ziansu commited on
Commit
3974f09
·
verified ·
1 Parent(s): 7753e2b

Training in progress, step 1250, checkpoint

Browse files
Files changed (28) hide show
  1. checkpoint-1250/README.md +202 -0
  2. checkpoint-1250/adapter_config.json +34 -0
  3. checkpoint-1250/adapter_model.safetensors +3 -0
  4. checkpoint-1250/global_step1249/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1250/global_step1249/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1250/global_step1249/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1250/global_step1249/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1250/global_step1249/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1250/global_step1249/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1250/global_step1249/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1250/global_step1249/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1250/global_step1249/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1250/latest +1 -0
  14. checkpoint-1250/rng_state_0.pth +3 -0
  15. checkpoint-1250/rng_state_1.pth +3 -0
  16. checkpoint-1250/rng_state_2.pth +3 -0
  17. checkpoint-1250/rng_state_3.pth +3 -0
  18. checkpoint-1250/rng_state_4.pth +3 -0
  19. checkpoint-1250/rng_state_5.pth +3 -0
  20. checkpoint-1250/rng_state_6.pth +3 -0
  21. checkpoint-1250/rng_state_7.pth +3 -0
  22. checkpoint-1250/scheduler.pt +3 -0
  23. checkpoint-1250/special_tokens_map.json +30 -0
  24. checkpoint-1250/tokenizer.json +0 -0
  25. checkpoint-1250/tokenizer_config.json +133 -0
  26. checkpoint-1250/trainer_state.json +2308 -0
  27. checkpoint-1250/training_args.bin +3 -0
  28. checkpoint-1250/zero_to_fp32.py +674 -0
checkpoint-1250/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1250/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "gate_up_proj",
27
+ "o_proj",
28
+ "qkv_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f43e012f1c21d754a50b38bef3b896c9bf9d6c4df42194652a2f5bd31711bcac
3
+ size 25200088
checkpoint-1250/global_step1249/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5362cb9d7f842b17d5275baf60140753351bb89ee4ae667557988eb0e959567e
3
+ size 18881328
checkpoint-1250/global_step1249/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54504554c85f0311a58c1d23c42e7af254c38dfb447949f02ca01990613cb435
3
+ size 18881328
checkpoint-1250/global_step1249/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b43f9dc9842bed261d6816fe3d9ef7bed7b6acb406087a9917abf87ec74c8a1
3
+ size 18881328
checkpoint-1250/global_step1249/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d05279d9adeaf91463a70e14823a9d59a485d5f484619a9dcd0a0b4dbdb6f7cb
3
+ size 18881392
checkpoint-1250/global_step1249/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70d05101affbc5cd1c82cbbf0890c52cc9040bbe64c8dbb60986f08f30032e56
3
+ size 18881392
checkpoint-1250/global_step1249/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743bddbee624936dd5534fcd2bcfd0447aaea997d4f8c2b6d83ccd8eb727131c
3
+ size 18881392
checkpoint-1250/global_step1249/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b489b85de118e7916fbe4c77004a9b9e2d3092ae01dd3a9b7cb8764c1196c8
3
+ size 18881392
checkpoint-1250/global_step1249/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7217b92a2ce7e6adf02aec5c81aee6b307160c0b09d74468fa7669ca10375ef
3
+ size 18881392
checkpoint-1250/global_step1249/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6eb63fc553d590b3f478cfe61f3aba2a1c0d71cc626f7e076eefbdf5a043c9f
3
+ size 25379244
checkpoint-1250/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1249
checkpoint-1250/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:343f4286599993ed6196c5401702754136843f36dd00127e9d480dcd80159fe3
3
+ size 15984
checkpoint-1250/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9befffc75eb87b0bc636a17f92325765a402aea6df9004d264ae182c4b3348b
3
+ size 15984
checkpoint-1250/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71f1a9ba48b7fb3c3e4f1e2cbee76fc776168ccecb572d29900e58fb5dabf633
3
+ size 15984
checkpoint-1250/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e10b5290c005590436e0e89a12ce21b3888b377bb74aaf05b5f52d01666c809d
3
+ size 15984
checkpoint-1250/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18ad35928e22a674bcbecc7be68aedfab901d49755cd3b1ebaba37e489694d1e
3
+ size 15984
checkpoint-1250/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc0855abe8ff42d92eb2c414b25f3a9ba018466841df3ced77b7e05b590df0b
3
+ size 15984
checkpoint-1250/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a40782745bd53ffde678e156f981066d4bc6322666acf70c1894052c32a94fd8
3
+ size 15984
checkpoint-1250/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8622c198dc2441f20ba21ffcfa5ac91baee63fb99abb6137c373932a6870ba75
3
+ size 15984
checkpoint-1250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85a32e7d79d4bce24e8039d66138f2f6eb81d15d973d067af5d2c4296fc1dd0b
3
+ size 1064
checkpoint-1250/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1250/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-1250/trainer_state.json ADDED
@@ -0,0 +1,2308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.5866666666666667,
5
+ "eval_steps": 50,
6
+ "global_step": 1250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012698412698412698,
13
+ "grad_norm": 0.04716634005308151,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.883691787719727,
16
+ "logits/rejected": 15.016583442687988,
17
+ "logps/chosen": -0.29512909054756165,
18
+ "logps/rejected": -0.30033987760543823,
19
+ "loss": 1.0007,
20
+ "rewards/accuracies": 0.36250001192092896,
21
+ "rewards/chosen": -0.4426936209201813,
22
+ "rewards/margins": 0.007816222496330738,
23
+ "rewards/rejected": -0.45050984621047974,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.025396825396825397,
28
+ "grad_norm": 0.04392225295305252,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.705224990844727,
31
+ "logits/rejected": 14.737253189086914,
32
+ "logps/chosen": -0.3201700747013092,
33
+ "logps/rejected": -0.280050128698349,
34
+ "loss": 0.9984,
35
+ "rewards/accuracies": 0.26249998807907104,
36
+ "rewards/chosen": -0.4802550673484802,
37
+ "rewards/margins": -0.060179851949214935,
38
+ "rewards/rejected": -0.4200752377510071,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.0380952380952381,
43
+ "grad_norm": 0.04989476501941681,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 15.147977828979492,
46
+ "logits/rejected": 15.080279350280762,
47
+ "logps/chosen": -0.3157380223274231,
48
+ "logps/rejected": -0.2997627556324005,
49
+ "loss": 0.9991,
50
+ "rewards/accuracies": 0.2874999940395355,
51
+ "rewards/chosen": -0.47360706329345703,
52
+ "rewards/margins": -0.023962898179888725,
53
+ "rewards/rejected": -0.44964417815208435,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.050793650793650794,
58
+ "grad_norm": 0.054729390889406204,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 15.301165580749512,
61
+ "logits/rejected": 15.276555061340332,
62
+ "logps/chosen": -0.30470195412635803,
63
+ "logps/rejected": -0.29767152667045593,
64
+ "loss": 0.9849,
65
+ "rewards/accuracies": 0.36250001192092896,
66
+ "rewards/chosen": -0.45705294609069824,
67
+ "rewards/margins": -0.010545584373176098,
68
+ "rewards/rejected": -0.44650736451148987,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.06349206349206349,
73
+ "grad_norm": 0.06035450100898743,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.600168228149414,
76
+ "logits/rejected": 14.7944917678833,
77
+ "logps/chosen": -0.32278841733932495,
78
+ "logps/rejected": -0.3014402687549591,
79
+ "loss": 0.9991,
80
+ "rewards/accuracies": 0.3499999940395355,
81
+ "rewards/chosen": -0.48418259620666504,
82
+ "rewards/margins": -0.03202226758003235,
83
+ "rewards/rejected": -0.4521603584289551,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.06349206349206349,
88
+ "eval_logits/chosen": 15.261337280273438,
89
+ "eval_logits/rejected": 15.51547908782959,
90
+ "eval_logps/chosen": -0.3022651970386505,
91
+ "eval_logps/rejected": -0.3061661124229431,
92
+ "eval_loss": 0.9846106171607971,
93
+ "eval_rewards/accuracies": 0.40625,
94
+ "eval_rewards/chosen": -0.4533977508544922,
95
+ "eval_rewards/margins": 0.005851435009390116,
96
+ "eval_rewards/rejected": -0.45924919843673706,
97
+ "eval_runtime": 18.4033,
98
+ "eval_samples_per_second": 27.712,
99
+ "eval_steps_per_second": 3.478,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.0761904761904762,
104
+ "grad_norm": 0.052623528987169266,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 15.2726469039917,
107
+ "logits/rejected": 15.245884895324707,
108
+ "logps/chosen": -0.31394433975219727,
109
+ "logps/rejected": -0.2805258333683014,
110
+ "loss": 1.0063,
111
+ "rewards/accuracies": 0.22499999403953552,
112
+ "rewards/chosen": -0.4709165096282959,
113
+ "rewards/margins": -0.05012776702642441,
114
+ "rewards/rejected": -0.4207887053489685,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.08888888888888889,
119
+ "grad_norm": 0.3512271046638489,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 15.302217483520508,
122
+ "logits/rejected": 15.387911796569824,
123
+ "logps/chosen": -0.30377697944641113,
124
+ "logps/rejected": -0.29276782274246216,
125
+ "loss": 0.9888,
126
+ "rewards/accuracies": 0.3499999940395355,
127
+ "rewards/chosen": -0.4556654393672943,
128
+ "rewards/margins": -0.016513748094439507,
129
+ "rewards/rejected": -0.43915170431137085,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.10158730158730159,
134
+ "grad_norm": 0.056646134704351425,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 15.843823432922363,
137
+ "logits/rejected": 15.895855903625488,
138
+ "logps/chosen": -0.3091468811035156,
139
+ "logps/rejected": -0.27621737122535706,
140
+ "loss": 0.9926,
141
+ "rewards/accuracies": 0.3375000059604645,
142
+ "rewards/chosen": -0.46372032165527344,
143
+ "rewards/margins": -0.04939427971839905,
144
+ "rewards/rejected": -0.4143260419368744,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.11428571428571428,
149
+ "grad_norm": 0.062348950654268265,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 15.522564888000488,
152
+ "logits/rejected": 15.576242446899414,
153
+ "logps/chosen": -0.3092329502105713,
154
+ "logps/rejected": -0.27670228481292725,
155
+ "loss": 0.9812,
156
+ "rewards/accuracies": 0.22499999403953552,
157
+ "rewards/chosen": -0.4638494551181793,
158
+ "rewards/margins": -0.048796020448207855,
159
+ "rewards/rejected": -0.41505345702171326,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.12698412698412698,
164
+ "grad_norm": 0.06779928505420685,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 15.999185562133789,
167
+ "logits/rejected": 15.802484512329102,
168
+ "logps/chosen": -0.3173079490661621,
169
+ "logps/rejected": -0.283602774143219,
170
+ "loss": 0.981,
171
+ "rewards/accuracies": 0.2750000059604645,
172
+ "rewards/chosen": -0.4759618639945984,
173
+ "rewards/margins": -0.050557754933834076,
174
+ "rewards/rejected": -0.4254041314125061,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.12698412698412698,
179
+ "eval_logits/chosen": 15.745854377746582,
180
+ "eval_logits/rejected": 16.0076961517334,
181
+ "eval_logps/chosen": -0.29866182804107666,
182
+ "eval_logps/rejected": -0.3121251165866852,
183
+ "eval_loss": 0.9764130115509033,
184
+ "eval_rewards/accuracies": 0.453125,
185
+ "eval_rewards/chosen": -0.4479926824569702,
186
+ "eval_rewards/margins": 0.02019493840634823,
187
+ "eval_rewards/rejected": -0.4681876599788666,
188
+ "eval_runtime": 18.3383,
189
+ "eval_samples_per_second": 27.811,
190
+ "eval_steps_per_second": 3.49,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.13968253968253969,
195
+ "grad_norm": 0.07346926629543304,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 15.723541259765625,
198
+ "logits/rejected": 15.764880180358887,
199
+ "logps/chosen": -0.3212783634662628,
200
+ "logps/rejected": -0.3159862160682678,
201
+ "loss": 0.9859,
202
+ "rewards/accuracies": 0.4124999940395355,
203
+ "rewards/chosen": -0.4819175601005554,
204
+ "rewards/margins": -0.00793826300650835,
205
+ "rewards/rejected": -0.47397929430007935,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.1523809523809524,
210
+ "grad_norm": 0.06748441606760025,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 15.817390441894531,
213
+ "logits/rejected": 16.023067474365234,
214
+ "logps/chosen": -0.29811763763427734,
215
+ "logps/rejected": -0.30654552578926086,
216
+ "loss": 0.9827,
217
+ "rewards/accuracies": 0.375,
218
+ "rewards/chosen": -0.447176456451416,
219
+ "rewards/margins": 0.01264181174337864,
220
+ "rewards/rejected": -0.4598182737827301,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.16507936507936508,
225
+ "grad_norm": 0.08042758703231812,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 15.45033073425293,
228
+ "logits/rejected": 15.865328788757324,
229
+ "logps/chosen": -0.27259278297424316,
230
+ "logps/rejected": -0.31338179111480713,
231
+ "loss": 0.9743,
232
+ "rewards/accuracies": 0.48750001192092896,
233
+ "rewards/chosen": -0.40888920426368713,
234
+ "rewards/margins": 0.06118353083729744,
235
+ "rewards/rejected": -0.4700726866722107,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.17777777777777778,
240
+ "grad_norm": 0.15669430792331696,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 16.17765235900879,
243
+ "logits/rejected": 15.951130867004395,
244
+ "logps/chosen": -0.3015133738517761,
245
+ "logps/rejected": -0.2970424294471741,
246
+ "loss": 0.9824,
247
+ "rewards/accuracies": 0.36250001192092896,
248
+ "rewards/chosen": -0.4522700905799866,
249
+ "rewards/margins": -0.006706444080919027,
250
+ "rewards/rejected": -0.44556355476379395,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.19047619047619047,
255
+ "grad_norm": 0.07115967571735382,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 15.552728652954102,
258
+ "logits/rejected": 15.788042068481445,
259
+ "logps/chosen": -0.28624147176742554,
260
+ "logps/rejected": -0.3222900331020355,
261
+ "loss": 0.9727,
262
+ "rewards/accuracies": 0.5,
263
+ "rewards/chosen": -0.4293622076511383,
264
+ "rewards/margins": 0.05407290905714035,
265
+ "rewards/rejected": -0.48343515396118164,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.19047619047619047,
270
+ "eval_logits/chosen": 15.72143268585205,
271
+ "eval_logits/rejected": 15.974818229675293,
272
+ "eval_logps/chosen": -0.29440543055534363,
273
+ "eval_logps/rejected": -0.33279579877853394,
274
+ "eval_loss": 0.9540849328041077,
275
+ "eval_rewards/accuracies": 0.546875,
276
+ "eval_rewards/chosen": -0.44160816073417664,
277
+ "eval_rewards/margins": 0.05758553743362427,
278
+ "eval_rewards/rejected": -0.4991936683654785,
279
+ "eval_runtime": 18.335,
280
+ "eval_samples_per_second": 27.816,
281
+ "eval_steps_per_second": 3.491,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.20317460317460317,
286
+ "grad_norm": 0.1144075095653534,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 15.63622760772705,
289
+ "logits/rejected": 15.758941650390625,
290
+ "logps/chosen": -0.310846745967865,
291
+ "logps/rejected": -0.35185256600379944,
292
+ "loss": 0.9517,
293
+ "rewards/accuracies": 0.5249999761581421,
294
+ "rewards/chosen": -0.4662701487541199,
295
+ "rewards/margins": 0.061508744955062866,
296
+ "rewards/rejected": -0.5277789235115051,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.21587301587301588,
301
+ "grad_norm": 0.1173442155122757,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 15.8660306930542,
304
+ "logits/rejected": 15.83642292022705,
305
+ "logps/chosen": -0.279310017824173,
306
+ "logps/rejected": -0.3301998972892761,
307
+ "loss": 0.9439,
308
+ "rewards/accuracies": 0.5,
309
+ "rewards/chosen": -0.41896501183509827,
310
+ "rewards/margins": 0.07633484899997711,
311
+ "rewards/rejected": -0.49529990553855896,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.22857142857142856,
316
+ "grad_norm": 0.204214945435524,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 15.557527542114258,
319
+ "logits/rejected": 15.321504592895508,
320
+ "logps/chosen": -0.3029389977455139,
321
+ "logps/rejected": -0.3163699507713318,
322
+ "loss": 0.9369,
323
+ "rewards/accuracies": 0.38749998807907104,
324
+ "rewards/chosen": -0.4544084668159485,
325
+ "rewards/margins": 0.020146463066339493,
326
+ "rewards/rejected": -0.47455495595932007,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.24126984126984127,
331
+ "grad_norm": 0.14012843370437622,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 15.567469596862793,
334
+ "logits/rejected": 15.717155456542969,
335
+ "logps/chosen": -0.3400501310825348,
336
+ "logps/rejected": -0.3475819230079651,
337
+ "loss": 0.9443,
338
+ "rewards/accuracies": 0.38749998807907104,
339
+ "rewards/chosen": -0.5100752115249634,
340
+ "rewards/margins": 0.011297682300209999,
341
+ "rewards/rejected": -0.5213728547096252,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.25396825396825395,
346
+ "grad_norm": 0.12908300757408142,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 14.985162734985352,
349
+ "logits/rejected": 15.223039627075195,
350
+ "logps/chosen": -0.2876646816730499,
351
+ "logps/rejected": -0.3777172267436981,
352
+ "loss": 0.9034,
353
+ "rewards/accuracies": 0.48750001192092896,
354
+ "rewards/chosen": -0.4314970076084137,
355
+ "rewards/margins": 0.13507887721061707,
356
+ "rewards/rejected": -0.5665758848190308,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.25396825396825395,
361
+ "eval_logits/chosen": 15.242753028869629,
362
+ "eval_logits/rejected": 15.523069381713867,
363
+ "eval_logps/chosen": -0.2961229085922241,
364
+ "eval_logps/rejected": -0.3966684341430664,
365
+ "eval_loss": 0.9075753092765808,
366
+ "eval_rewards/accuracies": 0.59375,
367
+ "eval_rewards/chosen": -0.4441843330860138,
368
+ "eval_rewards/margins": 0.1508183479309082,
369
+ "eval_rewards/rejected": -0.5950026512145996,
370
+ "eval_runtime": 18.341,
371
+ "eval_samples_per_second": 27.807,
372
+ "eval_steps_per_second": 3.489,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.26666666666666666,
377
+ "grad_norm": 0.13152211904525757,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 15.283185958862305,
380
+ "logits/rejected": 15.545951843261719,
381
+ "logps/chosen": -0.30045825242996216,
382
+ "logps/rejected": -0.4519944190979004,
383
+ "loss": 0.9085,
384
+ "rewards/accuracies": 0.637499988079071,
385
+ "rewards/chosen": -0.45068734884262085,
386
+ "rewards/margins": 0.22730426490306854,
387
+ "rewards/rejected": -0.6779916286468506,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.27936507936507937,
392
+ "grad_norm": 0.14594660699367523,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 15.53101921081543,
395
+ "logits/rejected": 15.322232246398926,
396
+ "logps/chosen": -0.3336530327796936,
397
+ "logps/rejected": -0.36337023973464966,
398
+ "loss": 0.9188,
399
+ "rewards/accuracies": 0.44999998807907104,
400
+ "rewards/chosen": -0.5004795789718628,
401
+ "rewards/margins": 0.04457578808069229,
402
+ "rewards/rejected": -0.5450553894042969,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.2920634920634921,
407
+ "grad_norm": 0.14854153990745544,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 14.157003402709961,
410
+ "logits/rejected": 14.34089183807373,
411
+ "logps/chosen": -0.28324443101882935,
412
+ "logps/rejected": -0.41318759322166443,
413
+ "loss": 0.9015,
414
+ "rewards/accuracies": 0.5375000238418579,
415
+ "rewards/chosen": -0.4248666763305664,
416
+ "rewards/margins": 0.19491472840309143,
417
+ "rewards/rejected": -0.6197813749313354,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.3047619047619048,
422
+ "grad_norm": 0.19532087445259094,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 14.729398727416992,
425
+ "logits/rejected": 14.97203254699707,
426
+ "logps/chosen": -0.3013172149658203,
427
+ "logps/rejected": -0.41750937700271606,
428
+ "loss": 0.8814,
429
+ "rewards/accuracies": 0.512499988079071,
430
+ "rewards/chosen": -0.45197582244873047,
431
+ "rewards/margins": 0.17428824305534363,
432
+ "rewards/rejected": -0.6262640357017517,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.31746031746031744,
437
+ "grad_norm": 0.5795227885246277,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 14.328412055969238,
440
+ "logits/rejected": 14.645428657531738,
441
+ "logps/chosen": -0.3055194914340973,
442
+ "logps/rejected": -0.509621262550354,
443
+ "loss": 0.8478,
444
+ "rewards/accuracies": 0.512499988079071,
445
+ "rewards/chosen": -0.45827922224998474,
446
+ "rewards/margins": 0.30615273118019104,
447
+ "rewards/rejected": -0.764431893825531,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.31746031746031744,
452
+ "eval_logits/chosen": 14.310781478881836,
453
+ "eval_logits/rejected": 14.5652494430542,
454
+ "eval_logps/chosen": -0.3155084252357483,
455
+ "eval_logps/rejected": -0.8301784992218018,
456
+ "eval_loss": 0.7700436115264893,
457
+ "eval_rewards/accuracies": 0.640625,
458
+ "eval_rewards/chosen": -0.47326260805130005,
459
+ "eval_rewards/margins": 0.7720052003860474,
460
+ "eval_rewards/rejected": -1.2452678680419922,
461
+ "eval_runtime": 18.3413,
462
+ "eval_samples_per_second": 27.806,
463
+ "eval_steps_per_second": 3.489,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.33015873015873015,
468
+ "grad_norm": 0.24876689910888672,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 14.115270614624023,
471
+ "logits/rejected": 14.167577743530273,
472
+ "logps/chosen": -0.32328444719314575,
473
+ "logps/rejected": -0.8564422726631165,
474
+ "loss": 0.795,
475
+ "rewards/accuracies": 0.5375000238418579,
476
+ "rewards/chosen": -0.484926700592041,
477
+ "rewards/margins": 0.7997367978096008,
478
+ "rewards/rejected": -1.284663438796997,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.34285714285714286,
483
+ "grad_norm": 0.5779634118080139,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 14.019407272338867,
486
+ "logits/rejected": 13.600751876831055,
487
+ "logps/chosen": -0.35225847363471985,
488
+ "logps/rejected": -1.1924464702606201,
489
+ "loss": 0.7644,
490
+ "rewards/accuracies": 0.5249999761581421,
491
+ "rewards/chosen": -0.5283876657485962,
492
+ "rewards/margins": 1.2602821588516235,
493
+ "rewards/rejected": -1.7886695861816406,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.35555555555555557,
498
+ "grad_norm": 0.2085695117712021,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 13.448820114135742,
501
+ "logits/rejected": 13.464624404907227,
502
+ "logps/chosen": -0.3442023992538452,
503
+ "logps/rejected": -1.4783053398132324,
504
+ "loss": 0.7671,
505
+ "rewards/accuracies": 0.48750001192092896,
506
+ "rewards/chosen": -0.516303539276123,
507
+ "rewards/margins": 1.7011544704437256,
508
+ "rewards/rejected": -2.2174580097198486,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.3682539682539683,
513
+ "grad_norm": 0.2825860381126404,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 13.038851737976074,
516
+ "logits/rejected": 13.013893127441406,
517
+ "logps/chosen": -0.3524690568447113,
518
+ "logps/rejected": -1.2354861497879028,
519
+ "loss": 0.7922,
520
+ "rewards/accuracies": 0.6000000238418579,
521
+ "rewards/chosen": -0.5287035703659058,
522
+ "rewards/margins": 1.3245255947113037,
523
+ "rewards/rejected": -1.8532291650772095,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.38095238095238093,
528
+ "grad_norm": 0.30771639943122864,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 13.67170524597168,
531
+ "logits/rejected": 13.185449600219727,
532
+ "logps/chosen": -0.3915162682533264,
533
+ "logps/rejected": -1.3473880290985107,
534
+ "loss": 0.7506,
535
+ "rewards/accuracies": 0.48750001192092896,
536
+ "rewards/chosen": -0.587274432182312,
537
+ "rewards/margins": 1.433807611465454,
538
+ "rewards/rejected": -2.0210821628570557,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.38095238095238093,
543
+ "eval_logits/chosen": 13.198552131652832,
544
+ "eval_logits/rejected": 13.458879470825195,
545
+ "eval_logps/chosen": -0.37132135033607483,
546
+ "eval_logps/rejected": -1.4595866203308105,
547
+ "eval_loss": 0.7391816973686218,
548
+ "eval_rewards/accuracies": 0.640625,
549
+ "eval_rewards/chosen": -0.5569820404052734,
550
+ "eval_rewards/margins": 1.6323981285095215,
551
+ "eval_rewards/rejected": -2.189380168914795,
552
+ "eval_runtime": 18.3117,
553
+ "eval_samples_per_second": 27.851,
554
+ "eval_steps_per_second": 3.495,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.39365079365079364,
559
+ "grad_norm": 0.3021286129951477,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 13.347516059875488,
562
+ "logits/rejected": 13.285726547241211,
563
+ "logps/chosen": -0.4108191132545471,
564
+ "logps/rejected": -1.436702013015747,
565
+ "loss": 0.7134,
566
+ "rewards/accuracies": 0.550000011920929,
567
+ "rewards/chosen": -0.6162286400794983,
568
+ "rewards/margins": 1.5388243198394775,
569
+ "rewards/rejected": -2.15505313873291,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.40634920634920635,
574
+ "grad_norm": 0.40123897790908813,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 12.949071884155273,
577
+ "logits/rejected": 12.86626148223877,
578
+ "logps/chosen": -0.42898029088974,
579
+ "logps/rejected": -1.1741807460784912,
580
+ "loss": 0.74,
581
+ "rewards/accuracies": 0.5375000238418579,
582
+ "rewards/chosen": -0.6434704065322876,
583
+ "rewards/margins": 1.1178009510040283,
584
+ "rewards/rejected": -1.7612712383270264,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.41904761904761906,
589
+ "grad_norm": 0.4613189697265625,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 12.796838760375977,
592
+ "logits/rejected": 12.524165153503418,
593
+ "logps/chosen": -0.48975634574890137,
594
+ "logps/rejected": -1.2766364812850952,
595
+ "loss": 0.7408,
596
+ "rewards/accuracies": 0.6499999761581421,
597
+ "rewards/chosen": -0.7346345782279968,
598
+ "rewards/margins": 1.180320143699646,
599
+ "rewards/rejected": -1.9149547815322876,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.43174603174603177,
604
+ "grad_norm": 0.49141305685043335,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 12.58080005645752,
607
+ "logits/rejected": 12.5891695022583,
608
+ "logps/chosen": -0.5303409099578857,
609
+ "logps/rejected": -1.6262977123260498,
610
+ "loss": 0.7501,
611
+ "rewards/accuracies": 0.7124999761581421,
612
+ "rewards/chosen": -0.7955113649368286,
613
+ "rewards/margins": 1.643935203552246,
614
+ "rewards/rejected": -2.4394466876983643,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.4444444444444444,
619
+ "grad_norm": 0.7533912062644958,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 12.15321159362793,
622
+ "logits/rejected": 12.38386344909668,
623
+ "logps/chosen": -0.5782582759857178,
624
+ "logps/rejected": -1.580635905265808,
625
+ "loss": 0.7405,
626
+ "rewards/accuracies": 0.699999988079071,
627
+ "rewards/chosen": -0.8673874139785767,
628
+ "rewards/margins": 1.5035666227340698,
629
+ "rewards/rejected": -2.3709540367126465,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.4444444444444444,
634
+ "eval_logits/chosen": 12.111034393310547,
635
+ "eval_logits/rejected": 12.33246898651123,
636
+ "eval_logps/chosen": -0.5941734910011292,
637
+ "eval_logps/rejected": -1.6774102449417114,
638
+ "eval_loss": 0.6953701972961426,
639
+ "eval_rewards/accuracies": 0.765625,
640
+ "eval_rewards/chosen": -0.8912601470947266,
641
+ "eval_rewards/margins": 1.6248550415039062,
642
+ "eval_rewards/rejected": -2.516115188598633,
643
+ "eval_runtime": 18.3366,
644
+ "eval_samples_per_second": 27.813,
645
+ "eval_steps_per_second": 3.49,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.45714285714285713,
650
+ "grad_norm": 1.168564796447754,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 11.706710815429688,
653
+ "logits/rejected": 11.451011657714844,
654
+ "logps/chosen": -0.758882462978363,
655
+ "logps/rejected": -1.842167615890503,
656
+ "loss": 0.702,
657
+ "rewards/accuracies": 0.7124999761581421,
658
+ "rewards/chosen": -1.1383236646652222,
659
+ "rewards/margins": 1.6249277591705322,
660
+ "rewards/rejected": -2.763251304626465,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.46984126984126984,
665
+ "grad_norm": 1.8962547779083252,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 11.41061019897461,
668
+ "logits/rejected": 11.534398078918457,
669
+ "logps/chosen": -1.1785552501678467,
670
+ "logps/rejected": -2.235652446746826,
671
+ "loss": 0.6781,
672
+ "rewards/accuracies": 0.800000011920929,
673
+ "rewards/chosen": -1.7678327560424805,
674
+ "rewards/margins": 1.5856454372406006,
675
+ "rewards/rejected": -3.3534786701202393,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.48253968253968255,
680
+ "grad_norm": 2.9152028560638428,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 11.582561492919922,
683
+ "logits/rejected": 11.439531326293945,
684
+ "logps/chosen": -1.9169971942901611,
685
+ "logps/rejected": -2.788179397583008,
686
+ "loss": 0.6033,
687
+ "rewards/accuracies": 0.7749999761581421,
688
+ "rewards/chosen": -2.875495672225952,
689
+ "rewards/margins": 1.306773066520691,
690
+ "rewards/rejected": -4.182269096374512,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.49523809523809526,
695
+ "grad_norm": 1.5070641040802002,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 11.340807914733887,
698
+ "logits/rejected": 10.927321434020996,
699
+ "logps/chosen": -2.1075730323791504,
700
+ "logps/rejected": -3.4216556549072266,
701
+ "loss": 0.5698,
702
+ "rewards/accuracies": 0.949999988079071,
703
+ "rewards/chosen": -3.1613595485687256,
704
+ "rewards/margins": 1.9711239337921143,
705
+ "rewards/rejected": -5.13248348236084,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.5079365079365079,
710
+ "grad_norm": 2.6913516521453857,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 10.273612976074219,
713
+ "logits/rejected": 10.116204261779785,
714
+ "logps/chosen": -3.0047056674957275,
715
+ "logps/rejected": -4.053646564483643,
716
+ "loss": 0.5869,
717
+ "rewards/accuracies": 0.875,
718
+ "rewards/chosen": -4.507058143615723,
719
+ "rewards/margins": 1.5734113454818726,
720
+ "rewards/rejected": -6.080469608306885,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.5079365079365079,
725
+ "eval_logits/chosen": 9.58273696899414,
726
+ "eval_logits/rejected": 9.765192031860352,
727
+ "eval_logps/chosen": -2.4895575046539307,
728
+ "eval_logps/rejected": -3.8314545154571533,
729
+ "eval_loss": 0.5232856273651123,
730
+ "eval_rewards/accuracies": 0.875,
731
+ "eval_rewards/chosen": -3.7343361377716064,
732
+ "eval_rewards/margins": 2.012845754623413,
733
+ "eval_rewards/rejected": -5.7471818923950195,
734
+ "eval_runtime": 18.3437,
735
+ "eval_samples_per_second": 27.802,
736
+ "eval_steps_per_second": 3.489,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.5206349206349207,
741
+ "grad_norm": 3.7197885513305664,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 9.081324577331543,
744
+ "logits/rejected": 9.309822082519531,
745
+ "logps/chosen": -2.2554564476013184,
746
+ "logps/rejected": -3.2624363899230957,
747
+ "loss": 0.5774,
748
+ "rewards/accuracies": 0.887499988079071,
749
+ "rewards/chosen": -3.3831849098205566,
750
+ "rewards/margins": 1.5104694366455078,
751
+ "rewards/rejected": -4.893653869628906,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.5333333333333333,
756
+ "grad_norm": 2.757873773574829,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 8.145927429199219,
759
+ "logits/rejected": 8.402036666870117,
760
+ "logps/chosen": -3.1110777854919434,
761
+ "logps/rejected": -4.202320098876953,
762
+ "loss": 0.5084,
763
+ "rewards/accuracies": 0.862500011920929,
764
+ "rewards/chosen": -4.666616916656494,
765
+ "rewards/margins": 1.636863350868225,
766
+ "rewards/rejected": -6.30348014831543,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.546031746031746,
771
+ "grad_norm": 3.3764102458953857,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 8.132574081420898,
774
+ "logits/rejected": 8.386279106140137,
775
+ "logps/chosen": -3.0871124267578125,
776
+ "logps/rejected": -4.399088382720947,
777
+ "loss": 0.5233,
778
+ "rewards/accuracies": 0.875,
779
+ "rewards/chosen": -4.630668640136719,
780
+ "rewards/margins": 1.967963457107544,
781
+ "rewards/rejected": -6.598631858825684,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.5587301587301587,
786
+ "grad_norm": 1.8188632726669312,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 8.104793548583984,
789
+ "logits/rejected": 8.25890064239502,
790
+ "logps/chosen": -3.598665237426758,
791
+ "logps/rejected": -5.2809929847717285,
792
+ "loss": 0.5272,
793
+ "rewards/accuracies": 0.824999988079071,
794
+ "rewards/chosen": -5.397997856140137,
795
+ "rewards/margins": 2.5234923362731934,
796
+ "rewards/rejected": -7.921489715576172,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.5714285714285714,
801
+ "grad_norm": 2.528883934020996,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 8.675338745117188,
804
+ "logits/rejected": 8.550267219543457,
805
+ "logps/chosen": -3.582223892211914,
806
+ "logps/rejected": -5.077345848083496,
807
+ "loss": 0.5717,
808
+ "rewards/accuracies": 0.800000011920929,
809
+ "rewards/chosen": -5.373335838317871,
810
+ "rewards/margins": 2.2426836490631104,
811
+ "rewards/rejected": -7.616019248962402,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.5714285714285714,
816
+ "eval_logits/chosen": 8.125189781188965,
817
+ "eval_logits/rejected": 8.239119529724121,
818
+ "eval_logps/chosen": -3.107839584350586,
819
+ "eval_logps/rejected": -4.726868629455566,
820
+ "eval_loss": 0.4568406939506531,
821
+ "eval_rewards/accuracies": 0.875,
822
+ "eval_rewards/chosen": -4.661759376525879,
823
+ "eval_rewards/margins": 2.4285435676574707,
824
+ "eval_rewards/rejected": -7.090303421020508,
825
+ "eval_runtime": 18.3222,
826
+ "eval_samples_per_second": 27.835,
827
+ "eval_steps_per_second": 3.493,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.5841269841269842,
832
+ "grad_norm": 2.5079057216644287,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 8.503251075744629,
835
+ "logits/rejected": 8.457250595092773,
836
+ "logps/chosen": -3.499116897583008,
837
+ "logps/rejected": -5.12787389755249,
838
+ "loss": 0.4803,
839
+ "rewards/accuracies": 0.887499988079071,
840
+ "rewards/chosen": -5.2486748695373535,
841
+ "rewards/margins": 2.4431352615356445,
842
+ "rewards/rejected": -7.69180965423584,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.5968253968253968,
847
+ "grad_norm": 1.869667887687683,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 7.972044467926025,
850
+ "logits/rejected": 7.825163841247559,
851
+ "logps/chosen": -3.6900856494903564,
852
+ "logps/rejected": -5.166090488433838,
853
+ "loss": 0.4733,
854
+ "rewards/accuracies": 0.9125000238418579,
855
+ "rewards/chosen": -5.535128593444824,
856
+ "rewards/margins": 2.2140071392059326,
857
+ "rewards/rejected": -7.749135494232178,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.6095238095238096,
862
+ "grad_norm": 2.8777735233306885,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 8.073511123657227,
865
+ "logits/rejected": 8.345193862915039,
866
+ "logps/chosen": -3.7006676197052,
867
+ "logps/rejected": -5.271113395690918,
868
+ "loss": 0.5048,
869
+ "rewards/accuracies": 0.9125000238418579,
870
+ "rewards/chosen": -5.551001071929932,
871
+ "rewards/margins": 2.3556694984436035,
872
+ "rewards/rejected": -7.906670570373535,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.6222222222222222,
877
+ "grad_norm": 2.7042839527130127,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 8.602261543273926,
880
+ "logits/rejected": 8.32430362701416,
881
+ "logps/chosen": -3.9612879753112793,
882
+ "logps/rejected": -6.123431205749512,
883
+ "loss": 0.4728,
884
+ "rewards/accuracies": 0.949999988079071,
885
+ "rewards/chosen": -5.94193172454834,
886
+ "rewards/margins": 3.2432150840759277,
887
+ "rewards/rejected": -9.185147285461426,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.6349206349206349,
892
+ "grad_norm": 2.1625821590423584,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 7.857954978942871,
895
+ "logits/rejected": 7.460604190826416,
896
+ "logps/chosen": -3.581023693084717,
897
+ "logps/rejected": -5.477323532104492,
898
+ "loss": 0.4296,
899
+ "rewards/accuracies": 0.9125000238418579,
900
+ "rewards/chosen": -5.371535778045654,
901
+ "rewards/margins": 2.844449520111084,
902
+ "rewards/rejected": -8.215986251831055,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.6349206349206349,
907
+ "eval_logits/chosen": 7.520671844482422,
908
+ "eval_logits/rejected": 7.586723327636719,
909
+ "eval_logps/chosen": -3.1659929752349854,
910
+ "eval_logps/rejected": -4.955198764801025,
911
+ "eval_loss": 0.4266711175441742,
912
+ "eval_rewards/accuracies": 0.890625,
913
+ "eval_rewards/chosen": -4.748989105224609,
914
+ "eval_rewards/margins": 2.683809518814087,
915
+ "eval_rewards/rejected": -7.432799339294434,
916
+ "eval_runtime": 18.3456,
917
+ "eval_samples_per_second": 27.8,
918
+ "eval_steps_per_second": 3.489,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.6476190476190476,
923
+ "grad_norm": 4.2689104080200195,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 7.948687553405762,
926
+ "logits/rejected": 7.656899929046631,
927
+ "logps/chosen": -2.8974719047546387,
928
+ "logps/rejected": -4.501969337463379,
929
+ "loss": 0.4981,
930
+ "rewards/accuracies": 0.875,
931
+ "rewards/chosen": -4.346207618713379,
932
+ "rewards/margins": 2.4067459106445312,
933
+ "rewards/rejected": -6.752954006195068,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.6603174603174603,
938
+ "grad_norm": 3.299290895462036,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 7.676476955413818,
941
+ "logits/rejected": 7.332755088806152,
942
+ "logps/chosen": -3.9289379119873047,
943
+ "logps/rejected": -5.498073577880859,
944
+ "loss": 0.4736,
945
+ "rewards/accuracies": 0.8374999761581421,
946
+ "rewards/chosen": -5.893406867980957,
947
+ "rewards/margins": 2.353703498840332,
948
+ "rewards/rejected": -8.247110366821289,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.6730158730158731,
953
+ "grad_norm": 3.1058828830718994,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 7.516615867614746,
956
+ "logits/rejected": 7.344383239746094,
957
+ "logps/chosen": -3.57861328125,
958
+ "logps/rejected": -5.48795223236084,
959
+ "loss": 0.502,
960
+ "rewards/accuracies": 0.887499988079071,
961
+ "rewards/chosen": -5.367920398712158,
962
+ "rewards/margins": 2.8640081882476807,
963
+ "rewards/rejected": -8.231928825378418,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.6857142857142857,
968
+ "grad_norm": 3.874868869781494,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 7.619947910308838,
971
+ "logits/rejected": 7.048402309417725,
972
+ "logps/chosen": -4.164804935455322,
973
+ "logps/rejected": -5.771735191345215,
974
+ "loss": 0.44,
975
+ "rewards/accuracies": 0.925000011920929,
976
+ "rewards/chosen": -6.247206687927246,
977
+ "rewards/margins": 2.4103951454162598,
978
+ "rewards/rejected": -8.657602310180664,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.6984126984126984,
983
+ "grad_norm": 1.7583000659942627,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 7.068112850189209,
986
+ "logits/rejected": 7.042977333068848,
987
+ "logps/chosen": -3.760105609893799,
988
+ "logps/rejected": -5.3382248878479,
989
+ "loss": 0.4751,
990
+ "rewards/accuracies": 0.887499988079071,
991
+ "rewards/chosen": -5.640158653259277,
992
+ "rewards/margins": 2.3671793937683105,
993
+ "rewards/rejected": -8.00733757019043,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.6984126984126984,
998
+ "eval_logits/chosen": 7.213573455810547,
999
+ "eval_logits/rejected": 7.25667667388916,
1000
+ "eval_logps/chosen": -3.8712658882141113,
1001
+ "eval_logps/rejected": -5.882909774780273,
1002
+ "eval_loss": 0.3922204077243805,
1003
+ "eval_rewards/accuracies": 0.90625,
1004
+ "eval_rewards/chosen": -5.806899070739746,
1005
+ "eval_rewards/margins": 3.017465591430664,
1006
+ "eval_rewards/rejected": -8.824363708496094,
1007
+ "eval_runtime": 18.3231,
1008
+ "eval_samples_per_second": 27.834,
1009
+ "eval_steps_per_second": 3.493,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.7111111111111111,
1014
+ "grad_norm": 1.9696826934814453,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 7.829404354095459,
1017
+ "logits/rejected": 7.19503927230835,
1018
+ "logps/chosen": -4.589760780334473,
1019
+ "logps/rejected": -6.637518405914307,
1020
+ "loss": 0.4127,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -6.884641170501709,
1023
+ "rewards/margins": 3.0716373920440674,
1024
+ "rewards/rejected": -9.956277847290039,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.7238095238095238,
1029
+ "grad_norm": 4.987663269042969,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 7.03420877456665,
1032
+ "logits/rejected": 7.229029655456543,
1033
+ "logps/chosen": -3.7655014991760254,
1034
+ "logps/rejected": -6.0161333084106445,
1035
+ "loss": 0.4436,
1036
+ "rewards/accuracies": 0.9375,
1037
+ "rewards/chosen": -5.648251533508301,
1038
+ "rewards/margins": 3.375948667526245,
1039
+ "rewards/rejected": -9.024200439453125,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.7365079365079366,
1044
+ "grad_norm": 2.468047618865967,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 6.352839946746826,
1047
+ "logits/rejected": 6.344137668609619,
1048
+ "logps/chosen": -2.9854183197021484,
1049
+ "logps/rejected": -5.105284690856934,
1050
+ "loss": 0.411,
1051
+ "rewards/accuracies": 0.9624999761581421,
1052
+ "rewards/chosen": -4.478127479553223,
1053
+ "rewards/margins": 3.1797995567321777,
1054
+ "rewards/rejected": -7.657926082611084,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.7492063492063492,
1059
+ "grad_norm": 2.321638822555542,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 7.339761257171631,
1062
+ "logits/rejected": 7.080865383148193,
1063
+ "logps/chosen": -3.7470335960388184,
1064
+ "logps/rejected": -5.2733564376831055,
1065
+ "loss": 0.4297,
1066
+ "rewards/accuracies": 0.8500000238418579,
1067
+ "rewards/chosen": -5.62054967880249,
1068
+ "rewards/margins": 2.2894842624664307,
1069
+ "rewards/rejected": -7.9100341796875,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.7619047619047619,
1074
+ "grad_norm": 6.850190162658691,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 7.278192043304443,
1077
+ "logits/rejected": 6.769750118255615,
1078
+ "logps/chosen": -3.9920971393585205,
1079
+ "logps/rejected": -5.948962211608887,
1080
+ "loss": 0.4537,
1081
+ "rewards/accuracies": 0.9125000238418579,
1082
+ "rewards/chosen": -5.988145351409912,
1083
+ "rewards/margins": 2.9352970123291016,
1084
+ "rewards/rejected": -8.923442840576172,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.7619047619047619,
1089
+ "eval_logits/chosen": 6.745523929595947,
1090
+ "eval_logits/rejected": 6.732550144195557,
1091
+ "eval_logps/chosen": -3.667492628097534,
1092
+ "eval_logps/rejected": -5.859607696533203,
1093
+ "eval_loss": 0.368425577878952,
1094
+ "eval_rewards/accuracies": 0.921875,
1095
+ "eval_rewards/chosen": -5.501238822937012,
1096
+ "eval_rewards/margins": 3.288173198699951,
1097
+ "eval_rewards/rejected": -8.789411544799805,
1098
+ "eval_runtime": 18.3412,
1099
+ "eval_samples_per_second": 27.806,
1100
+ "eval_steps_per_second": 3.489,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.7746031746031746,
1105
+ "grad_norm": 3.103388786315918,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 6.413697719573975,
1108
+ "logits/rejected": 6.046789646148682,
1109
+ "logps/chosen": -4.207709312438965,
1110
+ "logps/rejected": -6.105495452880859,
1111
+ "loss": 0.4315,
1112
+ "rewards/accuracies": 0.862500011920929,
1113
+ "rewards/chosen": -6.311563968658447,
1114
+ "rewards/margins": 2.846680164337158,
1115
+ "rewards/rejected": -9.158244132995605,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.7873015873015873,
1120
+ "grad_norm": 4.581955432891846,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 6.37155818939209,
1123
+ "logits/rejected": 6.382074356079102,
1124
+ "logps/chosen": -4.053309917449951,
1125
+ "logps/rejected": -5.929131507873535,
1126
+ "loss": 0.4161,
1127
+ "rewards/accuracies": 0.925000011920929,
1128
+ "rewards/chosen": -6.079965114593506,
1129
+ "rewards/margins": 2.813732624053955,
1130
+ "rewards/rejected": -8.893697738647461,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.8,
1135
+ "grad_norm": 3.6864757537841797,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 5.701592445373535,
1138
+ "logits/rejected": 5.8575944900512695,
1139
+ "logps/chosen": -3.532477617263794,
1140
+ "logps/rejected": -5.849920749664307,
1141
+ "loss": 0.3621,
1142
+ "rewards/accuracies": 0.925000011920929,
1143
+ "rewards/chosen": -5.2987165451049805,
1144
+ "rewards/margins": 3.4761645793914795,
1145
+ "rewards/rejected": -8.774881362915039,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.8126984126984127,
1150
+ "grad_norm": 3.3179032802581787,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 5.983328819274902,
1153
+ "logits/rejected": 5.853272914886475,
1154
+ "logps/chosen": -3.7127442359924316,
1155
+ "logps/rejected": -5.6633429527282715,
1156
+ "loss": 0.4325,
1157
+ "rewards/accuracies": 0.8999999761581421,
1158
+ "rewards/chosen": -5.569116115570068,
1159
+ "rewards/margins": 2.9258980751037598,
1160
+ "rewards/rejected": -8.495015144348145,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.8253968253968254,
1165
+ "grad_norm": 3.3010666370391846,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 7.427163600921631,
1168
+ "logits/rejected": 7.144589900970459,
1169
+ "logps/chosen": -3.395155429840088,
1170
+ "logps/rejected": -5.485442638397217,
1171
+ "loss": 0.4376,
1172
+ "rewards/accuracies": 0.9125000238418579,
1173
+ "rewards/chosen": -5.0927324295043945,
1174
+ "rewards/margins": 3.1354317665100098,
1175
+ "rewards/rejected": -8.228163719177246,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.8253968253968254,
1180
+ "eval_logits/chosen": 6.977372169494629,
1181
+ "eval_logits/rejected": 6.941837787628174,
1182
+ "eval_logps/chosen": -3.4915952682495117,
1183
+ "eval_logps/rejected": -5.880876541137695,
1184
+ "eval_loss": 0.3507956266403198,
1185
+ "eval_rewards/accuracies": 0.921875,
1186
+ "eval_rewards/chosen": -5.237393379211426,
1187
+ "eval_rewards/margins": 3.5839221477508545,
1188
+ "eval_rewards/rejected": -8.821314811706543,
1189
+ "eval_runtime": 18.3366,
1190
+ "eval_samples_per_second": 27.813,
1191
+ "eval_steps_per_second": 3.49,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.8380952380952381,
1196
+ "grad_norm": 6.439872741699219,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 7.413880825042725,
1199
+ "logits/rejected": 7.040737152099609,
1200
+ "logps/chosen": -4.771336078643799,
1201
+ "logps/rejected": -7.235314846038818,
1202
+ "loss": 0.381,
1203
+ "rewards/accuracies": 0.8999999761581421,
1204
+ "rewards/chosen": -7.157004356384277,
1205
+ "rewards/margins": 3.6959691047668457,
1206
+ "rewards/rejected": -10.852972984313965,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.8507936507936508,
1211
+ "grad_norm": 5.114463806152344,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 6.7717437744140625,
1214
+ "logits/rejected": 6.568068504333496,
1215
+ "logps/chosen": -3.372582197189331,
1216
+ "logps/rejected": -5.318942070007324,
1217
+ "loss": 0.4385,
1218
+ "rewards/accuracies": 0.8500000238418579,
1219
+ "rewards/chosen": -5.058873653411865,
1220
+ "rewards/margins": 2.9195384979248047,
1221
+ "rewards/rejected": -7.9784135818481445,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.8634920634920635,
1226
+ "grad_norm": 2.7731258869171143,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 6.759649753570557,
1229
+ "logits/rejected": 6.250086784362793,
1230
+ "logps/chosen": -3.9128894805908203,
1231
+ "logps/rejected": -6.746951103210449,
1232
+ "loss": 0.3879,
1233
+ "rewards/accuracies": 0.949999988079071,
1234
+ "rewards/chosen": -5.8693342208862305,
1235
+ "rewards/margins": 4.251092433929443,
1236
+ "rewards/rejected": -10.120426177978516,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.8761904761904762,
1241
+ "grad_norm": 2.517974615097046,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 7.3841047286987305,
1244
+ "logits/rejected": 7.0824761390686035,
1245
+ "logps/chosen": -4.643451690673828,
1246
+ "logps/rejected": -6.954865455627441,
1247
+ "loss": 0.3451,
1248
+ "rewards/accuracies": 0.925000011920929,
1249
+ "rewards/chosen": -6.965176582336426,
1250
+ "rewards/margins": 3.467121124267578,
1251
+ "rewards/rejected": -10.43229866027832,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.8888888888888888,
1256
+ "grad_norm": 4.514930725097656,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 6.828726291656494,
1259
+ "logits/rejected": 6.3069562911987305,
1260
+ "logps/chosen": -4.702274322509766,
1261
+ "logps/rejected": -7.075028896331787,
1262
+ "loss": 0.4094,
1263
+ "rewards/accuracies": 0.8500000238418579,
1264
+ "rewards/chosen": -7.053411960601807,
1265
+ "rewards/margins": 3.5591323375701904,
1266
+ "rewards/rejected": -10.612543106079102,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.8888888888888888,
1271
+ "eval_logits/chosen": 6.324803352355957,
1272
+ "eval_logits/rejected": 6.258608818054199,
1273
+ "eval_logps/chosen": -3.811472177505493,
1274
+ "eval_logps/rejected": -6.270685195922852,
1275
+ "eval_loss": 0.33448922634124756,
1276
+ "eval_rewards/accuracies": 0.9375,
1277
+ "eval_rewards/chosen": -5.717207431793213,
1278
+ "eval_rewards/margins": 3.6888198852539062,
1279
+ "eval_rewards/rejected": -9.406026840209961,
1280
+ "eval_runtime": 18.3448,
1281
+ "eval_samples_per_second": 27.801,
1282
+ "eval_steps_per_second": 3.489,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.9015873015873016,
1287
+ "grad_norm": 2.871471405029297,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 6.418933868408203,
1290
+ "logits/rejected": 6.141990661621094,
1291
+ "logps/chosen": -4.123613357543945,
1292
+ "logps/rejected": -6.900608062744141,
1293
+ "loss": 0.3604,
1294
+ "rewards/accuracies": 0.925000011920929,
1295
+ "rewards/chosen": -6.18541955947876,
1296
+ "rewards/margins": 4.165491580963135,
1297
+ "rewards/rejected": -10.350912094116211,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.9142857142857143,
1302
+ "grad_norm": 5.5512824058532715,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 6.1132917404174805,
1305
+ "logits/rejected": 6.01393461227417,
1306
+ "logps/chosen": -4.065993309020996,
1307
+ "logps/rejected": -6.6075005531311035,
1308
+ "loss": 0.3682,
1309
+ "rewards/accuracies": 0.9375,
1310
+ "rewards/chosen": -6.098989963531494,
1311
+ "rewards/margins": 3.812260150909424,
1312
+ "rewards/rejected": -9.911249160766602,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.926984126984127,
1317
+ "grad_norm": 2.5356554985046387,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 6.585450649261475,
1320
+ "logits/rejected": 5.800690650939941,
1321
+ "logps/chosen": -4.80672550201416,
1322
+ "logps/rejected": -6.856999397277832,
1323
+ "loss": 0.3886,
1324
+ "rewards/accuracies": 0.8500000238418579,
1325
+ "rewards/chosen": -7.210087776184082,
1326
+ "rewards/margins": 3.075411319732666,
1327
+ "rewards/rejected": -10.28549861907959,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.9396825396825397,
1332
+ "grad_norm": 3.685417413711548,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 5.728347301483154,
1335
+ "logits/rejected": 5.568971157073975,
1336
+ "logps/chosen": -4.184335231781006,
1337
+ "logps/rejected": -6.79797887802124,
1338
+ "loss": 0.3548,
1339
+ "rewards/accuracies": 0.9125000238418579,
1340
+ "rewards/chosen": -6.27650260925293,
1341
+ "rewards/margins": 3.9204659461975098,
1342
+ "rewards/rejected": -10.196969032287598,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.9523809523809523,
1347
+ "grad_norm": 3.107419490814209,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 6.063660621643066,
1350
+ "logits/rejected": 5.694943428039551,
1351
+ "logps/chosen": -3.863433837890625,
1352
+ "logps/rejected": -6.4726691246032715,
1353
+ "loss": 0.3706,
1354
+ "rewards/accuracies": 0.925000011920929,
1355
+ "rewards/chosen": -5.7951507568359375,
1356
+ "rewards/margins": 3.9138541221618652,
1357
+ "rewards/rejected": -9.709004402160645,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.9523809523809523,
1362
+ "eval_logits/chosen": 6.257328033447266,
1363
+ "eval_logits/rejected": 6.1753411293029785,
1364
+ "eval_logps/chosen": -3.6567726135253906,
1365
+ "eval_logps/rejected": -6.332419395446777,
1366
+ "eval_loss": 0.31834185123443604,
1367
+ "eval_rewards/accuracies": 0.9375,
1368
+ "eval_rewards/chosen": -5.485158920288086,
1369
+ "eval_rewards/margins": 4.013469696044922,
1370
+ "eval_rewards/rejected": -9.498628616333008,
1371
+ "eval_runtime": 18.3371,
1372
+ "eval_samples_per_second": 27.812,
1373
+ "eval_steps_per_second": 3.49,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.9650793650793651,
1378
+ "grad_norm": 5.022021293640137,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 6.415736198425293,
1381
+ "logits/rejected": 6.128665924072266,
1382
+ "logps/chosen": -3.9557278156280518,
1383
+ "logps/rejected": -6.381206035614014,
1384
+ "loss": 0.3938,
1385
+ "rewards/accuracies": 0.8999999761581421,
1386
+ "rewards/chosen": -5.933591365814209,
1387
+ "rewards/margins": 3.6382179260253906,
1388
+ "rewards/rejected": -9.571809768676758,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.9777777777777777,
1393
+ "grad_norm": 4.283695220947266,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 5.191827774047852,
1396
+ "logits/rejected": 5.130216598510742,
1397
+ "logps/chosen": -3.842036724090576,
1398
+ "logps/rejected": -6.3525071144104,
1399
+ "loss": 0.3744,
1400
+ "rewards/accuracies": 0.887499988079071,
1401
+ "rewards/chosen": -5.763054847717285,
1402
+ "rewards/margins": 3.7657058238983154,
1403
+ "rewards/rejected": -9.52876091003418,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.9904761904761905,
1408
+ "grad_norm": 4.412943363189697,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 6.2709760665893555,
1411
+ "logits/rejected": 5.860433101654053,
1412
+ "logps/chosen": -4.709076881408691,
1413
+ "logps/rejected": -7.461434841156006,
1414
+ "loss": 0.3914,
1415
+ "rewards/accuracies": 0.925000011920929,
1416
+ "rewards/chosen": -7.063615322113037,
1417
+ "rewards/margins": 4.128536224365234,
1418
+ "rewards/rejected": -11.19215202331543,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 1.0025396825396826,
1423
+ "grad_norm": 2.1262686252593994,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 6.877432346343994,
1426
+ "logits/rejected": 6.122270584106445,
1427
+ "logps/chosen": -4.66621732711792,
1428
+ "logps/rejected": -7.71566915512085,
1429
+ "loss": 0.3467,
1430
+ "rewards/accuracies": 0.8947368264198303,
1431
+ "rewards/chosen": -6.999325275421143,
1432
+ "rewards/margins": 4.574176788330078,
1433
+ "rewards/rejected": -11.573503494262695,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 1.0152380952380953,
1438
+ "grad_norm": 4.042492389678955,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 6.55672550201416,
1441
+ "logits/rejected": 5.752241134643555,
1442
+ "logps/chosen": -4.66592264175415,
1443
+ "logps/rejected": -6.966067314147949,
1444
+ "loss": 0.3404,
1445
+ "rewards/accuracies": 0.9125000238418579,
1446
+ "rewards/chosen": -6.998884677886963,
1447
+ "rewards/margins": 3.4502170085906982,
1448
+ "rewards/rejected": -10.449102401733398,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 1.0152380952380953,
1453
+ "eval_logits/chosen": 6.143824100494385,
1454
+ "eval_logits/rejected": 6.0408477783203125,
1455
+ "eval_logps/chosen": -3.900071144104004,
1456
+ "eval_logps/rejected": -6.64994478225708,
1457
+ "eval_loss": 0.30234017968177795,
1458
+ "eval_rewards/accuracies": 0.9375,
1459
+ "eval_rewards/chosen": -5.850106239318848,
1460
+ "eval_rewards/margins": 4.124810695648193,
1461
+ "eval_rewards/rejected": -9.974918365478516,
1462
+ "eval_runtime": 18.317,
1463
+ "eval_samples_per_second": 27.843,
1464
+ "eval_steps_per_second": 3.494,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 1.027936507936508,
1469
+ "grad_norm": 4.464768886566162,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 5.800255298614502,
1472
+ "logits/rejected": 5.524979114532471,
1473
+ "logps/chosen": -4.174003601074219,
1474
+ "logps/rejected": -6.4187140464782715,
1475
+ "loss": 0.3517,
1476
+ "rewards/accuracies": 0.8999999761581421,
1477
+ "rewards/chosen": -6.261005401611328,
1478
+ "rewards/margins": 3.367064952850342,
1479
+ "rewards/rejected": -9.628071784973145,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 1.0406349206349206,
1484
+ "grad_norm": 2.864623546600342,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 5.549002170562744,
1487
+ "logits/rejected": 5.762969017028809,
1488
+ "logps/chosen": -4.055948734283447,
1489
+ "logps/rejected": -6.332015037536621,
1490
+ "loss": 0.3525,
1491
+ "rewards/accuracies": 0.8999999761581421,
1492
+ "rewards/chosen": -6.083922386169434,
1493
+ "rewards/margins": 3.4140994548797607,
1494
+ "rewards/rejected": -9.498022079467773,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 1.0533333333333332,
1499
+ "grad_norm": 4.997330188751221,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 5.439722061157227,
1502
+ "logits/rejected": 5.755289554595947,
1503
+ "logps/chosen": -4.239761829376221,
1504
+ "logps/rejected": -6.699388027191162,
1505
+ "loss": 0.3423,
1506
+ "rewards/accuracies": 0.9125000238418579,
1507
+ "rewards/chosen": -6.359642028808594,
1508
+ "rewards/margins": 3.689438581466675,
1509
+ "rewards/rejected": -10.049081802368164,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 1.066031746031746,
1514
+ "grad_norm": 4.705864906311035,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 6.309781074523926,
1517
+ "logits/rejected": 6.002473831176758,
1518
+ "logps/chosen": -3.9887123107910156,
1519
+ "logps/rejected": -6.414917945861816,
1520
+ "loss": 0.327,
1521
+ "rewards/accuracies": 0.9375,
1522
+ "rewards/chosen": -5.983067989349365,
1523
+ "rewards/margins": 3.639307737350464,
1524
+ "rewards/rejected": -9.622376441955566,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 1.0787301587301588,
1529
+ "grad_norm": 4.2711286544799805,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 6.275202751159668,
1532
+ "logits/rejected": 5.929355621337891,
1533
+ "logps/chosen": -4.061328887939453,
1534
+ "logps/rejected": -6.566980838775635,
1535
+ "loss": 0.3587,
1536
+ "rewards/accuracies": 0.875,
1537
+ "rewards/chosen": -6.09199333190918,
1538
+ "rewards/margins": 3.758476734161377,
1539
+ "rewards/rejected": -9.850470542907715,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 1.0787301587301588,
1544
+ "eval_logits/chosen": 5.9675092697143555,
1545
+ "eval_logits/rejected": 5.841681480407715,
1546
+ "eval_logps/chosen": -3.5920660495758057,
1547
+ "eval_logps/rejected": -6.45810604095459,
1548
+ "eval_loss": 0.2958359122276306,
1549
+ "eval_rewards/accuracies": 0.9375,
1550
+ "eval_rewards/chosen": -5.38809871673584,
1551
+ "eval_rewards/margins": 4.2990593910217285,
1552
+ "eval_rewards/rejected": -9.687158584594727,
1553
+ "eval_runtime": 18.3401,
1554
+ "eval_samples_per_second": 27.808,
1555
+ "eval_steps_per_second": 3.49,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 1.0914285714285714,
1560
+ "grad_norm": 2.666412115097046,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 6.118748188018799,
1563
+ "logits/rejected": 5.885035991668701,
1564
+ "logps/chosen": -3.863534927368164,
1565
+ "logps/rejected": -6.175184726715088,
1566
+ "loss": 0.3297,
1567
+ "rewards/accuracies": 0.875,
1568
+ "rewards/chosen": -5.795302391052246,
1569
+ "rewards/margins": 3.467475175857544,
1570
+ "rewards/rejected": -9.262777328491211,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 1.104126984126984,
1575
+ "grad_norm": 2.253833293914795,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 6.99627685546875,
1578
+ "logits/rejected": 6.862641334533691,
1579
+ "logps/chosen": -3.3962769508361816,
1580
+ "logps/rejected": -5.6661272048950195,
1581
+ "loss": 0.339,
1582
+ "rewards/accuracies": 0.9125000238418579,
1583
+ "rewards/chosen": -5.094415187835693,
1584
+ "rewards/margins": 3.404775619506836,
1585
+ "rewards/rejected": -8.499190330505371,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 1.116825396825397,
1590
+ "grad_norm": 4.063273906707764,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 5.741837024688721,
1593
+ "logits/rejected": 5.7893548011779785,
1594
+ "logps/chosen": -3.724289655685425,
1595
+ "logps/rejected": -6.367809772491455,
1596
+ "loss": 0.304,
1597
+ "rewards/accuracies": 0.925000011920929,
1598
+ "rewards/chosen": -5.586434841156006,
1599
+ "rewards/margins": 3.965280532836914,
1600
+ "rewards/rejected": -9.551714897155762,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 1.1295238095238096,
1605
+ "grad_norm": 4.975926399230957,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 6.33252477645874,
1608
+ "logits/rejected": 6.018566131591797,
1609
+ "logps/chosen": -4.238375186920166,
1610
+ "logps/rejected": -7.243282318115234,
1611
+ "loss": 0.3124,
1612
+ "rewards/accuracies": 0.8999999761581421,
1613
+ "rewards/chosen": -6.35756254196167,
1614
+ "rewards/margins": 4.50736141204834,
1615
+ "rewards/rejected": -10.864924430847168,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 1.1422222222222222,
1620
+ "grad_norm": 3.159183979034424,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 6.32235860824585,
1623
+ "logits/rejected": 5.313261985778809,
1624
+ "logps/chosen": -4.42888879776001,
1625
+ "logps/rejected": -7.219472408294678,
1626
+ "loss": 0.3122,
1627
+ "rewards/accuracies": 0.9624999761581421,
1628
+ "rewards/chosen": -6.643332481384277,
1629
+ "rewards/margins": 4.185876846313477,
1630
+ "rewards/rejected": -10.82921028137207,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 1.1422222222222222,
1635
+ "eval_logits/chosen": 5.802257537841797,
1636
+ "eval_logits/rejected": 5.6801910400390625,
1637
+ "eval_logps/chosen": -3.7256534099578857,
1638
+ "eval_logps/rejected": -6.689548492431641,
1639
+ "eval_loss": 0.28521302342414856,
1640
+ "eval_rewards/accuracies": 0.9375,
1641
+ "eval_rewards/chosen": -5.588479995727539,
1642
+ "eval_rewards/margins": 4.445842742919922,
1643
+ "eval_rewards/rejected": -10.034323692321777,
1644
+ "eval_runtime": 18.2302,
1645
+ "eval_samples_per_second": 27.976,
1646
+ "eval_steps_per_second": 3.511,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 1.154920634920635,
1651
+ "grad_norm": 5.580939292907715,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 6.4255805015563965,
1654
+ "logits/rejected": 5.784458160400391,
1655
+ "logps/chosen": -4.204034328460693,
1656
+ "logps/rejected": -6.822949409484863,
1657
+ "loss": 0.3277,
1658
+ "rewards/accuracies": 0.875,
1659
+ "rewards/chosen": -6.306051731109619,
1660
+ "rewards/margins": 3.928372621536255,
1661
+ "rewards/rejected": -10.234424591064453,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 1.1676190476190476,
1666
+ "grad_norm": 3.5059311389923096,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 5.253472328186035,
1669
+ "logits/rejected": 5.226204872131348,
1670
+ "logps/chosen": -3.458686113357544,
1671
+ "logps/rejected": -5.801349639892578,
1672
+ "loss": 0.3212,
1673
+ "rewards/accuracies": 0.9375,
1674
+ "rewards/chosen": -5.188028812408447,
1675
+ "rewards/margins": 3.51399564743042,
1676
+ "rewards/rejected": -8.702024459838867,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 1.1803174603174602,
1681
+ "grad_norm": 5.19541072845459,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 5.724546909332275,
1684
+ "logits/rejected": 5.355966091156006,
1685
+ "logps/chosen": -4.142882347106934,
1686
+ "logps/rejected": -7.1851396560668945,
1687
+ "loss": 0.3472,
1688
+ "rewards/accuracies": 0.925000011920929,
1689
+ "rewards/chosen": -6.214322566986084,
1690
+ "rewards/margins": 4.563385963439941,
1691
+ "rewards/rejected": -10.777708053588867,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 1.193015873015873,
1696
+ "grad_norm": 3.7898037433624268,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 5.5762104988098145,
1699
+ "logits/rejected": 5.337274551391602,
1700
+ "logps/chosen": -3.7495741844177246,
1701
+ "logps/rejected": -6.201944351196289,
1702
+ "loss": 0.3193,
1703
+ "rewards/accuracies": 0.8999999761581421,
1704
+ "rewards/chosen": -5.624361515045166,
1705
+ "rewards/margins": 3.6785552501678467,
1706
+ "rewards/rejected": -9.30291748046875,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 1.2057142857142857,
1711
+ "grad_norm": 8.723204612731934,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 6.4793524742126465,
1714
+ "logits/rejected": 6.682563781738281,
1715
+ "logps/chosen": -3.6695919036865234,
1716
+ "logps/rejected": -6.200020790100098,
1717
+ "loss": 0.3267,
1718
+ "rewards/accuracies": 0.8999999761581421,
1719
+ "rewards/chosen": -5.504387855529785,
1720
+ "rewards/margins": 3.795642375946045,
1721
+ "rewards/rejected": -9.300030708312988,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 1.2057142857142857,
1726
+ "eval_logits/chosen": 5.892926216125488,
1727
+ "eval_logits/rejected": 5.720220565795898,
1728
+ "eval_logps/chosen": -3.7383785247802734,
1729
+ "eval_logps/rejected": -6.7838873863220215,
1730
+ "eval_loss": 0.27200350165367126,
1731
+ "eval_rewards/accuracies": 0.9375,
1732
+ "eval_rewards/chosen": -5.60756778717041,
1733
+ "eval_rewards/margins": 4.568263053894043,
1734
+ "eval_rewards/rejected": -10.175830841064453,
1735
+ "eval_runtime": 18.3385,
1736
+ "eval_samples_per_second": 27.81,
1737
+ "eval_steps_per_second": 3.49,
1738
+ "step": 950
1739
+ },
1740
+ {
1741
+ "epoch": 1.2184126984126984,
1742
+ "grad_norm": 4.321587085723877,
1743
+ "learning_rate": 1.4355517710873184e-06,
1744
+ "logits/chosen": 5.534070014953613,
1745
+ "logits/rejected": 5.096575736999512,
1746
+ "logps/chosen": -4.546253204345703,
1747
+ "logps/rejected": -7.369414329528809,
1748
+ "loss": 0.3554,
1749
+ "rewards/accuracies": 0.949999988079071,
1750
+ "rewards/chosen": -6.8193793296813965,
1751
+ "rewards/margins": 4.2347412109375,
1752
+ "rewards/rejected": -11.054121017456055,
1753
+ "step": 960
1754
+ },
1755
+ {
1756
+ "epoch": 1.231111111111111,
1757
+ "grad_norm": 2.3186330795288086,
1758
+ "learning_rate": 1.388412052037682e-06,
1759
+ "logits/chosen": 6.364870548248291,
1760
+ "logits/rejected": 6.031035423278809,
1761
+ "logps/chosen": -3.9153428077697754,
1762
+ "logps/rejected": -6.4653639793396,
1763
+ "loss": 0.2867,
1764
+ "rewards/accuracies": 0.925000011920929,
1765
+ "rewards/chosen": -5.873013973236084,
1766
+ "rewards/margins": 3.825031280517578,
1767
+ "rewards/rejected": -9.69804573059082,
1768
+ "step": 970
1769
+ },
1770
+ {
1771
+ "epoch": 1.243809523809524,
1772
+ "grad_norm": 6.711607456207275,
1773
+ "learning_rate": 1.3417599122003464e-06,
1774
+ "logits/chosen": 6.216970443725586,
1775
+ "logits/rejected": 5.668035507202148,
1776
+ "logps/chosen": -4.147327899932861,
1777
+ "logps/rejected": -7.050875186920166,
1778
+ "loss": 0.3064,
1779
+ "rewards/accuracies": 0.949999988079071,
1780
+ "rewards/chosen": -6.220992088317871,
1781
+ "rewards/margins": 4.355320930480957,
1782
+ "rewards/rejected": -10.576312065124512,
1783
+ "step": 980
1784
+ },
1785
+ {
1786
+ "epoch": 1.2565079365079366,
1787
+ "grad_norm": 4.946932792663574,
1788
+ "learning_rate": 1.2956158147457116e-06,
1789
+ "logits/chosen": 5.909533500671387,
1790
+ "logits/rejected": 5.650919437408447,
1791
+ "logps/chosen": -4.229696273803711,
1792
+ "logps/rejected": -7.213942050933838,
1793
+ "loss": 0.3079,
1794
+ "rewards/accuracies": 0.8999999761581421,
1795
+ "rewards/chosen": -6.344544410705566,
1796
+ "rewards/margins": 4.476368427276611,
1797
+ "rewards/rejected": -10.820913314819336,
1798
+ "step": 990
1799
+ },
1800
+ {
1801
+ "epoch": 1.2692063492063492,
1802
+ "grad_norm": 3.831132411956787,
1803
+ "learning_rate": 1.2500000000000007e-06,
1804
+ "logits/chosen": 4.852212429046631,
1805
+ "logits/rejected": 4.722367763519287,
1806
+ "logps/chosen": -4.436448574066162,
1807
+ "logps/rejected": -7.6168317794799805,
1808
+ "loss": 0.3158,
1809
+ "rewards/accuracies": 0.9125000238418579,
1810
+ "rewards/chosen": -6.6546735763549805,
1811
+ "rewards/margins": 4.770575046539307,
1812
+ "rewards/rejected": -11.425248146057129,
1813
+ "step": 1000
1814
+ },
1815
+ {
1816
+ "epoch": 1.2692063492063492,
1817
+ "eval_logits/chosen": 5.721224784851074,
1818
+ "eval_logits/rejected": 5.573430061340332,
1819
+ "eval_logps/chosen": -3.8567862510681152,
1820
+ "eval_logps/rejected": -6.927263259887695,
1821
+ "eval_loss": 0.26795223355293274,
1822
+ "eval_rewards/accuracies": 0.9375,
1823
+ "eval_rewards/chosen": -5.785179615020752,
1824
+ "eval_rewards/margins": 4.605715751647949,
1825
+ "eval_rewards/rejected": -10.390894889831543,
1826
+ "eval_runtime": 18.3572,
1827
+ "eval_samples_per_second": 27.782,
1828
+ "eval_steps_per_second": 3.486,
1829
+ "step": 1000
1830
+ },
1831
+ {
1832
+ "epoch": 1.2819047619047619,
1833
+ "grad_norm": 4.340210914611816,
1834
+ "learning_rate": 1.204932476567175e-06,
1835
+ "logits/chosen": 5.455284595489502,
1836
+ "logits/rejected": 5.007905006408691,
1837
+ "logps/chosen": -4.618704795837402,
1838
+ "logps/rejected": -7.544007778167725,
1839
+ "loss": 0.3142,
1840
+ "rewards/accuracies": 0.875,
1841
+ "rewards/chosen": -6.928057670593262,
1842
+ "rewards/margins": 4.387955188751221,
1843
+ "rewards/rejected": -11.316012382507324,
1844
+ "step": 1010
1845
+ },
1846
+ {
1847
+ "epoch": 1.2946031746031745,
1848
+ "grad_norm": 3.371431350708008,
1849
+ "learning_rate": 1.160433012552508e-06,
1850
+ "logits/chosen": 5.39217472076416,
1851
+ "logits/rejected": 5.3231329917907715,
1852
+ "logps/chosen": -3.9590423107147217,
1853
+ "logps/rejected": -7.2238945960998535,
1854
+ "loss": 0.3226,
1855
+ "rewards/accuracies": 0.925000011920929,
1856
+ "rewards/chosen": -5.938564300537109,
1857
+ "rewards/margins": 4.897278785705566,
1858
+ "rewards/rejected": -10.835843086242676,
1859
+ "step": 1020
1860
+ },
1861
+ {
1862
+ "epoch": 1.3073015873015872,
1863
+ "grad_norm": 3.215897560119629,
1864
+ "learning_rate": 1.11652112689164e-06,
1865
+ "logits/chosen": 5.496011734008789,
1866
+ "logits/rejected": 5.371179580688477,
1867
+ "logps/chosen": -4.006840705871582,
1868
+ "logps/rejected": -6.894573211669922,
1869
+ "loss": 0.2998,
1870
+ "rewards/accuracies": 0.875,
1871
+ "rewards/chosen": -6.0102620124816895,
1872
+ "rewards/margins": 4.331597805023193,
1873
+ "rewards/rejected": -10.341859817504883,
1874
+ "step": 1030
1875
+ },
1876
+ {
1877
+ "epoch": 1.32,
1878
+ "grad_norm": 2.8000078201293945,
1879
+ "learning_rate": 1.073216080788921e-06,
1880
+ "logits/chosen": 6.246156215667725,
1881
+ "logits/rejected": 5.520369052886963,
1882
+ "logps/chosen": -4.688235282897949,
1883
+ "logps/rejected": -8.393880844116211,
1884
+ "loss": 0.2691,
1885
+ "rewards/accuracies": 0.9624999761581421,
1886
+ "rewards/chosen": -7.032352447509766,
1887
+ "rewards/margins": 5.558468341827393,
1888
+ "rewards/rejected": -12.590821266174316,
1889
+ "step": 1040
1890
+ },
1891
+ {
1892
+ "epoch": 1.3326984126984127,
1893
+ "grad_norm": 3.0592737197875977,
1894
+ "learning_rate": 1.0305368692688175e-06,
1895
+ "logits/chosen": 5.306058406829834,
1896
+ "logits/rejected": 5.3769707679748535,
1897
+ "logps/chosen": -4.188882350921631,
1898
+ "logps/rejected": -6.395564079284668,
1899
+ "loss": 0.3026,
1900
+ "rewards/accuracies": 0.9125000238418579,
1901
+ "rewards/chosen": -6.283323764801025,
1902
+ "rewards/margins": 3.3100223541259766,
1903
+ "rewards/rejected": -9.593345642089844,
1904
+ "step": 1050
1905
+ },
1906
+ {
1907
+ "epoch": 1.3326984126984127,
1908
+ "eval_logits/chosen": 5.6976423263549805,
1909
+ "eval_logits/rejected": 5.525759696960449,
1910
+ "eval_logps/chosen": -3.8439218997955322,
1911
+ "eval_logps/rejected": -6.9627227783203125,
1912
+ "eval_loss": 0.26340675354003906,
1913
+ "eval_rewards/accuracies": 0.9375,
1914
+ "eval_rewards/chosen": -5.76588249206543,
1915
+ "eval_rewards/margins": 4.678201675415039,
1916
+ "eval_rewards/rejected": -10.444085121154785,
1917
+ "eval_runtime": 18.3435,
1918
+ "eval_samples_per_second": 27.803,
1919
+ "eval_steps_per_second": 3.489,
1920
+ "step": 1050
1921
+ },
1922
+ {
1923
+ "epoch": 1.3453968253968254,
1924
+ "grad_norm": 3.524646759033203,
1925
+ "learning_rate": 9.88502212844063e-07,
1926
+ "logits/chosen": 5.86399507522583,
1927
+ "logits/rejected": 5.444242000579834,
1928
+ "logps/chosen": -4.269190788269043,
1929
+ "logps/rejected": -7.391558647155762,
1930
+ "loss": 0.2872,
1931
+ "rewards/accuracies": 0.9375,
1932
+ "rewards/chosen": -6.403787136077881,
1933
+ "rewards/margins": 4.68355131149292,
1934
+ "rewards/rejected": -11.087339401245117,
1935
+ "step": 1060
1936
+ },
1937
+ {
1938
+ "epoch": 1.358095238095238,
1939
+ "grad_norm": 3.6155037879943848,
1940
+ "learning_rate": 9.471305493042243e-07,
1941
+ "logits/chosen": 6.007330894470215,
1942
+ "logits/rejected": 5.697009563446045,
1943
+ "logps/chosen": -4.269715785980225,
1944
+ "logps/rejected": -7.014040470123291,
1945
+ "loss": 0.2794,
1946
+ "rewards/accuracies": 0.925000011920929,
1947
+ "rewards/chosen": -6.404573917388916,
1948
+ "rewards/margins": 4.116486072540283,
1949
+ "rewards/rejected": -10.5210599899292,
1950
+ "step": 1070
1951
+ },
1952
+ {
1953
+ "epoch": 1.370793650793651,
1954
+ "grad_norm": 4.943655014038086,
1955
+ "learning_rate": 9.064400256282757e-07,
1956
+ "logits/chosen": 5.4075846672058105,
1957
+ "logits/rejected": 5.163808345794678,
1958
+ "logps/chosen": -3.780120849609375,
1959
+ "logps/rejected": -6.776060581207275,
1960
+ "loss": 0.3154,
1961
+ "rewards/accuracies": 0.949999988079071,
1962
+ "rewards/chosen": -5.6701812744140625,
1963
+ "rewards/margins": 4.4939093589782715,
1964
+ "rewards/rejected": -10.164091110229492,
1965
+ "step": 1080
1966
+ },
1967
+ {
1968
+ "epoch": 1.3834920634920636,
1969
+ "grad_norm": 3.8432955741882324,
1970
+ "learning_rate": 8.664484900247363e-07,
1971
+ "logits/chosen": 6.4478631019592285,
1972
+ "logits/rejected": 5.634939193725586,
1973
+ "logps/chosen": -4.478579521179199,
1974
+ "logps/rejected": -7.522899627685547,
1975
+ "loss": 0.3541,
1976
+ "rewards/accuracies": 0.8999999761581421,
1977
+ "rewards/chosen": -6.717869758605957,
1978
+ "rewards/margins": 4.566478729248047,
1979
+ "rewards/rejected": -11.28434944152832,
1980
+ "step": 1090
1981
+ },
1982
+ {
1983
+ "epoch": 1.3961904761904762,
1984
+ "grad_norm": 5.117826461791992,
1985
+ "learning_rate": 8.271734841028553e-07,
1986
+ "logits/chosen": 5.143468379974365,
1987
+ "logits/rejected": 5.166830539703369,
1988
+ "logps/chosen": -3.964787721633911,
1989
+ "logps/rejected": -7.12085485458374,
1990
+ "loss": 0.3048,
1991
+ "rewards/accuracies": 0.925000011920929,
1992
+ "rewards/chosen": -5.9471821784973145,
1993
+ "rewards/margins": 4.734100818634033,
1994
+ "rewards/rejected": -10.681283950805664,
1995
+ "step": 1100
1996
+ },
1997
+ {
1998
+ "epoch": 1.3961904761904762,
1999
+ "eval_logits/chosen": 5.741722583770752,
2000
+ "eval_logits/rejected": 5.563231468200684,
2001
+ "eval_logps/chosen": -3.90653395652771,
2002
+ "eval_logps/rejected": -7.086528778076172,
2003
+ "eval_loss": 0.2575596570968628,
2004
+ "eval_rewards/accuracies": 0.9375,
2005
+ "eval_rewards/chosen": -5.859801292419434,
2006
+ "eval_rewards/margins": 4.769991874694824,
2007
+ "eval_rewards/rejected": -10.629792213439941,
2008
+ "eval_runtime": 18.3447,
2009
+ "eval_samples_per_second": 27.801,
2010
+ "eval_steps_per_second": 3.489,
2011
+ "step": 1100
2012
+ },
2013
+ {
2014
+ "epoch": 1.4088888888888889,
2015
+ "grad_norm": 5.110182762145996,
2016
+ "learning_rate": 7.886322351782782e-07,
2017
+ "logits/chosen": 5.116390705108643,
2018
+ "logits/rejected": 4.859463691711426,
2019
+ "logps/chosen": -3.7181735038757324,
2020
+ "logps/rejected": -6.785368919372559,
2021
+ "loss": 0.2757,
2022
+ "rewards/accuracies": 0.949999988079071,
2023
+ "rewards/chosen": -5.5772600173950195,
2024
+ "rewards/margins": 4.600793838500977,
2025
+ "rewards/rejected": -10.178054809570312,
2026
+ "step": 1110
2027
+ },
2028
+ {
2029
+ "epoch": 1.4215873015873015,
2030
+ "grad_norm": 3.5725648403167725,
2031
+ "learning_rate": 7.508416487165862e-07,
2032
+ "logits/chosen": 5.8984761238098145,
2033
+ "logits/rejected": 5.381471633911133,
2034
+ "logps/chosen": -4.282950401306152,
2035
+ "logps/rejected": -7.246331691741943,
2036
+ "loss": 0.2697,
2037
+ "rewards/accuracies": 0.9375,
2038
+ "rewards/chosen": -6.424426078796387,
2039
+ "rewards/margins": 4.445071220397949,
2040
+ "rewards/rejected": -10.869497299194336,
2041
+ "step": 1120
2042
+ },
2043
+ {
2044
+ "epoch": 1.4342857142857142,
2045
+ "grad_norm": 4.783407688140869,
2046
+ "learning_rate": 7.138183009179922e-07,
2047
+ "logits/chosen": 5.907749176025391,
2048
+ "logits/rejected": 5.9079999923706055,
2049
+ "logps/chosen": -4.260853290557861,
2050
+ "logps/rejected": -7.2321672439575195,
2051
+ "loss": 0.2766,
2052
+ "rewards/accuracies": 0.949999988079071,
2053
+ "rewards/chosen": -6.391280174255371,
2054
+ "rewards/margins": 4.456971645355225,
2055
+ "rewards/rejected": -10.848252296447754,
2056
+ "step": 1130
2057
+ },
2058
+ {
2059
+ "epoch": 1.446984126984127,
2060
+ "grad_norm": 5.846556663513184,
2061
+ "learning_rate": 6.775784314464717e-07,
2062
+ "logits/chosen": 6.444309234619141,
2063
+ "logits/rejected": 5.971430778503418,
2064
+ "logps/chosen": -4.673151969909668,
2065
+ "logps/rejected": -7.5114336013793945,
2066
+ "loss": 0.2988,
2067
+ "rewards/accuracies": 0.887499988079071,
2068
+ "rewards/chosen": -7.00972843170166,
2069
+ "rewards/margins": 4.257421016693115,
2070
+ "rewards/rejected": -11.267148971557617,
2071
+ "step": 1140
2072
+ },
2073
+ {
2074
+ "epoch": 1.4596825396825397,
2075
+ "grad_norm": 2.654311418533325,
2076
+ "learning_rate": 6.421379363065142e-07,
2077
+ "logits/chosen": 6.01109504699707,
2078
+ "logits/rejected": 5.599249839782715,
2079
+ "logps/chosen": -4.461272239685059,
2080
+ "logps/rejected": -7.291404724121094,
2081
+ "loss": 0.2704,
2082
+ "rewards/accuracies": 0.9125000238418579,
2083
+ "rewards/chosen": -6.691908836364746,
2084
+ "rewards/margins": 4.2451982498168945,
2085
+ "rewards/rejected": -10.937106132507324,
2086
+ "step": 1150
2087
+ },
2088
+ {
2089
+ "epoch": 1.4596825396825397,
2090
+ "eval_logits/chosen": 5.768884658813477,
2091
+ "eval_logits/rejected": 5.596267223358154,
2092
+ "eval_logps/chosen": -3.9878058433532715,
2093
+ "eval_logps/rejected": -7.195793151855469,
2094
+ "eval_loss": 0.25360986590385437,
2095
+ "eval_rewards/accuracies": 0.9375,
2096
+ "eval_rewards/chosen": -5.981709003448486,
2097
+ "eval_rewards/margins": 4.811980724334717,
2098
+ "eval_rewards/rejected": -10.793688774108887,
2099
+ "eval_runtime": 18.3358,
2100
+ "eval_samples_per_second": 27.814,
2101
+ "eval_steps_per_second": 3.49,
2102
+ "step": 1150
2103
+ },
2104
+ {
2105
+ "epoch": 1.4723809523809523,
2106
+ "grad_norm": 4.0658135414123535,
2107
+ "learning_rate": 6.075123608706093e-07,
2108
+ "logits/chosen": 5.25299072265625,
2109
+ "logits/rejected": 4.967761039733887,
2110
+ "logps/chosen": -4.026610851287842,
2111
+ "logps/rejected": -7.101304531097412,
2112
+ "loss": 0.2829,
2113
+ "rewards/accuracies": 0.9375,
2114
+ "rewards/chosen": -6.039916515350342,
2115
+ "rewards/margins": 4.612040042877197,
2116
+ "rewards/rejected": -10.651956558227539,
2117
+ "step": 1160
2118
+ },
2119
+ {
2120
+ "epoch": 1.485079365079365,
2121
+ "grad_norm": 3.9091060161590576,
2122
+ "learning_rate": 5.737168930605272e-07,
2123
+ "logits/chosen": 4.257780075073242,
2124
+ "logits/rejected": 4.387463569641113,
2125
+ "logps/chosen": -4.0905938148498535,
2126
+ "logps/rejected": -7.346035003662109,
2127
+ "loss": 0.2573,
2128
+ "rewards/accuracies": 0.9375,
2129
+ "rewards/chosen": -6.135890007019043,
2130
+ "rewards/margins": 4.8831610679626465,
2131
+ "rewards/rejected": -11.019052505493164,
2132
+ "step": 1170
2133
+ },
2134
+ {
2135
+ "epoch": 1.4977777777777779,
2136
+ "grad_norm": 4.522884368896484,
2137
+ "learning_rate": 5.407663566854008e-07,
2138
+ "logits/chosen": 6.337338447570801,
2139
+ "logits/rejected": 5.771265983581543,
2140
+ "logps/chosen": -3.8552029132843018,
2141
+ "logps/rejected": -6.726799011230469,
2142
+ "loss": 0.3046,
2143
+ "rewards/accuracies": 0.949999988079071,
2144
+ "rewards/chosen": -5.782804012298584,
2145
+ "rewards/margins": 4.307394981384277,
2146
+ "rewards/rejected": -10.090198516845703,
2147
+ "step": 1180
2148
+ },
2149
+ {
2150
+ "epoch": 1.5104761904761905,
2151
+ "grad_norm": 2.822293758392334,
2152
+ "learning_rate": 5.086752049395094e-07,
2153
+ "logits/chosen": 5.941995143890381,
2154
+ "logits/rejected": 5.562925815582275,
2155
+ "logps/chosen": -4.446758270263672,
2156
+ "logps/rejected": -7.707291603088379,
2157
+ "loss": 0.2863,
2158
+ "rewards/accuracies": 0.9375,
2159
+ "rewards/chosen": -6.67013692855835,
2160
+ "rewards/margins": 4.890799522399902,
2161
+ "rewards/rejected": -11.560935974121094,
2162
+ "step": 1190
2163
+ },
2164
+ {
2165
+ "epoch": 1.5231746031746032,
2166
+ "grad_norm": 3.358898401260376,
2167
+ "learning_rate": 4.774575140626317e-07,
2168
+ "logits/chosen": 6.258566856384277,
2169
+ "logits/rejected": 5.50495719909668,
2170
+ "logps/chosen": -5.074927806854248,
2171
+ "logps/rejected": -8.208864212036133,
2172
+ "loss": 0.274,
2173
+ "rewards/accuracies": 0.9750000238418579,
2174
+ "rewards/chosen": -7.612391471862793,
2175
+ "rewards/margins": 4.70090389251709,
2176
+ "rewards/rejected": -12.313295364379883,
2177
+ "step": 1200
2178
+ },
2179
+ {
2180
+ "epoch": 1.5231746031746032,
2181
+ "eval_logits/chosen": 5.688702583312988,
2182
+ "eval_logits/rejected": 5.500263690948486,
2183
+ "eval_logps/chosen": -3.858718156814575,
2184
+ "eval_logps/rejected": -7.112142562866211,
2185
+ "eval_loss": 0.25126969814300537,
2186
+ "eval_rewards/accuracies": 0.9375,
2187
+ "eval_rewards/chosen": -5.788077354431152,
2188
+ "eval_rewards/margins": 4.880136489868164,
2189
+ "eval_rewards/rejected": -10.668213844299316,
2190
+ "eval_runtime": 18.3391,
2191
+ "eval_samples_per_second": 27.809,
2192
+ "eval_steps_per_second": 3.49,
2193
+ "step": 1200
2194
+ },
2195
+ {
2196
+ "epoch": 1.5358730158730158,
2197
+ "grad_norm": 2.7726964950561523,
2198
+ "learning_rate": 4.4712697716573994e-07,
2199
+ "logits/chosen": 6.500624656677246,
2200
+ "logits/rejected": 6.0488409996032715,
2201
+ "logps/chosen": -4.397651672363281,
2202
+ "logps/rejected": -7.040518760681152,
2203
+ "loss": 0.2878,
2204
+ "rewards/accuracies": 0.9375,
2205
+ "rewards/chosen": -6.596477508544922,
2206
+ "rewards/margins": 3.9643006324768066,
2207
+ "rewards/rejected": -10.560778617858887,
2208
+ "step": 1210
2209
+ },
2210
+ {
2211
+ "epoch": 1.5485714285714285,
2212
+ "grad_norm": 3.195594072341919,
2213
+ "learning_rate": 4.1769689822475147e-07,
2214
+ "logits/chosen": 5.61861515045166,
2215
+ "logits/rejected": 5.372084617614746,
2216
+ "logps/chosen": -3.832531452178955,
2217
+ "logps/rejected": -6.474020957946777,
2218
+ "loss": 0.2557,
2219
+ "rewards/accuracies": 0.8999999761581421,
2220
+ "rewards/chosen": -5.748796463012695,
2221
+ "rewards/margins": 3.962235689163208,
2222
+ "rewards/rejected": -9.711031913757324,
2223
+ "step": 1220
2224
+ },
2225
+ {
2226
+ "epoch": 1.5612698412698411,
2227
+ "grad_norm": 3.5306906700134277,
2228
+ "learning_rate": 3.891801862449629e-07,
2229
+ "logits/chosen": 5.794755458831787,
2230
+ "logits/rejected": 5.1795549392700195,
2231
+ "logps/chosen": -3.9147841930389404,
2232
+ "logps/rejected": -7.290131568908691,
2233
+ "loss": 0.2745,
2234
+ "rewards/accuracies": 0.925000011920929,
2235
+ "rewards/chosen": -5.872176647186279,
2236
+ "rewards/margins": 5.063020706176758,
2237
+ "rewards/rejected": -10.935196876525879,
2238
+ "step": 1230
2239
+ },
2240
+ {
2241
+ "epoch": 1.573968253968254,
2242
+ "grad_norm": 4.873084545135498,
2243
+ "learning_rate": 3.615893495987335e-07,
2244
+ "logits/chosen": 5.19751501083374,
2245
+ "logits/rejected": 4.9404497146606445,
2246
+ "logps/chosen": -4.018169403076172,
2247
+ "logps/rejected": -6.874402046203613,
2248
+ "loss": 0.3246,
2249
+ "rewards/accuracies": 0.8500000238418579,
2250
+ "rewards/chosen": -6.0272536277771,
2251
+ "rewards/margins": 4.284348964691162,
2252
+ "rewards/rejected": -10.311602592468262,
2253
+ "step": 1240
2254
+ },
2255
+ {
2256
+ "epoch": 1.5866666666666667,
2257
+ "grad_norm": 4.694446086883545,
2258
+ "learning_rate": 3.3493649053890325e-07,
2259
+ "logits/chosen": 5.5149946212768555,
2260
+ "logits/rejected": 5.184729099273682,
2261
+ "logps/chosen": -4.031495571136475,
2262
+ "logps/rejected": -6.850281715393066,
2263
+ "loss": 0.2725,
2264
+ "rewards/accuracies": 0.925000011920929,
2265
+ "rewards/chosen": -6.047244071960449,
2266
+ "rewards/margins": 4.228178977966309,
2267
+ "rewards/rejected": -10.275423049926758,
2268
+ "step": 1250
2269
+ },
2270
+ {
2271
+ "epoch": 1.5866666666666667,
2272
+ "eval_logits/chosen": 5.6769232749938965,
2273
+ "eval_logits/rejected": 5.492671966552734,
2274
+ "eval_logps/chosen": -3.8999485969543457,
2275
+ "eval_logps/rejected": -7.1655073165893555,
2276
+ "eval_loss": 0.24976640939712524,
2277
+ "eval_rewards/accuracies": 0.9375,
2278
+ "eval_rewards/chosen": -5.8499226570129395,
2279
+ "eval_rewards/margins": 4.898338317871094,
2280
+ "eval_rewards/rejected": -10.748260498046875,
2281
+ "eval_runtime": 18.3399,
2282
+ "eval_samples_per_second": 27.808,
2283
+ "eval_steps_per_second": 3.49,
2284
+ "step": 1250
2285
+ }
2286
+ ],
2287
+ "logging_steps": 10,
2288
+ "max_steps": 1500,
2289
+ "num_input_tokens_seen": 0,
2290
+ "num_train_epochs": 2,
2291
+ "save_steps": 50,
2292
+ "stateful_callbacks": {
2293
+ "TrainerControl": {
2294
+ "args": {
2295
+ "should_epoch_stop": false,
2296
+ "should_evaluate": false,
2297
+ "should_log": false,
2298
+ "should_save": true,
2299
+ "should_training_stop": false
2300
+ },
2301
+ "attributes": {}
2302
+ }
2303
+ },
2304
+ "total_flos": 3.015379311684223e+18,
2305
+ "train_batch_size": 1,
2306
+ "trial_name": null,
2307
+ "trial_params": null
2308
+ }
checkpoint-1250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6104f1a61db1df2c606ca77691d14a708e1aba41ef959437c3789e25b88c33b
3
+ size 7224
checkpoint-1250/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)