
426 |
+
"logps/chosen": -0.3634452223777771,
|
427 |
+
"logps/rejected": -0.7193974256515503,
|
428 |
+
"loss": 0.7877,
|
429 |
+
"rewards/accuracies": 0.675000011920929,
|
430 |
+
"rewards/chosen": -0.545167863368988,
|
431 |
+
"rewards/margins": 0.5339283347129822,
|
432 |
+
"rewards/rejected": -1.0790963172912598,
|
433 |
+
"step": 240
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.22970024118525326,
|
437 |
+
"grad_norm": 0.4265730082988739,
|
438 |
+
"learning_rate": 4.665063509461098e-06,
|
439 |
+
"logits/chosen": 4.992984771728516,
|
440 |
+
"logits/rejected": 4.606354713439941,
|
441 |
+
"logps/chosen": -0.413116455078125,
|
442 |
+
"logps/rejected": -0.7104976177215576,
|
443 |
+
"loss": 0.7902,
|
444 |
+
"rewards/accuracies": 0.5874999761581421,
|
445 |
+
"rewards/chosen": -0.6196746826171875,
|
446 |
+
"rewards/margins": 0.4460717737674713,
|
447 |
+
"rewards/rejected": -1.0657463073730469,
|
448 |
+
"step": 250
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 0.22970024118525326,
|
452 |
+
"eval_logits/chosen": 4.127804279327393,
|
453 |
+
"eval_logits/rejected": 3.742251396179199,
|
454 |
+
"eval_logps/chosen": -0.420327365398407,
|
455 |
+
"eval_logps/rejected": -0.7902651429176331,
|
456 |
+
"eval_loss": 0.7682384252548218,
|
457 |
+
"eval_rewards/accuracies": 0.7159090638160706,
|
458 |
+
"eval_rewards/chosen": -0.6304910182952881,
|
459 |
+
"eval_rewards/margins": 0.5549066662788391,
|
460 |
+
"eval_rewards/rejected": -1.185397744178772,
|
461 |
+
"eval_runtime": 24.4318,
|
462 |
+
"eval_samples_per_second": 28.815,
|
463 |
+
"eval_steps_per_second": 3.602,
|
464 |
+
"step": 250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.23888825083266338,
|
468 |
+
"grad_norm": 0.7236106395721436,
|
469 |
+
"learning_rate": 4.638410650401267e-06,
|
470 |
+
"logits/chosen": 2.454423427581787,
|
471 |
+
"logits/rejected": 1.816563367843628,
|
472 |
+
"logps/chosen": -0.4492695927619934,
|
473 |
+
"logps/rejected": -0.8738088607788086,
|
474 |
+
"loss": 0.6911,
|
475 |
+
"rewards/accuracies": 0.6499999761581421,
|
476 |
+
"rewards/chosen": -0.6739044189453125,
|
477 |
+
"rewards/margins": 0.6368088126182556,
|
478 |
+
"rewards/rejected": -1.3107131719589233,
|
479 |
+
"step": 260
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.2480762604800735,
|
483 |
+
"grad_norm": 0.5856125950813293,
|
484 |
+
"learning_rate": 4.610819813755038e-06,
|
485 |
+
"logits/chosen": 3.2105612754821777,
|
486 |
+
"logits/rejected": 2.5531132221221924,
|
487 |
+
"logps/chosen": -0.537078320980072,
|
488 |
+
"logps/rejected": -1.2025481462478638,
|
489 |
+
"loss": 0.6774,
|
490 |
+
"rewards/accuracies": 0.625,
|
491 |
+
"rewards/chosen": -0.80561763048172,
|
492 |
+
"rewards/margins": 0.9982045888900757,
|
493 |
+
"rewards/rejected": -1.8038222789764404,
|
494 |
+
"step": 270
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.25726427012748365,
|
498 |
+
"grad_norm": 0.7396731972694397,
|
499 |
+
"learning_rate": 4.582303101775249e-06,
|
500 |
+
"logits/chosen": 2.0327231884002686,
|
501 |
+
"logits/rejected": 1.4601097106933594,
|
502 |
+
"logps/chosen": -0.47658151388168335,
|
503 |
+
"logps/rejected": -1.3808696269989014,
|
504 |
+
"loss": 0.628,
|
505 |
+
"rewards/accuracies": 0.6875,
|
506 |
+
"rewards/chosen": -0.7148722410202026,
|
507 |
+
"rewards/margins": 1.3564319610595703,
|
508 |
+
"rewards/rejected": -2.0713045597076416,
|
509 |
+
"step": 280
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.2664522797748938,
|
513 |
+
"grad_norm": 2.412203550338745,
|
514 |
+
"learning_rate": 4.55287302283426e-06,
|
515 |
+
"logits/chosen": 1.2262591123580933,
|
516 |
+
"logits/rejected": 0.22599482536315918,
|
517 |
+
"logps/chosen": -0.5671601891517639,
|
518 |
+
"logps/rejected": -1.6760343313217163,
|
519 |
+
"loss": 0.5988,
|
520 |
+
"rewards/accuracies": 0.7250000238418579,
|
521 |
+
"rewards/chosen": -0.8507402539253235,
|
522 |
+
"rewards/margins": 1.6633113622665405,
|
523 |
+
"rewards/rejected": -2.5140514373779297,
|
524 |
+
"step": 290
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.2756402894223039,
|
528 |
+
"grad_norm": 1.0477895736694336,
|
529 |
+
"learning_rate": 4.522542485937369e-06,
|
530 |
+
"logits/chosen": 1.9952911138534546,
|
531 |
+
"logits/rejected": 1.1298446655273438,
|
532 |
+
"logps/chosen": -0.6152974367141724,
|
533 |
+
"logps/rejected": -2.128481388092041,
|
534 |
+
"loss": 0.5927,
|
535 |
+
"rewards/accuracies": 0.6625000238418579,
|
536 |
+
"rewards/chosen": -0.9229460954666138,
|
537 |
+
"rewards/margins": 2.2697763442993164,
|
538 |
+
"rewards/rejected": -3.192722797393799,
|
539 |
+
"step": 300
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.2756402894223039,
|
543 |
+
"eval_logits/chosen": 1.6342910528182983,
|
544 |
+
"eval_logits/rejected": 0.633538007736206,
|
545 |
+
"eval_logps/chosen": -0.606099545955658,
|
546 |
+
"eval_logps/rejected": -1.882785439491272,
|
547 |
+
"eval_loss": 0.5978505611419678,
|
548 |
+
"eval_rewards/accuracies": 0.7159090638160706,
|
549 |
+
"eval_rewards/chosen": -0.909149169921875,
|
550 |
+
"eval_rewards/margins": 1.9150291681289673,
|
551 |
+
"eval_rewards/rejected": -2.824178457260132,
|
552 |
+
"eval_runtime": 24.4299,
|
553 |
+
"eval_samples_per_second": 28.817,
|
554 |
+
"eval_steps_per_second": 3.602,
|
555 |
+
"step": 300
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.284828299069714,
|
559 |
+
"grad_norm": 3.0767388343811035,
|
560 |
+
"learning_rate": 4.491324795060491e-06,
|
561 |
+
"logits/chosen": 1.0374902486801147,
|
562 |
+
"logits/rejected": 0.6220051646232605,
|
563 |
+
"logps/chosen": -0.6778531074523926,
|
564 |
+
"logps/rejected": -1.8290255069732666,
|
565 |
+
"loss": 0.5792,
|
566 |
+
"rewards/accuracies": 0.625,
|
567 |
+
"rewards/chosen": -1.0167796611785889,
|
568 |
+
"rewards/margins": 1.726758599281311,
|
569 |
+
"rewards/rejected": -2.7435383796691895,
|
570 |
+
"step": 310
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.29401630871712414,
|
574 |
+
"grad_norm": 0.6015120148658752,
|
575 |
+
"learning_rate": 4.4592336433146e-06,
|
576 |
+
"logits/chosen": 1.0050956010818481,
|
577 |
+
"logits/rejected": -0.016118621453642845,
|
578 |
+
"logps/chosen": -0.6865260004997253,
|
579 |
+
"logps/rejected": -2.113417148590088,
|
580 |
+
"loss": 0.5384,
|
581 |
+
"rewards/accuracies": 0.762499988079071,
|
582 |
+
"rewards/chosen": -1.0297890901565552,
|
583 |
+
"rewards/margins": 2.140336513519287,
|
584 |
+
"rewards/rejected": -3.1701254844665527,
|
585 |
+
"step": 320
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.30320431836453426,
|
589 |
+
"grad_norm": 0.7415631413459778,
|
590 |
+
"learning_rate": 4.426283106939474e-06,
|
591 |
+
"logits/chosen": 0.5536144971847534,
|
592 |
+
"logits/rejected": -0.1644023358821869,
|
593 |
+
"logps/chosen": -0.8181726336479187,
|
594 |
+
"logps/rejected": -2.581185817718506,
|
595 |
+
"loss": 0.5671,
|
596 |
+
"rewards/accuracies": 0.75,
|
597 |
+
"rewards/chosen": -1.2272589206695557,
|
598 |
+
"rewards/margins": 2.644519805908203,
|
599 |
+
"rewards/rejected": -3.871778964996338,
|
600 |
+
"step": 330
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.3123923280119444,
|
604 |
+
"grad_norm": 0.8956871628761292,
|
605 |
+
"learning_rate": 4.3924876391293915e-06,
|
606 |
+
"logits/chosen": 1.6062015295028687,
|
607 |
+
"logits/rejected": 0.9243733286857605,
|
608 |
+
"logps/chosen": -0.8991573452949524,
|
609 |
+
"logps/rejected": -2.935060977935791,
|
610 |
+
"loss": 0.5124,
|
611 |
+
"rewards/accuracies": 0.7250000238418579,
|
612 |
+
"rewards/chosen": -1.348736047744751,
|
613 |
+
"rewards/margins": 3.0538551807403564,
|
614 |
+
"rewards/rejected": -4.402591228485107,
|
615 |
+
"step": 340
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.32158033765935456,
|
619 |
+
"grad_norm": 1.1822264194488525,
|
620 |
+
"learning_rate": 4.357862063693486e-06,
|
621 |
+
"logits/chosen": 1.8171085119247437,
|
622 |
+
"logits/rejected": 1.228049397468567,
|
623 |
+
"logps/chosen": -0.8822734951972961,
|
624 |
+
"logps/rejected": -2.4744174480438232,
|
625 |
+
"loss": 0.516,
|
626 |
+
"rewards/accuracies": 0.7250000238418579,
|
627 |
+
"rewards/chosen": -1.3234103918075562,
|
628 |
+
"rewards/margins": 2.388216018676758,
|
629 |
+
"rewards/rejected": -3.7116265296936035,
|
630 |
+
"step": 350
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 0.32158033765935456,
|
634 |
+
"eval_logits/chosen": 1.1368330717086792,
|
635 |
+
"eval_logits/rejected": 0.2795785665512085,
|
636 |
+
"eval_logps/chosen": -0.9485350251197815,
|
637 |
+
"eval_logps/rejected": -2.6484899520874023,
|
638 |
+
"eval_loss": 0.5133901238441467,
|
639 |
+
"eval_rewards/accuracies": 0.7727272510528564,
|
640 |
+
"eval_rewards/chosen": -1.4228025674819946,
|
641 |
+
"eval_rewards/margins": 2.5499324798583984,
|
642 |
+
"eval_rewards/rejected": -3.9727354049682617,
|
643 |
+
"eval_runtime": 24.4277,
|
644 |
+
"eval_samples_per_second": 28.82,
|
645 |
+
"eval_steps_per_second": 3.602,
|
646 |
+
"step": 350
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.3307683473067647,
|
650 |
+
"grad_norm": 2.5278775691986084,
|
651 |
+
"learning_rate": 4.322421568553529e-06,
|
652 |
+
"logits/chosen": 1.1921958923339844,
|
653 |
+
"logits/rejected": 0.7565670013427734,
|
654 |
+
"logps/chosen": -1.4180412292480469,
|
655 |
+
"logps/rejected": -3.0890870094299316,
|
656 |
+
"loss": 0.4811,
|
657 |
+
"rewards/accuracies": 0.800000011920929,
|
658 |
+
"rewards/chosen": -2.1270618438720703,
|
659 |
+
"rewards/margins": 2.5065689086914062,
|
660 |
+
"rewards/rejected": -4.633630752563477,
|
661 |
+
"step": 360
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.3399563569541748,
|
665 |
+
"grad_norm": 1.7325788736343384,
|
666 |
+
"learning_rate": 4.286181699082008e-06,
|
667 |
+
"logits/chosen": 0.997096836566925,
|
668 |
+
"logits/rejected": 0.4399908483028412,
|
669 |
+
"logps/chosen": -1.9010308980941772,
|
670 |
+
"logps/rejected": -3.6025185585021973,
|
671 |
+
"loss": 0.4326,
|
672 |
+
"rewards/accuracies": 0.824999988079071,
|
673 |
+
"rewards/chosen": -2.851546287536621,
|
674 |
+
"rewards/margins": 2.552231550216675,
|
675 |
+
"rewards/rejected": -5.403778076171875,
|
676 |
+
"step": 370
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.34914436660158493,
|
680 |
+
"grad_norm": 4.608370304107666,
|
681 |
+
"learning_rate": 4.249158351283414e-06,
|
682 |
+
"logits/chosen": 1.0715999603271484,
|
683 |
+
"logits/rejected": 0.6113725900650024,
|
684 |
+
"logps/chosen": -2.4032845497131348,
|
685 |
+
"logps/rejected": -3.9940528869628906,
|
686 |
+
"loss": 0.4027,
|
687 |
+
"rewards/accuracies": 0.875,
|
688 |
+
"rewards/chosen": -3.6049270629882812,
|
689 |
+
"rewards/margins": 2.3861520290374756,
|
690 |
+
"rewards/rejected": -5.991078853607178,
|
691 |
+
"step": 380
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.35833237624899505,
|
695 |
+
"grad_norm": 4.600816249847412,
|
696 |
+
"learning_rate": 4.211367764821722e-06,
|
697 |
+
"logits/chosen": 1.4443682432174683,
|
698 |
+
"logits/rejected": 0.8617011904716492,
|
699 |
+
"logps/chosen": -2.349093198776245,
|
700 |
+
"logps/rejected": -3.9943203926086426,
|
701 |
+
"loss": 0.4118,
|
702 |
+
"rewards/accuracies": 0.8125,
|
703 |
+
"rewards/chosen": -3.5236401557922363,
|
704 |
+
"rewards/margins": 2.467839479446411,
|
705 |
+
"rewards/rejected": -5.991480350494385,
|
706 |
+
"step": 390
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.3675203858964052,
|
710 |
+
"grad_norm": 2.1458094120025635,
|
711 |
+
"learning_rate": 4.172826515897146e-06,
|
712 |
+
"logits/chosen": 1.3029582500457764,
|
713 |
+
"logits/rejected": 0.7705980539321899,
|
714 |
+
"logps/chosen": -2.192617416381836,
|
715 |
+
"logps/rejected": -3.8413078784942627,
|
716 |
+
"loss": 0.3557,
|
717 |
+
"rewards/accuracies": 0.8500000238418579,
|
718 |
+
"rewards/chosen": -3.288925886154175,
|
719 |
+
"rewards/margins": 2.4730350971221924,
|
720 |
+
"rewards/rejected": -5.761960506439209,
|
721 |
+
"step": 400
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.3675203858964052,
|
725 |
+
"eval_logits/chosen": 0.8742353320121765,
|
726 |
+
"eval_logits/rejected": 0.14320053160190582,
|
727 |
+
"eval_logps/chosen": -2.0894505977630615,
|
728 |
+
"eval_logps/rejected": -4.20783805847168,
|
729 |
+
"eval_loss": 0.4082850515842438,
|
730 |
+
"eval_rewards/accuracies": 0.8863636255264282,
|
731 |
+
"eval_rewards/chosen": -3.1341757774353027,
|
732 |
+
"eval_rewards/margins": 3.1775810718536377,
|
733 |
+
"eval_rewards/rejected": -6.311756610870361,
|
734 |
+
"eval_runtime": 24.4316,
|
735 |
+
"eval_samples_per_second": 28.815,
|
736 |
+
"eval_steps_per_second": 3.602,
|
737 |
+
"step": 400
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.3767083955438153,
|
741 |
+
"grad_norm": 2.5496387481689453,
|
742 |
+
"learning_rate": 4.133551509975264e-06,
|
743 |
+
"logits/chosen": 1.9024279117584229,
|
744 |
+
"logits/rejected": 1.4777928590774536,
|
745 |
+
"logps/chosen": -2.7541470527648926,
|
746 |
+
"logps/rejected": -4.542642116546631,
|
747 |
+
"loss": 0.4184,
|
748 |
+
"rewards/accuracies": 0.887499988079071,
|
749 |
+
"rewards/chosen": -4.13122034072876,
|
750 |
+
"rewards/margins": 2.6827428340911865,
|
751 |
+
"rewards/rejected": -6.813962459564209,
|
752 |
+
"step": 410
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.3858964051912255,
|
756 |
+
"grad_norm": 2.6187174320220947,
|
757 |
+
"learning_rate": 4.093559974371725e-06,
|
758 |
+
"logits/chosen": 1.9345887899398804,
|
759 |
+
"logits/rejected": 1.4047685861587524,
|
760 |
+
"logps/chosen": -2.389430522918701,
|
761 |
+
"logps/rejected": -4.439882755279541,
|
762 |
+
"loss": 0.4096,
|
763 |
+
"rewards/accuracies": 0.875,
|
764 |
+
"rewards/chosen": -3.5841457843780518,
|
765 |
+
"rewards/margins": 3.0756776332855225,
|
766 |
+
"rewards/rejected": -6.659823417663574,
|
767 |
+
"step": 420
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.3950844148386356,
|
771 |
+
"grad_norm": 3.762899398803711,
|
772 |
+
"learning_rate": 4.052869450695776e-06,
|
773 |
+
"logits/chosen": 1.2521915435791016,
|
774 |
+
"logits/rejected": 0.7238092422485352,
|
775 |
+
"logps/chosen": -2.5571534633636475,
|
776 |
+
"logps/rejected": -4.675185203552246,
|
777 |
+
"loss": 0.4083,
|
778 |
+
"rewards/accuracies": 0.862500011920929,
|
779 |
+
"rewards/chosen": -3.835730791091919,
|
780 |
+
"rewards/margins": 3.1770474910736084,
|
781 |
+
"rewards/rejected": -7.012777805328369,
|
782 |
+
"step": 430
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.4042724244860457,
|
786 |
+
"grad_norm": 3.2343404293060303,
|
787 |
+
"learning_rate": 4.011497787155938e-06,
|
788 |
+
"logits/chosen": 1.9626567363739014,
|
789 |
+
"logits/rejected": 1.3136894702911377,
|
790 |
+
"logps/chosen": -2.892967939376831,
|
791 |
+
"logps/rejected": -5.003688335418701,
|
792 |
+
"loss": 0.3783,
|
793 |
+
"rewards/accuracies": 0.8374999761581421,
|
794 |
+
"rewards/chosen": -4.339452266693115,
|
795 |
+
"rewards/margins": 3.1660804748535156,
|
796 |
+
"rewards/rejected": -7.505532264709473,
|
797 |
+
"step": 440
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.41346043413345585,
|
801 |
+
"grad_norm": 3.2979824542999268,
|
802 |
+
"learning_rate": 3.969463130731183e-06,
|
803 |
+
"logits/chosen": 1.159234881401062,
|
804 |
+
"logits/rejected": 0.5396692752838135,
|
805 |
+
"logps/chosen": -2.7545204162597656,
|
806 |
+
"logps/rejected": -5.4179182052612305,
|
807 |
+
"loss": 0.347,
|
808 |
+
"rewards/accuracies": 0.9375,
|
809 |
+
"rewards/chosen": -4.131781101226807,
|
810 |
+
"rewards/margins": 3.9950966835021973,
|
811 |
+
"rewards/rejected": -8.126876831054688,
|
812 |
+
"step": 450
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.41346043413345585,
|
816 |
+
"eval_logits/chosen": 0.9304068088531494,
|
817 |
+
"eval_logits/rejected": 0.30015668272972107,
|
818 |
+
"eval_logps/chosen": -2.485308885574341,
|
819 |
+
"eval_logps/rejected": -4.880238056182861,
|
820 |
+
"eval_loss": 0.36501914262771606,
|
821 |
+
"eval_rewards/accuracies": 0.9204545617103577,
|
822 |
+
"eval_rewards/chosen": -3.7279627323150635,
|
823 |
+
"eval_rewards/margins": 3.592393636703491,
|
824 |
+
"eval_rewards/rejected": -7.320356845855713,
|
825 |
+
"eval_runtime": 24.4234,
|
826 |
+
"eval_samples_per_second": 28.825,
|
827 |
+
"eval_steps_per_second": 3.603,
|
828 |
+
"step": 450
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.42264844378086597,
|
832 |
+
"grad_norm": 3.155860185623169,
|
833 |
+
"learning_rate": 3.92678391921108e-06,
|
834 |
+
"logits/chosen": 1.633522391319275,
|
835 |
+
"logits/rejected": 1.0575059652328491,
|
836 |
+
"logps/chosen": -2.7214303016662598,
|
837 |
+
"logps/rejected": -4.766176223754883,
|
838 |
+
"loss": 0.3689,
|
839 |
+
"rewards/accuracies": 0.9125000238418579,
|
840 |
+
"rewards/chosen": -4.082144737243652,
|
841 |
+
"rewards/margins": 3.0671191215515137,
|
842 |
+
"rewards/rejected": -7.149264335632324,
|
843 |
+
"step": 460
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.4318364534282761,
|
847 |
+
"grad_norm": 2.9949357509613037,
|
848 |
+
"learning_rate": 3.88347887310836e-06,
|
849 |
+
"logits/chosen": 1.3139212131500244,
|
850 |
+
"logits/rejected": 0.5838541388511658,
|
851 |
+
"logps/chosen": -2.5324313640594482,
|
852 |
+
"logps/rejected": -4.993292808532715,
|
853 |
+
"loss": 0.3587,
|
854 |
+
"rewards/accuracies": 0.8999999761581421,
|
855 |
+
"rewards/chosen": -3.7986464500427246,
|
856 |
+
"rewards/margins": 3.6912925243377686,
|
857 |
+
"rewards/rejected": -7.489938259124756,
|
858 |
+
"step": 470
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.4410244630756862,
|
862 |
+
"grad_norm": 2.4548208713531494,
|
863 |
+
"learning_rate": 3.839566987447492e-06,
|
864 |
+
"logits/chosen": 1.2342166900634766,
|
865 |
+
"logits/rejected": 0.8118699193000793,
|
866 |
+
"logps/chosen": -2.876863479614258,
|
867 |
+
"logps/rejected": -5.457588195800781,
|
868 |
+
"loss": 0.2922,
|
869 |
+
"rewards/accuracies": 0.9624999761581421,
|
870 |
+
"rewards/chosen": -4.315295219421387,
|
871 |
+
"rewards/margins": 3.871086597442627,
|
872 |
+
"rewards/rejected": -8.186381340026855,
|
873 |
+
"step": 480
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.45021247272309634,
|
877 |
+
"grad_norm": 2.0953762531280518,
|
878 |
+
"learning_rate": 3.795067523432826e-06,
|
879 |
+
"logits/chosen": 1.8121936321258545,
|
880 |
+
"logits/rejected": 1.454637050628662,
|
881 |
+
"logps/chosen": -3.2022106647491455,
|
882 |
+
"logps/rejected": -5.47930908203125,
|
883 |
+
"loss": 0.3086,
|
884 |
+
"rewards/accuracies": 0.9375,
|
885 |
+
"rewards/chosen": -4.803316116333008,
|
886 |
+
"rewards/margins": 3.4156479835510254,
|
887 |
+
"rewards/rejected": -8.218963623046875,
|
888 |
+
"step": 490
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 0.4594004823705065,
|
892 |
+
"grad_norm": 2.4918301105499268,
|
893 |
+
"learning_rate": 3.7500000000000005e-06,
|
894 |
+
"logits/chosen": 1.5386875867843628,
|
895 |
+
"logits/rejected": 1.2544763088226318,
|
896 |
+
"logps/chosen": -3.2174277305603027,
|
897 |
+
"logps/rejected": -6.012864112854004,
|
898 |
+
"loss": 0.3128,
|
899 |
+
"rewards/accuracies": 0.9125000238418579,
|
900 |
+
"rewards/chosen": -4.826140880584717,
|
901 |
+
"rewards/margins": 4.193154335021973,
|
902 |
+
"rewards/rejected": -9.019296646118164,
|
903 |
+
"step": 500
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.4594004823705065,
|
907 |
+
"eval_logits/chosen": 0.8257808685302734,
|
908 |
+
"eval_logits/rejected": 0.27475622296333313,
|
909 |
+
"eval_logps/chosen": -2.755974054336548,
|
910 |
+
"eval_logps/rejected": -5.469714641571045,
|
911 |
+
"eval_loss": 0.32884541153907776,
|
912 |
+
"eval_rewards/accuracies": 0.9204545617103577,
|
913 |
+
"eval_rewards/chosen": -4.133961200714111,
|
914 |
+
"eval_rewards/margins": 4.070610523223877,
|
915 |
+
"eval_rewards/rejected": -8.204572677612305,
|
916 |
+
"eval_runtime": 24.4191,
|
917 |
+
"eval_samples_per_second": 28.83,
|
918 |
+
"eval_steps_per_second": 3.604,
|
919 |
+
"step": 500
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.46858849201791664,
|
923 |
+
"grad_norm": 4.017474174499512,
|
924 |
+
"learning_rate": 3.7043841852542884e-06,
|
925 |
+
"logits/chosen": 1.8042447566986084,
|
926 |
+
"logits/rejected": 1.4390740394592285,
|
927 |
+
"logps/chosen": -3.4311797618865967,
|
928 |
+
"logps/rejected": -6.114380359649658,
|
929 |
+
"loss": 0.335,
|
930 |
+
"rewards/accuracies": 0.925000011920929,
|
931 |
+
"rewards/chosen": -5.1467695236206055,
|
932 |
+
"rewards/margins": 4.0248003005981445,
|
933 |
+
"rewards/rejected": -9.171568870544434,
|
934 |
+
"step": 510
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.47777650166532676,
|
938 |
+
"grad_norm": 5.516397953033447,
|
939 |
+
"learning_rate": 3.658240087799655e-06,
|
940 |
+
"logits/chosen": 1.1141811609268188,
|
941 |
+
"logits/rejected": 0.7766789197921753,
|
942 |
+
"logps/chosen": -3.1831612586975098,
|
943 |
+
"logps/rejected": -5.615653991699219,
|
944 |
+
"loss": 0.3306,
|
945 |
+
"rewards/accuracies": 0.887499988079071,
|
946 |
+
"rewards/chosen": -4.774742603302002,
|
947 |
+
"rewards/margins": 3.6487393379211426,
|
948 |
+
"rewards/rejected": -8.423480987548828,
|
949 |
+
"step": 520
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.4869645113127369,
|
953 |
+
"grad_norm": 4.1005635261535645,
|
954 |
+
"learning_rate": 3.611587947962319e-06,
|
955 |
+
"logits/chosen": 1.5796890258789062,
|
956 |
+
"logits/rejected": 1.1561863422393799,
|
957 |
+
"logps/chosen": -3.286179304122925,
|
958 |
+
"logps/rejected": -5.805339813232422,
|
959 |
+
"loss": 0.3151,
|
960 |
+
"rewards/accuracies": 0.9375,
|
961 |
+
"rewards/chosen": -4.929268836975098,
|
962 |
+
"rewards/margins": 3.778740644454956,
|
963 |
+
"rewards/rejected": -8.708009719848633,
|
964 |
+
"step": 530
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.496152520960147,
|
968 |
+
"grad_norm": 2.8616511821746826,
|
969 |
+
"learning_rate": 3.564448228912682e-06,
|
970 |
+
"logits/chosen": 0.6956934928894043,
|
971 |
+
"logits/rejected": 0.1268310248851776,
|
972 |
+
"logps/chosen": -2.8933937549591064,
|
973 |
+
"logps/rejected": -5.794272422790527,
|
974 |
+
"loss": 0.2995,
|
975 |
+
"rewards/accuracies": 0.9375,
|
976 |
+
"rewards/chosen": -4.340090274810791,
|
977 |
+
"rewards/margins": 4.351318836212158,
|
978 |
+
"rewards/rejected": -8.691408157348633,
|
979 |
+
"step": 540
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.5053405306075571,
|
983 |
+
"grad_norm": 2.237276315689087,
|
984 |
+
"learning_rate": 3.516841607689501e-06,
|
985 |
+
"logits/chosen": 1.7460235357284546,
|
986 |
+
"logits/rejected": 0.9990445375442505,
|
987 |
+
"logps/chosen": -2.860546827316284,
|
988 |
+
"logps/rejected": -5.517810821533203,
|
989 |
+
"loss": 0.3203,
|
990 |
+
"rewards/accuracies": 0.887499988079071,
|
991 |
+
"rewards/chosen": -4.290820121765137,
|
992 |
+
"rewards/margins": 3.985896348953247,
|
993 |
+
"rewards/rejected": -8.276716232299805,
|
994 |
+
"step": 550
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.5053405306075571,
|
998 |
+
"eval_logits/chosen": 0.8703196048736572,
|
999 |
+
"eval_logits/rejected": 0.3152187466621399,
|
1000 |
+
"eval_logps/chosen": -2.709866523742676,
|
1001 |
+
"eval_logps/rejected": -5.687611103057861,
|
1002 |
+
"eval_loss": 0.304200142621994,
|
1003 |
+
"eval_rewards/accuracies": 0.9204545617103577,
|
1004 |
+
"eval_rewards/chosen": -4.064799785614014,
|
1005 |
+
"eval_rewards/margins": 4.466617107391357,
|
1006 |
+
"eval_rewards/rejected": -8.531416893005371,
|
1007 |
+
"eval_runtime": 24.6083,
|
1008 |
+
"eval_samples_per_second": 28.608,
|
1009 |
+
"eval_steps_per_second": 3.576,
|
1010 |
+
"step": 550
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.5145285402549673,
|
1014 |
+
"grad_norm": 3.7983174324035645,
|
1015 |
+
"learning_rate": 3.4687889661302577e-06,
|
1016 |
+
"logits/chosen": 1.084142804145813,
|
1017 |
+
"logits/rejected": 0.9131366610527039,
|
1018 |
+
"logps/chosen": -3.4958484172821045,
|
1019 |
+
"logps/rejected": -7.143038749694824,
|
1020 |
+
"loss": 0.2728,
|
1021 |
+
"rewards/accuracies": 0.9624999761581421,
|
1022 |
+
"rewards/chosen": -5.243772506713867,
|
1023 |
+
"rewards/margins": 5.470786094665527,
|
1024 |
+
"rewards/rejected": -10.714558601379395,
|
1025 |
+
"step": 560
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.5237165499023774,
|
1029 |
+
"grad_norm": 2.398188829421997,
|
1030 |
+
"learning_rate": 3.4203113817116955e-06,
|
1031 |
+
"logits/chosen": 1.2777886390686035,
|
1032 |
+
"logits/rejected": 0.6827106475830078,
|
1033 |
+
"logps/chosen": -3.4014134407043457,
|
1034 |
+
"logps/rejected": -6.260494232177734,
|
1035 |
+
"loss": 0.2833,
|
1036 |
+
"rewards/accuracies": 0.9375,
|
1037 |
+
"rewards/chosen": -5.102120399475098,
|
1038 |
+
"rewards/margins": 4.288620948791504,
|
1039 |
+
"rewards/rejected": -9.390741348266602,
|
1040 |
+
"step": 570
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5329045595497875,
|
1044 |
+
"grad_norm": 4.97003173828125,
|
1045 |
+
"learning_rate": 3.3714301183045382e-06,
|
1046 |
+
"logits/chosen": 1.6978384256362915,
|
1047 |
+
"logits/rejected": 1.1092720031738281,
|
1048 |
+
"logps/chosen": -3.179011106491089,
|
1049 |
+
"logps/rejected": -6.802459716796875,
|
1050 |
+
"loss": 0.2942,
|
1051 |
+
"rewards/accuracies": 0.925000011920929,
|
1052 |
+
"rewards/chosen": -4.768516540527344,
|
1053 |
+
"rewards/margins": 5.435172080993652,
|
1054 |
+
"rewards/rejected": -10.203688621520996,
|
1055 |
+
"step": 580
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.5420925691971976,
|
1059 |
+
"grad_norm": 4.482264995574951,
|
1060 |
+
"learning_rate": 3.3221666168464584e-06,
|
1061 |
+
"logits/chosen": 1.0245933532714844,
|
1062 |
+
"logits/rejected": 0.7797524929046631,
|
1063 |
+
"logps/chosen": -3.2393958568573,
|
1064 |
+
"logps/rejected": -5.916412353515625,
|
1065 |
+
"loss": 0.3347,
|
1066 |
+
"rewards/accuracies": 0.925000011920929,
|
1067 |
+
"rewards/chosen": -4.859094142913818,
|
1068 |
+
"rewards/margins": 4.015524864196777,
|
1069 |
+
"rewards/rejected": -8.874618530273438,
|
1070 |
+
"step": 590
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.5512805788446078,
|
1074 |
+
"grad_norm": 3.913116931915283,
|
1075 |
+
"learning_rate": 3.272542485937369e-06,
|
1076 |
+
"logits/chosen": 1.3320618867874146,
|
1077 |
+
"logits/rejected": 0.9762558937072754,
|
1078 |
+
"logps/chosen": -3.2751450538635254,
|
1079 |
+
"logps/rejected": -6.7808518409729,
|
1080 |
+
"loss": 0.2776,
|
1081 |
+
"rewards/accuracies": 0.875,
|
1082 |
+
"rewards/chosen": -4.912716865539551,
|
1083 |
+
"rewards/margins": 5.258560657501221,
|
1084 |
+
"rewards/rejected": -10.17127799987793,
|
1085 |
+
"step": 600
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.5512805788446078,
|
1089 |
+
"eval_logits/chosen": 0.9448758959770203,
|
1090 |
+
"eval_logits/rejected": 0.42817041277885437,
|
1091 |
+
"eval_logps/chosen": -2.835143804550171,
|
1092 |
+
"eval_logps/rejected": -6.087582588195801,
|
1093 |
+
"eval_loss": 0.28658536076545715,
|
1094 |
+
"eval_rewards/accuracies": 0.9204545617103577,
|
1095 |
+
"eval_rewards/chosen": -4.252715587615967,
|
1096 |
+
"eval_rewards/margins": 4.878659248352051,
|
1097 |
+
"eval_rewards/rejected": -9.13137435913086,
|
1098 |
+
"eval_runtime": 24.4325,
|
1099 |
+
"eval_samples_per_second": 28.814,
|
1100 |
+
"eval_steps_per_second": 3.602,
|
1101 |
+
"step": 600
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.560468588492018,
|
1105 |
+
"grad_norm": 3.8335089683532715,
|
1106 |
+
"learning_rate": 3.222579492361179e-06,
|
1107 |
+
"logits/chosen": 1.295569658279419,
|
1108 |
+
"logits/rejected": 1.0852326154708862,
|
1109 |
+
"logps/chosen": -3.4870052337646484,
|
1110 |
+
"logps/rejected": -6.572986602783203,
|
1111 |
+
"loss": 0.3243,
|
1112 |
+
"rewards/accuracies": 0.8999999761581421,
|
1113 |
+
"rewards/chosen": -5.230508327484131,
|
1114 |
+
"rewards/margins": 4.628971576690674,
|
1115 |
+
"rewards/rejected": -9.859478950500488,
|
1116 |
+
"step": 610
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.569656598139428,
|
1120 |
+
"grad_norm": 3.095102071762085,
|
1121 |
+
"learning_rate": 3.1722995515381644e-06,
|
1122 |
+
"logits/chosen": 1.8339803218841553,
|
1123 |
+
"logits/rejected": 1.467551589012146,
|
1124 |
+
"logps/chosen": -3.6670470237731934,
|
1125 |
+
"logps/rejected": -6.880410194396973,
|
1126 |
+
"loss": 0.2615,
|
1127 |
+
"rewards/accuracies": 0.862500011920929,
|
1128 |
+
"rewards/chosen": -5.500569820404053,
|
1129 |
+
"rewards/margins": 4.820044040679932,
|
1130 |
+
"rewards/rejected": -10.3206148147583,
|
1131 |
+
"step": 620
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.5788446077868382,
|
1135 |
+
"grad_norm": 4.381973743438721,
|
1136 |
+
"learning_rate": 3.121724717912138e-06,
|
1137 |
+
"logits/chosen": 2.390763521194458,
|
1138 |
+
"logits/rejected": 2.155505418777466,
|
1139 |
+
"logps/chosen": -3.3569788932800293,
|
1140 |
+
"logps/rejected": -6.319291114807129,
|
1141 |
+
"loss": 0.2649,
|
1142 |
+
"rewards/accuracies": 0.862500011920929,
|
1143 |
+
"rewards/chosen": -5.035468101501465,
|
1144 |
+
"rewards/margins": 4.4434685707092285,
|
1145 |
+
"rewards/rejected": -9.478937149047852,
|
1146 |
+
"step": 630
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.5880326174342483,
|
1150 |
+
"grad_norm": 3.9204964637756348,
|
1151 |
+
"learning_rate": 3.0708771752766397e-06,
|
1152 |
+
"logits/chosen": 1.4343383312225342,
|
1153 |
+
"logits/rejected": 1.1991338729858398,
|
1154 |
+
"logps/chosen": -3.654259443283081,
|
1155 |
+
"logps/rejected": -6.873109340667725,
|
1156 |
+
"loss": 0.2761,
|
1157 |
+
"rewards/accuracies": 0.9125000238418579,
|
1158 |
+
"rewards/chosen": -5.481389045715332,
|
1159 |
+
"rewards/margins": 4.828273773193359,
|
1160 |
+
"rewards/rejected": -10.309663772583008,
|
1161 |
+
"step": 640
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.5972206270816585,
|
1165 |
+
"grad_norm": 3.179067373275757,
|
1166 |
+
"learning_rate": 3.019779227044398e-06,
|
1167 |
+
"logits/chosen": 2.0368576049804688,
|
1168 |
+
"logits/rejected": 1.8037185668945312,
|
1169 |
+
"logps/chosen": -3.791682720184326,
|
1170 |
+
"logps/rejected": -6.912911415100098,
|
1171 |
+
"loss": 0.2739,
|
1172 |
+
"rewards/accuracies": 0.925000011920929,
|
1173 |
+
"rewards/chosen": -5.68752384185791,
|
1174 |
+
"rewards/margins": 4.68184232711792,
|
1175 |
+
"rewards/rejected": -10.369367599487305,
|
1176 |
+
"step": 650
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.5972206270816585,
|
1180 |
+
"eval_logits/chosen": 1.0889618396759033,
|
1181 |
+
"eval_logits/rejected": 0.5887767672538757,
|
1182 |
+
"eval_logps/chosen": -3.0191192626953125,
|
1183 |
+
"eval_logps/rejected": -6.388964653015137,
|
1184 |
+
"eval_loss": 0.27443525195121765,
|
1185 |
+
"eval_rewards/accuracies": 0.9204545617103577,
|
1186 |
+
"eval_rewards/chosen": -4.528679370880127,
|
1187 |
+
"eval_rewards/margins": 5.054768085479736,
|
1188 |
+
"eval_rewards/rejected": -9.583446502685547,
|
1189 |
+
"eval_runtime": 24.4235,
|
1190 |
+
"eval_samples_per_second": 28.825,
|
1191 |
+
"eval_steps_per_second": 3.603,
|
1192 |
+
"step": 650
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.6064086367290685,
|
1196 |
+
"grad_norm": 2.804940700531006,
|
1197 |
+
"learning_rate": 2.9684532864643123e-06,
|
1198 |
+
"logits/chosen": 1.8347485065460205,
|
1199 |
+
"logits/rejected": 1.3636573553085327,
|
1200 |
+
"logps/chosen": -3.398799419403076,
|
1201 |
+
"logps/rejected": -6.337627410888672,
|
1202 |
+
"loss": 0.2678,
|
1203 |
+
"rewards/accuracies": 0.949999988079071,
|
1204 |
+
"rewards/chosen": -5.098199367523193,
|
1205 |
+
"rewards/margins": 4.408241271972656,
|
1206 |
+
"rewards/rejected": -9.506441116333008,
|
1207 |
+
"step": 660
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.6155966463764787,
|
1211 |
+
"grad_norm": 3.7368969917297363,
|
1212 |
+
"learning_rate": 2.9169218667902562e-06,
|
1213 |
+
"logits/chosen": 1.6734691858291626,
|
1214 |
+
"logits/rejected": 1.0945308208465576,
|
1215 |
+
"logps/chosen": -3.354790210723877,
|
1216 |
+
"logps/rejected": -6.3691864013671875,
|
1217 |
+
"loss": 0.294,
|
1218 |
+
"rewards/accuracies": 0.925000011920929,
|
1219 |
+
"rewards/chosen": -5.0321855545043945,
|
1220 |
+
"rewards/margins": 4.521594524383545,
|
1221 |
+
"rewards/rejected": -9.553780555725098,
|
1222 |
+
"step": 670
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.6247846560238888,
|
1226 |
+
"grad_norm": 4.483130931854248,
|
1227 |
+
"learning_rate": 2.8652075714060296e-06,
|
1228 |
+
"logits/chosen": 1.640228509902954,
|
1229 |
+
"logits/rejected": 1.1519067287445068,
|
1230 |
+
"logps/chosen": -3.4700570106506348,
|
1231 |
+
"logps/rejected": -6.6276445388793945,
|
1232 |
+
"loss": 0.23,
|
1233 |
+
"rewards/accuracies": 0.925000011920929,
|
1234 |
+
"rewards/chosen": -5.205085277557373,
|
1235 |
+
"rewards/margins": 4.736380577087402,
|
1236 |
+
"rewards/rejected": -9.941465377807617,
|
1237 |
+
"step": 680
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.633972665671299,
|
1241 |
+
"grad_norm": 8.508203506469727,
|
1242 |
+
"learning_rate": 2.813333083910761e-06,
|
1243 |
+
"logits/chosen": 1.0501906871795654,
|
1244 |
+
"logits/rejected": 0.5691097974777222,
|
1245 |
+
"logps/chosen": -3.4982333183288574,
|
1246 |
+
"logps/rejected": -7.144225120544434,
|
1247 |
+
"loss": 0.2808,
|
1248 |
+
"rewards/accuracies": 0.925000011920929,
|
1249 |
+
"rewards/chosen": -5.247350215911865,
|
1250 |
+
"rewards/margins": 5.468987464904785,
|
1251 |
+
"rewards/rejected": -10.716337203979492,
|
1252 |
+
"step": 690
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 0.6431606753187091,
|
1256 |
+
"grad_norm": 2.271857738494873,
|
1257 |
+
"learning_rate": 2.761321158169134e-06,
|
1258 |
+
"logits/chosen": 1.2119544744491577,
|
1259 |
+
"logits/rejected": 0.7247776389122009,
|
1260 |
+
"logps/chosen": -4.096956253051758,
|
1261 |
+
"logps/rejected": -7.4536261558532715,
|
1262 |
+
"loss": 0.2808,
|
1263 |
+
"rewards/accuracies": 0.8999999761581421,
|
1264 |
+
"rewards/chosen": -6.145434379577637,
|
1265 |
+
"rewards/margins": 5.035003662109375,
|
1266 |
+
"rewards/rejected": -11.180438995361328,
|
1267 |
+
"step": 700
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 0.6431606753187091,
|
1271 |
+
"eval_logits/chosen": 1.085008978843689,
|
1272 |
+
"eval_logits/rejected": 0.5991834998130798,
|
1273 |
+
"eval_logps/chosen": -3.179896354675293,
|
1274 |
+
"eval_logps/rejected": -6.738409519195557,
|
1275 |
+
"eval_loss": 0.26070258021354675,
|
1276 |
+
"eval_rewards/accuracies": 0.9090909361839294,
|
1277 |
+
"eval_rewards/chosen": -4.7698445320129395,
|
1278 |
+
"eval_rewards/margins": 5.337769031524658,
|
1279 |
+
"eval_rewards/rejected": -10.107613563537598,
|
1280 |
+
"eval_runtime": 24.465,
|
1281 |
+
"eval_samples_per_second": 28.776,
|
1282 |
+
"eval_steps_per_second": 3.597,
|
1283 |
+
"step": 700
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.6523486849661192,
|
1287 |
+
"grad_norm": 4.058814525604248,
|
1288 |
+
"learning_rate": 2.70919460833079e-06,
|
1289 |
+
"logits/chosen": 1.2182409763336182,
|
1290 |
+
"logits/rejected": 1.0481547117233276,
|
1291 |
+
"logps/chosen": -3.532151699066162,
|
1292 |
+
"logps/rejected": -7.4123854637146,
|
1293 |
+
"loss": 0.2565,
|
1294 |
+
"rewards/accuracies": 0.9125000238418579,
|
1295 |
+
"rewards/chosen": -5.2982282638549805,
|
1296 |
+
"rewards/margins": 5.8203511238098145,
|
1297 |
+
"rewards/rejected": -11.118578910827637,
|
1298 |
+
"step": 710
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.6615366946135294,
|
1302 |
+
"grad_norm": 3.857574939727783,
|
1303 |
+
"learning_rate": 2.6569762988232838e-06,
|
1304 |
+
"logits/chosen": 0.8797380328178406,
|
1305 |
+
"logits/rejected": 0.6432709693908691,
|
1306 |
+
"logps/chosen": -3.3780128955841064,
|
1307 |
+
"logps/rejected": -6.922214508056641,
|
1308 |
+
"loss": 0.2321,
|
1309 |
+
"rewards/accuracies": 0.9125000238418579,
|
1310 |
+
"rewards/chosen": -5.067019462585449,
|
1311 |
+
"rewards/margins": 5.3163018226623535,
|
1312 |
+
"rewards/rejected": -10.383320808410645,
|
1313 |
+
"step": 720
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.6707247042609394,
|
1317 |
+
"grad_norm": 3.7125725746154785,
|
1318 |
+
"learning_rate": 2.604689134322999e-06,
|
1319 |
+
"logits/chosen": 1.447474479675293,
|
1320 |
+
"logits/rejected": 1.1114810705184937,
|
1321 |
+
"logps/chosen": -3.682945728302002,
|
1322 |
+
"logps/rejected": -7.297152519226074,
|
1323 |
+
"loss": 0.2812,
|
1324 |
+
"rewards/accuracies": 0.9375,
|
1325 |
+
"rewards/chosen": -5.524418830871582,
|
1326 |
+
"rewards/margins": 5.421310901641846,
|
1327 |
+
"rewards/rejected": -10.94572925567627,
|
1328 |
+
"step": 730
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.6799127139083496,
|
1332 |
+
"grad_norm": 2.026604652404785,
|
1333 |
+
"learning_rate": 2.5523560497083927e-06,
|
1334 |
+
"logits/chosen": 1.9674856662750244,
|
1335 |
+
"logits/rejected": 1.593400239944458,
|
1336 |
+
"logps/chosen": -3.3987834453582764,
|
1337 |
+
"logps/rejected": -6.970278263092041,
|
1338 |
+
"loss": 0.2603,
|
1339 |
+
"rewards/accuracies": 0.9375,
|
1340 |
+
"rewards/chosen": -5.098175048828125,
|
1341 |
+
"rewards/margins": 5.357242107391357,
|
1342 |
+
"rewards/rejected": -10.45541763305664,
|
1343 |
+
"step": 740
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.6891007235557597,
|
1347 |
+
"grad_norm": 2.357570171356201,
|
1348 |
+
"learning_rate": 2.5e-06,
|
1349 |
+
"logits/chosen": 1.9729163646697998,
|
1350 |
+
"logits/rejected": 1.8791675567626953,
|
1351 |
+
"logps/chosen": -3.3879425525665283,
|
1352 |
+
"logps/rejected": -6.712514400482178,
|
1353 |
+
"loss": 0.2348,
|
1354 |
+
"rewards/accuracies": 0.862500011920929,
|
1355 |
+
"rewards/chosen": -5.081913948059082,
|
1356 |
+
"rewards/margins": 4.986858367919922,
|
1357 |
+
"rewards/rejected": -10.068772315979004,
|
1358 |
+
"step": 750
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.6891007235557597,
|
1362 |
+
"eval_logits/chosen": 1.1882920265197754,
|
1363 |
+
"eval_logits/rejected": 0.7092404961585999,
|
1364 |
+
"eval_logps/chosen": -2.855703592300415,
|
1365 |
+
"eval_logps/rejected": -6.557665824890137,
|
1366 |
+
"eval_loss": 0.25226154923439026,
|
1367 |
+
"eval_rewards/accuracies": 0.9090909361839294,
|
1368 |
+
"eval_rewards/chosen": -4.283555507659912,
|
1369 |
+
"eval_rewards/margins": 5.552942276000977,
|
1370 |
+
"eval_rewards/rejected": -9.836498260498047,
|
1371 |
+
"eval_runtime": 24.4236,
|
1372 |
+
"eval_samples_per_second": 28.825,
|
1373 |
+
"eval_steps_per_second": 3.603,
|
1374 |
+
"step": 750
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.6982887332031699,
|
1378 |
+
"grad_norm": 3.1369588375091553,
|
1379 |
+
"learning_rate": 2.447643950291608e-06,
|
1380 |
+
"logits/chosen": 1.908418893814087,
|
1381 |
+
"logits/rejected": 1.637202262878418,
|
1382 |
+
"logps/chosen": -3.941102981567383,
|
1383 |
+
"logps/rejected": -7.562623023986816,
|
1384 |
+
"loss": 0.2412,
|
1385 |
+
"rewards/accuracies": 0.887499988079071,
|
1386 |
+
"rewards/chosen": -5.911653995513916,
|
1387 |
+
"rewards/margins": 5.432280540466309,
|
1388 |
+
"rewards/rejected": -11.343935012817383,
|
1389 |
+
"step": 760
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.70747674285058,
|
1393 |
+
"grad_norm": 4.2312703132629395,
|
1394 |
+
"learning_rate": 2.3953108656770018e-06,
|
1395 |
+
"logits/chosen": 1.3125172853469849,
|
1396 |
+
"logits/rejected": 0.933386504650116,
|
1397 |
+
"logps/chosen": -3.5281143188476562,
|
1398 |
+
"logps/rejected": -7.116488456726074,
|
1399 |
+
"loss": 0.2528,
|
1400 |
+
"rewards/accuracies": 0.9624999761581421,
|
1401 |
+
"rewards/chosen": -5.292171001434326,
|
1402 |
+
"rewards/margins": 5.382561683654785,
|
1403 |
+
"rewards/rejected": -10.674734115600586,
|
1404 |
+
"step": 770
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.7166647524979901,
|
1408 |
+
"grad_norm": 5.6951799392700195,
|
1409 |
+
"learning_rate": 2.3430237011767166e-06,
|
1410 |
+
"logits/chosen": 2.295801877975464,
|
1411 |
+
"logits/rejected": 1.8810745477676392,
|
1412 |
+
"logps/chosen": -3.3887531757354736,
|
1413 |
+
"logps/rejected": -6.8857245445251465,
|
1414 |
+
"loss": 0.2672,
|
1415 |
+
"rewards/accuracies": 0.8999999761581421,
|
1416 |
+
"rewards/chosen": -5.083128929138184,
|
1417 |
+
"rewards/margins": 5.245457649230957,
|
1418 |
+
"rewards/rejected": -10.32858657836914,
|
1419 |
+
"step": 780
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.7258527621454003,
|
1423 |
+
"grad_norm": 3.734528064727783,
|
1424 |
+
"learning_rate": 2.290805391669212e-06,
|
1425 |
+
"logits/chosen": 1.6154979467391968,
|
1426 |
+
"logits/rejected": 1.1886816024780273,
|
1427 |
+
"logps/chosen": -3.379617214202881,
|
1428 |
+
"logps/rejected": -7.1727166175842285,
|
1429 |
+
"loss": 0.2315,
|
1430 |
+
"rewards/accuracies": 0.8999999761581421,
|
1431 |
+
"rewards/chosen": -5.069426536560059,
|
1432 |
+
"rewards/margins": 5.689648628234863,
|
1433 |
+
"rewards/rejected": -10.759074211120605,
|
1434 |
+
"step": 790
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.7350407717928104,
|
1438 |
+
"grad_norm": 3.2450063228607178,
|
1439 |
+
"learning_rate": 2.238678841830867e-06,
|
1440 |
+
"logits/chosen": 1.9270827770233154,
|
1441 |
+
"logits/rejected": 1.5745903253555298,
|
1442 |
+
"logps/chosen": -3.9242210388183594,
|
1443 |
+
"logps/rejected": -7.254105567932129,
|
1444 |
+
"loss": 0.2301,
|
1445 |
+
"rewards/accuracies": 0.887499988079071,
|
1446 |
+
"rewards/chosen": -5.886331081390381,
|
1447 |
+
"rewards/margins": 4.9948272705078125,
|
1448 |
+
"rewards/rejected": -10.881157875061035,
|
1449 |
+
"step": 800
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.7350407717928104,
|
1453 |
+
"eval_logits/chosen": 1.228877067565918,
|
1454 |
+
"eval_logits/rejected": 0.7780414819717407,
|
1455 |
+
"eval_logps/chosen": -3.096149444580078,
|
1456 |
+
"eval_logps/rejected": -6.9255452156066895,
|
1457 |
+
"eval_loss": 0.23762211203575134,
|
1458 |
+
"eval_rewards/accuracies": 0.9090909361839294,
|
1459 |
+
"eval_rewards/chosen": -4.644224166870117,
|
1460 |
+
"eval_rewards/margins": 5.744093894958496,
|
1461 |
+
"eval_rewards/rejected": -10.388318061828613,
|
1462 |
+
"eval_runtime": 24.4202,
|
1463 |
+
"eval_samples_per_second": 28.829,
|
1464 |
+
"eval_steps_per_second": 3.604,
|
1465 |
+
"step": 800
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.7442287814402205,
|
1469 |
+
"grad_norm": 3.6619718074798584,
|
1470 |
+
"learning_rate": 2.186666916089239e-06,
|
1471 |
+
"logits/chosen": 2.1697134971618652,
|
1472 |
+
"logits/rejected": 1.8535985946655273,
|
1473 |
+
"logps/chosen": -3.306549549102783,
|
1474 |
+
"logps/rejected": -6.570471286773682,
|
1475 |
+
"loss": 0.2239,
|
1476 |
+
"rewards/accuracies": 0.9125000238418579,
|
1477 |
+
"rewards/chosen": -4.959824562072754,
|
1478 |
+
"rewards/margins": 4.895882606506348,
|
1479 |
+
"rewards/rejected": -9.855707168579102,
|
1480 |
+
"step": 810
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.7534167910876306,
|
1484 |
+
"grad_norm": 3.9014956951141357,
|
1485 |
+
"learning_rate": 2.134792428593971e-06,
|
1486 |
+
"logits/chosen": 1.8228479623794556,
|
1487 |
+
"logits/rejected": 1.5440882444381714,
|
1488 |
+
"logps/chosen": -3.545902967453003,
|
1489 |
+
"logps/rejected": -7.393707275390625,
|
1490 |
+
"loss": 0.2429,
|
1491 |
+
"rewards/accuracies": 0.949999988079071,
|
1492 |
+
"rewards/chosen": -5.318853855133057,
|
1493 |
+
"rewards/margins": 5.7717061042785645,
|
1494 |
+
"rewards/rejected": -11.090560913085938,
|
1495 |
+
"step": 820
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 0.7626048007350408,
|
1499 |
+
"grad_norm": 4.266237735748291,
|
1500 |
+
"learning_rate": 2.0830781332097446e-06,
|
1501 |
+
"logits/chosen": 1.6186097860336304,
|
1502 |
+
"logits/rejected": 1.4948759078979492,
|
1503 |
+
"logps/chosen": -3.6410841941833496,
|
1504 |
+
"logps/rejected": -7.069480895996094,
|
1505 |
+
"loss": 0.2213,
|
1506 |
+
"rewards/accuracies": 0.9624999761581421,
|
1507 |
+
"rewards/chosen": -5.461626052856445,
|
1508 |
+
"rewards/margins": 5.142596244812012,
|
1509 |
+
"rewards/rejected": -10.604223251342773,
|
1510 |
+
"step": 830
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.771792810382451,
|
1514 |
+
"grad_norm": 2.3189163208007812,
|
1515 |
+
"learning_rate": 2.031546713535688e-06,
|
1516 |
+
"logits/chosen": 2.4443275928497314,
|
1517 |
+
"logits/rejected": 2.1987624168395996,
|
1518 |
+
"logps/chosen": -4.127468585968018,
|
1519 |
+
"logps/rejected": -8.15340805053711,
|
1520 |
+
"loss": 0.2525,
|
1521 |
+
"rewards/accuracies": 0.925000011920929,
|
1522 |
+
"rewards/chosen": -6.191202640533447,
|
1523 |
+
"rewards/margins": 6.038909435272217,
|
1524 |
+
"rewards/rejected": -12.230112075805664,
|
1525 |
+
"step": 840
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 0.780980820029861,
|
1529 |
+
"grad_norm": 5.227460861206055,
|
1530 |
+
"learning_rate": 1.9802207729556023e-06,
|
1531 |
+
"logits/chosen": 2.0057969093322754,
|
1532 |
+
"logits/rejected": 1.7481991052627563,
|
1533 |
+
"logps/chosen": -3.890474796295166,
|
1534 |
+
"logps/rejected": -7.659049034118652,
|
1535 |
+
"loss": 0.2253,
|
1536 |
+
"rewards/accuracies": 0.9375,
|
1537 |
+
"rewards/chosen": -5.83571195602417,
|
1538 |
+
"rewards/margins": 5.65286111831665,
|
1539 |
+
"rewards/rejected": -11.48857307434082,
|
1540 |
+
"step": 850
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 0.780980820029861,
|
1544 |
+
"eval_logits/chosen": 1.2305774688720703,
|
1545 |
+
"eval_logits/rejected": 0.8189592957496643,
|
1546 |
+
"eval_logps/chosen": -3.205787420272827,
|
1547 |
+
"eval_logps/rejected": -7.230924606323242,
|
1548 |
+
"eval_loss": 0.23406219482421875,
|
1549 |
+
"eval_rewards/accuracies": 0.9090909361839294,
|
1550 |
+
"eval_rewards/chosen": -4.808681488037109,
|
1551 |
+
"eval_rewards/margins": 6.0377044677734375,
|
1552 |
+
"eval_rewards/rejected": -10.846386909484863,
|
1553 |
+
"eval_runtime": 24.5257,
|
1554 |
+
"eval_samples_per_second": 28.705,
|
1555 |
+
"eval_steps_per_second": 3.588,
|
1556 |
+
"step": 850
|
1557 |
+
}
|
1558 |
+
],
|
1559 |
+
"logging_steps": 10,
|
1560 |
+
"max_steps": 1500,
|
1561 |
+
"num_input_tokens_seen": 0,
|
1562 |
+
"num_train_epochs": 2,
|
1563 |
+
"save_steps": 50,
|
1564 |
+
"stateful_callbacks": {
|
1565 |
+
"TrainerControl": {
|
1566 |
+
"args": {
|
1567 |
+
"should_epoch_stop": false,
|
1568 |
+
"should_evaluate": false,
|
1569 |
+
"should_log": false,
|
1570 |
+
"should_save": true,
|
1571 |
+
"should_training_stop": false
|
1572 |
+
},
|
1573 |
+
"attributes": {}
|
1574 |
+
}
|
1575 |
+
},
|
1576 |
+
"total_flos": 2.0658307641628426e+18,
|
1577 |
+
"train_batch_size": 1,
|
1578 |
+
"trial_name": null,
|
1579 |
+
"trial_params": null
|
1580 |
+
}
|
checkpoint-850/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35e758dd0e4a754b8adb96ec29d9d5e6d185c2cfb0f0a27add29180a481d3863
|
3 |
+
size 7224
|
checkpoint-850/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|