Training in progress, step 1100, checkpoint
Browse files- checkpoint-1100/README.md +202 -0
- checkpoint-1100/adapter_config.json +34 -0
- checkpoint-1100/adapter_model.safetensors +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/latest +1 -0
- checkpoint-1100/rng_state_0.pth +3 -0
- checkpoint-1100/rng_state_1.pth +3 -0
- checkpoint-1100/rng_state_2.pth +3 -0
- checkpoint-1100/rng_state_3.pth +3 -0
- checkpoint-1100/rng_state_4.pth +3 -0
- checkpoint-1100/rng_state_5.pth +3 -0
- checkpoint-1100/rng_state_6.pth +3 -0
- checkpoint-1100/rng_state_7.pth +3 -0
- checkpoint-1100/scheduler.pt +3 -0
- checkpoint-1100/special_tokens_map.json +30 -0
- checkpoint-1100/tokenizer.json +0 -0
- checkpoint-1100/tokenizer_config.json +133 -0
- checkpoint-1100/trainer_state.json +2035 -0
- checkpoint-1100/training_args.bin +3 -0
- checkpoint-1100/zero_to_fp32.py +674 -0
checkpoint-1100/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-1100/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"qkv_proj",
|
27 |
+
"down_proj",
|
28 |
+
"gate_up_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-1100/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2df976875e8e0c2364a58d0894795cc1477e15fb5902db6e91284d4ec4d874f8
|
3 |
+
size 25200088
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83ff6a65113a3f3579964118fe3b3fb8ebf53f1832eaf7b6f62130ff1dec3ea5
|
3 |
+
size 18881328
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bab9a9fbac4ff95a2d1ed3e5aefea900baf405a24557f56f27485a99c5718f4
|
3 |
+
size 18881328
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a5652c65b20d82dd44001d650a5be5a15457dbe844f80724c3a607b7b5b44d5
|
3 |
+
size 18881328
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65e94c090ac7699544238f11da48c7137b8f9f2f7445a9475935be3fa9191a39
|
3 |
+
size 18881392
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdb21f1168fc57bef975a5b99ff3b2ca21323ceaa70643125663c4cf294aafdc
|
3 |
+
size 18881392
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e50c2ff2da22b33ad85864786f479ff1e33627a1ad8bce92b83d7c7f2d20e7f
|
3 |
+
size 18881392
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90649ea8767a64f63be1b733c07e91f483a934c6cabf28aa08933f8d4e3a4626
|
3 |
+
size 18881392
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7627b73dc981b4cc0f221908d6ad141afdb0002fbba58e43fea601e66671bab
|
3 |
+
size 18881392
|
checkpoint-1100/global_step1099/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f48a52415a9a1a2c256fad31dcaf9f2971921aa0b211da67b237f0f7ff8b30a
|
3 |
+
size 25379244
|
checkpoint-1100/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1099
|
checkpoint-1100/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58fd26c3f75dcb632079e92f2328812b639c7cec71c5e9cfeac6aa0b3517cdf5
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72510b57eca8835569f8b656d607395c9d7e1a6a60cc69cb34ed47b0b59eaa0d
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3cfdfdb15f2e72353c5fe88e5ab644b0d54badbf010c8faff419fc99b99c9bf
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56ee779b53b974c470cbb80dc4f9a53115f9b340e380b37f325b20a42ae62199
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcaa9ca52ae19f61adee51c4c10a34df2e311cfaff32aaaecfaca305a504e3d7
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b76d39175bc1ccb83408dbe7c898099fb9bd6825fcf8da6d384a258b06518118
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a8b629e851bbd0f0ced9662255ffa7a7cf8dd8e0c84c3b2c9428a0ef23fb68
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1659df3164fb32815ff650952996f9e5a7f7ee1feed3089a8478961acc099d4
|
3 |
+
size 15984
|
checkpoint-1100/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec99feba6bd8b3d692a0f50fa5030fc1592cb7b6858fbdc658097143317fa2c3
|
3 |
+
size 1064
|
checkpoint-1100/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
checkpoint-1100/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1100/tokenizer_config.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<|endoftext|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "<|assistant|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<|placeholder1|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<|placeholder2|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<|placeholder3|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"32005": {
|
71 |
+
"content": "<|placeholder4|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"32006": {
|
79 |
+
"content": "<|system|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"32007": {
|
87 |
+
"content": "<|end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"32008": {
|
95 |
+
"content": "<|placeholder5|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"32009": {
|
103 |
+
"content": "<|placeholder6|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": true,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"32010": {
|
111 |
+
"content": "<|user|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": true,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
|
121 |
+
"clean_up_tokenization_spaces": false,
|
122 |
+
"eos_token": "<|end|>",
|
123 |
+
"extra_special_tokens": {},
|
124 |
+
"legacy": false,
|
125 |
+
"model_max_length": 4096,
|
126 |
+
"pad_token": "<|endoftext|>",
|
127 |
+
"padding_side": "right",
|
128 |
+
"sp_model_kwargs": {},
|
129 |
+
"split_special_tokens": false,
|
130 |
+
"tokenizer_class": "LlamaTokenizer",
|
131 |
+
"unk_token": "<unk>",
|
132 |
+
"use_default_system_prompt": false
|
133 |
+
}
|
checkpoint-1100/trainer_state.json
ADDED
@@ -0,0 +1,2035 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.7251324308416716,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 1100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.015695507161075144,
|
13 |
+
"grad_norm": 0.07061820477247238,
|
14 |
+
"learning_rate": 4.999451708687114e-06,
|
15 |
+
"logits/chosen": 15.001790046691895,
|
16 |
+
"logits/rejected": 14.624488830566406,
|
17 |
+
"logps/chosen": -0.33085882663726807,
|
18 |
+
"logps/rejected": -0.24924471974372864,
|
19 |
+
"loss": 1.0519,
|
20 |
+
"rewards/accuracies": 0.23749999701976776,
|
21 |
+
"rewards/chosen": -0.4962882399559021,
|
22 |
+
"rewards/margins": -0.12242116779088974,
|
23 |
+
"rewards/rejected": -0.37386709451675415,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.03139101432215029,
|
28 |
+
"grad_norm": 0.060370542109012604,
|
29 |
+
"learning_rate": 4.997807075247147e-06,
|
30 |
+
"logits/chosen": 15.272351264953613,
|
31 |
+
"logits/rejected": 14.801017761230469,
|
32 |
+
"logps/chosen": -0.3379867672920227,
|
33 |
+
"logps/rejected": -0.24759705364704132,
|
34 |
+
"loss": 1.0494,
|
35 |
+
"rewards/accuracies": 0.15000000596046448,
|
36 |
+
"rewards/chosen": -0.5069801211357117,
|
37 |
+
"rewards/margins": -0.13558456301689148,
|
38 |
+
"rewards/rejected": -0.3713955581188202,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.047086521483225424,
|
43 |
+
"grad_norm": 0.050332240760326385,
|
44 |
+
"learning_rate": 4.9950668210706795e-06,
|
45 |
+
"logits/chosen": 15.569372177124023,
|
46 |
+
"logits/rejected": 15.249380111694336,
|
47 |
+
"logps/chosen": -0.3347483277320862,
|
48 |
+
"logps/rejected": -0.275604784488678,
|
49 |
+
"loss": 1.0375,
|
50 |
+
"rewards/accuracies": 0.21250000596046448,
|
51 |
+
"rewards/chosen": -0.5021225214004517,
|
52 |
+
"rewards/margins": -0.08871528506278992,
|
53 |
+
"rewards/rejected": -0.41340717673301697,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.06278202864430057,
|
58 |
+
"grad_norm": 0.054660990834236145,
|
59 |
+
"learning_rate": 4.9912321481237616e-06,
|
60 |
+
"logits/chosen": 15.344067573547363,
|
61 |
+
"logits/rejected": 14.881669998168945,
|
62 |
+
"logps/chosen": -0.3336474299430847,
|
63 |
+
"logps/rejected": -0.27252259850502014,
|
64 |
+
"loss": 1.0375,
|
65 |
+
"rewards/accuracies": 0.20000000298023224,
|
66 |
+
"rewards/chosen": -0.5004712343215942,
|
67 |
+
"rewards/margins": -0.09168727695941925,
|
68 |
+
"rewards/rejected": -0.40878385305404663,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.07847753580537571,
|
73 |
+
"grad_norm": 0.060405269265174866,
|
74 |
+
"learning_rate": 4.986304738420684e-06,
|
75 |
+
"logits/chosen": 15.5701904296875,
|
76 |
+
"logits/rejected": 15.60998821258545,
|
77 |
+
"logps/chosen": -0.3075069785118103,
|
78 |
+
"logps/rejected": -0.24850216507911682,
|
79 |
+
"loss": 1.0341,
|
80 |
+
"rewards/accuracies": 0.20000000298023224,
|
81 |
+
"rewards/chosen": -0.46126049757003784,
|
82 |
+
"rewards/margins": -0.08850721269845963,
|
83 |
+
"rewards/rejected": -0.3727532923221588,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.07847753580537571,
|
88 |
+
"eval_logits/chosen": 15.719181060791016,
|
89 |
+
"eval_logits/rejected": 15.20205307006836,
|
90 |
+
"eval_logps/chosen": -0.32490479946136475,
|
91 |
+
"eval_logps/rejected": -0.26058924198150635,
|
92 |
+
"eval_loss": 1.0295902490615845,
|
93 |
+
"eval_rewards/accuracies": 0.26923078298568726,
|
94 |
+
"eval_rewards/chosen": -0.48735716938972473,
|
95 |
+
"eval_rewards/margins": -0.09647335112094879,
|
96 |
+
"eval_rewards/rejected": -0.39088380336761475,
|
97 |
+
"eval_runtime": 14.6102,
|
98 |
+
"eval_samples_per_second": 28.199,
|
99 |
+
"eval_steps_per_second": 3.559,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.09417304296645085,
|
104 |
+
"grad_norm": 0.06511708348989487,
|
105 |
+
"learning_rate": 4.980286753286196e-06,
|
106 |
+
"logits/chosen": 15.571348190307617,
|
107 |
+
"logits/rejected": 15.418828010559082,
|
108 |
+
"logps/chosen": -0.3217025101184845,
|
109 |
+
"logps/rejected": -0.2813836932182312,
|
110 |
+
"loss": 1.0385,
|
111 |
+
"rewards/accuracies": 0.23749999701976776,
|
112 |
+
"rewards/chosen": -0.48255378007888794,
|
113 |
+
"rewards/margins": -0.060478221625089645,
|
114 |
+
"rewards/rejected": -0.4220755696296692,
|
115 |
+
"step": 60
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.109868550127526,
|
119 |
+
"grad_norm": 0.06922140717506409,
|
120 |
+
"learning_rate": 4.973180832407471e-06,
|
121 |
+
"logits/chosen": 15.926614761352539,
|
122 |
+
"logits/rejected": 15.90565299987793,
|
123 |
+
"logps/chosen": -0.34742942452430725,
|
124 |
+
"logps/rejected": -0.26853513717651367,
|
125 |
+
"loss": 1.0417,
|
126 |
+
"rewards/accuracies": 0.21250000596046448,
|
127 |
+
"rewards/chosen": -0.5211440324783325,
|
128 |
+
"rewards/margins": -0.11834144592285156,
|
129 |
+
"rewards/rejected": -0.40280264616012573,
|
130 |
+
"step": 70
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.12556405728860115,
|
134 |
+
"grad_norm": 0.07853339612483978,
|
135 |
+
"learning_rate": 4.964990092676263e-06,
|
136 |
+
"logits/chosen": 15.876957893371582,
|
137 |
+
"logits/rejected": 15.636863708496094,
|
138 |
+
"logps/chosen": -0.34999752044677734,
|
139 |
+
"logps/rejected": -0.2652502655982971,
|
140 |
+
"loss": 1.0255,
|
141 |
+
"rewards/accuracies": 0.1875,
|
142 |
+
"rewards/chosen": -0.524996280670166,
|
143 |
+
"rewards/margins": -0.12712089717388153,
|
144 |
+
"rewards/rejected": -0.3978753685951233,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.14125956444967627,
|
149 |
+
"grad_norm": 0.07262148708105087,
|
150 |
+
"learning_rate": 4.9557181268217225e-06,
|
151 |
+
"logits/chosen": 16.037456512451172,
|
152 |
+
"logits/rejected": 15.742408752441406,
|
153 |
+
"logps/chosen": -0.32482510805130005,
|
154 |
+
"logps/rejected": -0.2520079016685486,
|
155 |
+
"loss": 1.0297,
|
156 |
+
"rewards/accuracies": 0.21250000596046448,
|
157 |
+
"rewards/chosen": -0.48723769187927246,
|
158 |
+
"rewards/margins": -0.1092257872223854,
|
159 |
+
"rewards/rejected": -0.3780118525028229,
|
160 |
+
"step": 90
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.15695507161075142,
|
164 |
+
"grad_norm": 0.08407289534807205,
|
165 |
+
"learning_rate": 4.9453690018345144e-06,
|
166 |
+
"logits/chosen": 16.34904670715332,
|
167 |
+
"logits/rejected": 16.30767059326172,
|
168 |
+
"logps/chosen": -0.3302846848964691,
|
169 |
+
"logps/rejected": -0.2799247205257416,
|
170 |
+
"loss": 1.0285,
|
171 |
+
"rewards/accuracies": 0.2750000059604645,
|
172 |
+
"rewards/chosen": -0.4954269826412201,
|
173 |
+
"rewards/margins": -0.07553993165493011,
|
174 |
+
"rewards/rejected": -0.41988706588745117,
|
175 |
+
"step": 100
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.15695507161075142,
|
179 |
+
"eval_logits/chosen": 16.43848419189453,
|
180 |
+
"eval_logits/rejected": 15.978095054626465,
|
181 |
+
"eval_logps/chosen": -0.3256901502609253,
|
182 |
+
"eval_logps/rejected": -0.2794351279735565,
|
183 |
+
"eval_loss": 1.0174708366394043,
|
184 |
+
"eval_rewards/accuracies": 0.2884615361690521,
|
185 |
+
"eval_rewards/chosen": -0.4885352551937103,
|
186 |
+
"eval_rewards/margins": -0.06938254088163376,
|
187 |
+
"eval_rewards/rejected": -0.41915270686149597,
|
188 |
+
"eval_runtime": 14.607,
|
189 |
+
"eval_samples_per_second": 28.206,
|
190 |
+
"eval_steps_per_second": 3.56,
|
191 |
+
"step": 100
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.17265057877182657,
|
195 |
+
"grad_norm": 0.07448805868625641,
|
196 |
+
"learning_rate": 4.933947257182901e-06,
|
197 |
+
"logits/chosen": 16.681476593017578,
|
198 |
+
"logits/rejected": 16.208908081054688,
|
199 |
+
"logps/chosen": -0.3410753309726715,
|
200 |
+
"logps/rejected": -0.28177398443222046,
|
201 |
+
"loss": 1.0364,
|
202 |
+
"rewards/accuracies": 0.2874999940395355,
|
203 |
+
"rewards/chosen": -0.5116130113601685,
|
204 |
+
"rewards/margins": -0.08895199000835419,
|
205 |
+
"rewards/rejected": -0.4226610064506531,
|
206 |
+
"step": 110
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.1883460859329017,
|
210 |
+
"grad_norm": 0.17266640067100525,
|
211 |
+
"learning_rate": 4.921457902821578e-06,
|
212 |
+
"logits/chosen": 16.73276710510254,
|
213 |
+
"logits/rejected": 16.46255111694336,
|
214 |
+
"logps/chosen": -0.30808666348457336,
|
215 |
+
"logps/rejected": -0.2663067877292633,
|
216 |
+
"loss": 1.0242,
|
217 |
+
"rewards/accuracies": 0.23749999701976776,
|
218 |
+
"rewards/chosen": -0.46213001012802124,
|
219 |
+
"rewards/margins": -0.0626697838306427,
|
220 |
+
"rewards/rejected": -0.39946022629737854,
|
221 |
+
"step": 120
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.20404159309397685,
|
225 |
+
"grad_norm": 0.1035998985171318,
|
226 |
+
"learning_rate": 4.907906416994146e-06,
|
227 |
+
"logits/chosen": 16.380239486694336,
|
228 |
+
"logits/rejected": 16.233612060546875,
|
229 |
+
"logps/chosen": -0.32250356674194336,
|
230 |
+
"logps/rejected": -0.27460020780563354,
|
231 |
+
"loss": 1.0162,
|
232 |
+
"rewards/accuracies": 0.2874999940395355,
|
233 |
+
"rewards/chosen": -0.48375529050827026,
|
234 |
+
"rewards/margins": -0.0718550831079483,
|
235 |
+
"rewards/rejected": -0.41190028190612793,
|
236 |
+
"step": 130
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.219737100255052,
|
240 |
+
"grad_norm": 0.0961030125617981,
|
241 |
+
"learning_rate": 4.893298743830168e-06,
|
242 |
+
"logits/chosen": 16.440303802490234,
|
243 |
+
"logits/rejected": 16.233903884887695,
|
244 |
+
"logps/chosen": -0.33421438932418823,
|
245 |
+
"logps/rejected": -0.2857271134853363,
|
246 |
+
"loss": 1.0008,
|
247 |
+
"rewards/accuracies": 0.3125,
|
248 |
+
"rewards/chosen": -0.5013214945793152,
|
249 |
+
"rewards/margins": -0.07273083180189133,
|
250 |
+
"rewards/rejected": -0.42859068512916565,
|
251 |
+
"step": 140
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.23543260741612712,
|
255 |
+
"grad_norm": 0.14799565076828003,
|
256 |
+
"learning_rate": 4.8776412907378845e-06,
|
257 |
+
"logits/chosen": 16.600738525390625,
|
258 |
+
"logits/rejected": 16.536447525024414,
|
259 |
+
"logps/chosen": -0.3243326246738434,
|
260 |
+
"logps/rejected": -0.3061785101890564,
|
261 |
+
"loss": 1.0085,
|
262 |
+
"rewards/accuracies": 0.3375000059604645,
|
263 |
+
"rewards/chosen": -0.4864989221096039,
|
264 |
+
"rewards/margins": -0.027231160551309586,
|
265 |
+
"rewards/rejected": -0.459267795085907,
|
266 |
+
"step": 150
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.23543260741612712,
|
270 |
+
"eval_logits/chosen": 16.8078556060791,
|
271 |
+
"eval_logits/rejected": 16.311922073364258,
|
272 |
+
"eval_logps/chosen": -0.326242595911026,
|
273 |
+
"eval_logps/rejected": -0.3398977816104889,
|
274 |
+
"eval_loss": 0.9791463017463684,
|
275 |
+
"eval_rewards/accuracies": 0.4038461446762085,
|
276 |
+
"eval_rewards/chosen": -0.4893638789653778,
|
277 |
+
"eval_rewards/margins": 0.020482787862420082,
|
278 |
+
"eval_rewards/rejected": -0.5098467469215393,
|
279 |
+
"eval_runtime": 14.6072,
|
280 |
+
"eval_samples_per_second": 28.205,
|
281 |
+
"eval_steps_per_second": 3.56,
|
282 |
+
"step": 150
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.2511281145772023,
|
286 |
+
"grad_norm": 0.11464422941207886,
|
287 |
+
"learning_rate": 4.860940925593703e-06,
|
288 |
+
"logits/chosen": 16.586620330810547,
|
289 |
+
"logits/rejected": 16.253028869628906,
|
290 |
+
"logps/chosen": -0.33331993222236633,
|
291 |
+
"logps/rejected": -0.35580095648765564,
|
292 |
+
"loss": 0.9827,
|
293 |
+
"rewards/accuracies": 0.42500001192092896,
|
294 |
+
"rewards/chosen": -0.49997982382774353,
|
295 |
+
"rewards/margins": 0.03372158855199814,
|
296 |
+
"rewards/rejected": -0.5337014198303223,
|
297 |
+
"step": 160
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.2668236217382774,
|
301 |
+
"grad_norm": 0.09462621062994003,
|
302 |
+
"learning_rate": 4.84320497372973e-06,
|
303 |
+
"logits/chosen": 16.220312118530273,
|
304 |
+
"logits/rejected": 16.105356216430664,
|
305 |
+
"logps/chosen": -0.2957116663455963,
|
306 |
+
"logps/rejected": -0.3528788089752197,
|
307 |
+
"loss": 0.9716,
|
308 |
+
"rewards/accuracies": 0.4625000059604645,
|
309 |
+
"rewards/chosen": -0.44356757402420044,
|
310 |
+
"rewards/margins": 0.08575066924095154,
|
311 |
+
"rewards/rejected": -0.5293182134628296,
|
312 |
+
"step": 170
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.28251912889935255,
|
316 |
+
"grad_norm": 0.10995513945817947,
|
317 |
+
"learning_rate": 4.824441214720629e-06,
|
318 |
+
"logits/chosen": 16.811044692993164,
|
319 |
+
"logits/rejected": 16.43205451965332,
|
320 |
+
"logps/chosen": -0.3263992369174957,
|
321 |
+
"logps/rejected": -0.35878634452819824,
|
322 |
+
"loss": 0.9546,
|
323 |
+
"rewards/accuracies": 0.4124999940395355,
|
324 |
+
"rewards/chosen": -0.4895988404750824,
|
325 |
+
"rewards/margins": 0.04858064278960228,
|
326 |
+
"rewards/rejected": -0.5381795167922974,
|
327 |
+
"step": 180
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.2982146360604277,
|
331 |
+
"grad_norm": 0.1348036825656891,
|
332 |
+
"learning_rate": 4.804657878971252e-06,
|
333 |
+
"logits/chosen": 16.816158294677734,
|
334 |
+
"logits/rejected": 16.55413055419922,
|
335 |
+
"logps/chosen": -0.31842875480651855,
|
336 |
+
"logps/rejected": -0.3791810870170593,
|
337 |
+
"loss": 0.9472,
|
338 |
+
"rewards/accuracies": 0.5249999761581421,
|
339 |
+
"rewards/chosen": -0.47764310240745544,
|
340 |
+
"rewards/margins": 0.09112847596406937,
|
341 |
+
"rewards/rejected": -0.5687715411186218,
|
342 |
+
"step": 190
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.31391014322150285,
|
346 |
+
"grad_norm": 0.13393694162368774,
|
347 |
+
"learning_rate": 4.783863644106502e-06,
|
348 |
+
"logits/chosen": 17.075885772705078,
|
349 |
+
"logits/rejected": 16.982004165649414,
|
350 |
+
"logps/chosen": -0.3368823528289795,
|
351 |
+
"logps/rejected": -0.3636801540851593,
|
352 |
+
"loss": 0.9455,
|
353 |
+
"rewards/accuracies": 0.375,
|
354 |
+
"rewards/chosen": -0.5053235292434692,
|
355 |
+
"rewards/margins": 0.04019671678543091,
|
356 |
+
"rewards/rejected": -0.5455202460289001,
|
357 |
+
"step": 200
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.31391014322150285,
|
361 |
+
"eval_logits/chosen": 17.17239761352539,
|
362 |
+
"eval_logits/rejected": 16.609193801879883,
|
363 |
+
"eval_logps/chosen": -0.33508703112602234,
|
364 |
+
"eval_logps/rejected": -0.4493505656719208,
|
365 |
+
"eval_loss": 0.9283667802810669,
|
366 |
+
"eval_rewards/accuracies": 0.4615384638309479,
|
367 |
+
"eval_rewards/chosen": -0.5026305913925171,
|
368 |
+
"eval_rewards/margins": 0.17139528691768646,
|
369 |
+
"eval_rewards/rejected": -0.67402583360672,
|
370 |
+
"eval_runtime": 14.5913,
|
371 |
+
"eval_samples_per_second": 28.236,
|
372 |
+
"eval_steps_per_second": 3.564,
|
373 |
+
"step": 200
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.329605650382578,
|
377 |
+
"grad_norm": 0.14985737204551697,
|
378 |
+
"learning_rate": 4.762067631165049e-06,
|
379 |
+
"logits/chosen": 16.92913246154785,
|
380 |
+
"logits/rejected": 16.648632049560547,
|
381 |
+
"logps/chosen": -0.3326043486595154,
|
382 |
+
"logps/rejected": -0.4218205511569977,
|
383 |
+
"loss": 0.9225,
|
384 |
+
"rewards/accuracies": 0.48750001192092896,
|
385 |
+
"rewards/chosen": -0.4989064335823059,
|
386 |
+
"rewards/margins": 0.13382436335086823,
|
387 |
+
"rewards/rejected": -0.6327308416366577,
|
388 |
+
"step": 210
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.34530115754365315,
|
392 |
+
"grad_norm": 0.16972233355045319,
|
393 |
+
"learning_rate": 4.7392794005985324e-06,
|
394 |
+
"logits/chosen": 17.074562072753906,
|
395 |
+
"logits/rejected": 16.863161087036133,
|
396 |
+
"logps/chosen": -0.3645358383655548,
|
397 |
+
"logps/rejected": -0.5221719145774841,
|
398 |
+
"loss": 0.9264,
|
399 |
+
"rewards/accuracies": 0.512499988079071,
|
400 |
+
"rewards/chosen": -0.5468038320541382,
|
401 |
+
"rewards/margins": 0.23645417392253876,
|
402 |
+
"rewards/rejected": -0.7832580208778381,
|
403 |
+
"step": 220
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.3609966647047283,
|
407 |
+
"grad_norm": 0.20796354115009308,
|
408 |
+
"learning_rate": 4.715508948078037e-06,
|
409 |
+
"logits/chosen": 17.4168643951416,
|
410 |
+
"logits/rejected": 17.00813102722168,
|
411 |
+
"logps/chosen": -0.35443297028541565,
|
412 |
+
"logps/rejected": -0.5115998983383179,
|
413 |
+
"loss": 0.9037,
|
414 |
+
"rewards/accuracies": 0.512499988079071,
|
415 |
+
"rewards/chosen": -0.5316494703292847,
|
416 |
+
"rewards/margins": 0.23575039207935333,
|
417 |
+
"rewards/rejected": -0.767399787902832,
|
418 |
+
"step": 230
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.3766921718658034,
|
422 |
+
"grad_norm": 0.1932348757982254,
|
423 |
+
"learning_rate": 4.690766700109659e-06,
|
424 |
+
"logits/chosen": 17.034719467163086,
|
425 |
+
"logits/rejected": 16.65166664123535,
|
426 |
+
"logps/chosen": -0.3426091969013214,
|
427 |
+
"logps/rejected": -0.47884297370910645,
|
428 |
+
"loss": 0.9154,
|
429 |
+
"rewards/accuracies": 0.5625,
|
430 |
+
"rewards/chosen": -0.5139138102531433,
|
431 |
+
"rewards/margins": 0.20435063540935516,
|
432 |
+
"rewards/rejected": -0.7182644605636597,
|
433 |
+
"step": 240
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.39238767902687854,
|
437 |
+
"grad_norm": 1.016450047492981,
|
438 |
+
"learning_rate": 4.665063509461098e-06,
|
439 |
+
"logits/chosen": 16.935081481933594,
|
440 |
+
"logits/rejected": 16.65024185180664,
|
441 |
+
"logps/chosen": -0.41738080978393555,
|
442 |
+
"logps/rejected": -0.48515433073043823,
|
443 |
+
"loss": 0.8774,
|
444 |
+
"rewards/accuracies": 0.42500001192092896,
|
445 |
+
"rewards/chosen": -0.6260712146759033,
|
446 |
+
"rewards/margins": 0.10166029632091522,
|
447 |
+
"rewards/rejected": -0.7277315258979797,
|
448 |
+
"step": 250
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 0.39238767902687854,
|
452 |
+
"eval_logits/chosen": 17.221881866455078,
|
453 |
+
"eval_logits/rejected": 16.536666870117188,
|
454 |
+
"eval_logps/chosen": -0.3716265559196472,
|
455 |
+
"eval_logps/rejected": -0.87992262840271,
|
456 |
+
"eval_loss": 0.8047741651535034,
|
457 |
+
"eval_rewards/accuracies": 0.5,
|
458 |
+
"eval_rewards/chosen": -0.5574398636817932,
|
459 |
+
"eval_rewards/margins": 0.7624441981315613,
|
460 |
+
"eval_rewards/rejected": -1.3198840618133545,
|
461 |
+
"eval_runtime": 14.6008,
|
462 |
+
"eval_samples_per_second": 28.218,
|
463 |
+
"eval_steps_per_second": 3.561,
|
464 |
+
"step": 250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.4080831861879537,
|
468 |
+
"grad_norm": 0.2831684648990631,
|
469 |
+
"learning_rate": 4.638410650401267e-06,
|
470 |
+
"logits/chosen": 17.084096908569336,
|
471 |
+
"logits/rejected": 16.564823150634766,
|
472 |
+
"logps/chosen": -0.38100525736808777,
|
473 |
+
"logps/rejected": -0.8173269033432007,
|
474 |
+
"loss": 0.8197,
|
475 |
+
"rewards/accuracies": 0.4375,
|
476 |
+
"rewards/chosen": -0.5715079307556152,
|
477 |
+
"rewards/margins": 0.6544824838638306,
|
478 |
+
"rewards/rejected": -1.2259904146194458,
|
479 |
+
"step": 260
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.42377869334902885,
|
483 |
+
"grad_norm": 0.9195305109024048,
|
484 |
+
"learning_rate": 4.610819813755038e-06,
|
485 |
+
"logits/chosen": 17.316537857055664,
|
486 |
+
"logits/rejected": 16.623016357421875,
|
487 |
+
"logps/chosen": -0.4713365435600281,
|
488 |
+
"logps/rejected": -1.2184536457061768,
|
489 |
+
"loss": 0.7493,
|
490 |
+
"rewards/accuracies": 0.4375,
|
491 |
+
"rewards/chosen": -0.7070047855377197,
|
492 |
+
"rewards/margins": 1.120675802230835,
|
493 |
+
"rewards/rejected": -1.8276805877685547,
|
494 |
+
"step": 270
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.439474200510104,
|
498 |
+
"grad_norm": 0.5542411804199219,
|
499 |
+
"learning_rate": 4.582303101775249e-06,
|
500 |
+
"logits/chosen": 17.173168182373047,
|
501 |
+
"logits/rejected": 16.759702682495117,
|
502 |
+
"logps/chosen": -0.4629506468772888,
|
503 |
+
"logps/rejected": -1.3020483255386353,
|
504 |
+
"loss": 0.7638,
|
505 |
+
"rewards/accuracies": 0.637499988079071,
|
506 |
+
"rewards/chosen": -0.6944260597229004,
|
507 |
+
"rewards/margins": 1.2586463689804077,
|
508 |
+
"rewards/rejected": -1.9530725479125977,
|
509 |
+
"step": 280
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.45516970767117915,
|
513 |
+
"grad_norm": 0.2836654782295227,
|
514 |
+
"learning_rate": 4.55287302283426e-06,
|
515 |
+
"logits/chosen": 17.022424697875977,
|
516 |
+
"logits/rejected": 16.43834114074707,
|
517 |
+
"logps/chosen": -0.527222216129303,
|
518 |
+
"logps/rejected": -1.632965087890625,
|
519 |
+
"loss": 0.7466,
|
520 |
+
"rewards/accuracies": 0.6625000238418579,
|
521 |
+
"rewards/chosen": -0.7908332943916321,
|
522 |
+
"rewards/margins": 1.6586145162582397,
|
523 |
+
"rewards/rejected": -2.4494476318359375,
|
524 |
+
"step": 290
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.47086521483225424,
|
528 |
+
"grad_norm": 0.658358097076416,
|
529 |
+
"learning_rate": 4.522542485937369e-06,
|
530 |
+
"logits/chosen": 16.6541690826416,
|
531 |
+
"logits/rejected": 16.34103012084961,
|
532 |
+
"logps/chosen": -0.50589519739151,
|
533 |
+
"logps/rejected": -1.8910831212997437,
|
534 |
+
"loss": 0.6982,
|
535 |
+
"rewards/accuracies": 0.699999988079071,
|
536 |
+
"rewards/chosen": -0.7588427662849426,
|
537 |
+
"rewards/margins": 2.077782154083252,
|
538 |
+
"rewards/rejected": -2.8366246223449707,
|
539 |
+
"step": 300
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.47086521483225424,
|
543 |
+
"eval_logits/chosen": 16.950870513916016,
|
544 |
+
"eval_logits/rejected": 16.154659271240234,
|
545 |
+
"eval_logps/chosen": -0.5594518184661865,
|
546 |
+
"eval_logps/rejected": -1.9617934226989746,
|
547 |
+
"eval_loss": 0.7422243356704712,
|
548 |
+
"eval_rewards/accuracies": 0.7115384340286255,
|
549 |
+
"eval_rewards/chosen": -0.839177668094635,
|
550 |
+
"eval_rewards/margins": 2.103512763977051,
|
551 |
+
"eval_rewards/rejected": -2.942690372467041,
|
552 |
+
"eval_runtime": 14.5969,
|
553 |
+
"eval_samples_per_second": 28.225,
|
554 |
+
"eval_steps_per_second": 3.562,
|
555 |
+
"step": 300
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.4865607219933294,
|
559 |
+
"grad_norm": 1.1044840812683105,
|
560 |
+
"learning_rate": 4.491324795060491e-06,
|
561 |
+
"logits/chosen": 17.233802795410156,
|
562 |
+
"logits/rejected": 16.292484283447266,
|
563 |
+
"logps/chosen": -0.5940151214599609,
|
564 |
+
"logps/rejected": -2.041588306427002,
|
565 |
+
"loss": 0.7415,
|
566 |
+
"rewards/accuracies": 0.6625000238418579,
|
567 |
+
"rewards/chosen": -0.8910226821899414,
|
568 |
+
"rewards/margins": 2.1713600158691406,
|
569 |
+
"rewards/rejected": -3.062382459640503,
|
570 |
+
"step": 310
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.5022562291544046,
|
574 |
+
"grad_norm": 0.524356484413147,
|
575 |
+
"learning_rate": 4.4592336433146e-06,
|
576 |
+
"logits/chosen": 17.155719757080078,
|
577 |
+
"logits/rejected": 16.328996658325195,
|
578 |
+
"logps/chosen": -0.6095865964889526,
|
579 |
+
"logps/rejected": -1.831730604171753,
|
580 |
+
"loss": 0.7249,
|
581 |
+
"rewards/accuracies": 0.6499999761581421,
|
582 |
+
"rewards/chosen": -0.9143797755241394,
|
583 |
+
"rewards/margins": 1.8332160711288452,
|
584 |
+
"rewards/rejected": -2.747596025466919,
|
585 |
+
"step": 320
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.5179517363154797,
|
589 |
+
"grad_norm": 0.4383145570755005,
|
590 |
+
"learning_rate": 4.426283106939474e-06,
|
591 |
+
"logits/chosen": 16.774551391601562,
|
592 |
+
"logits/rejected": 16.532238006591797,
|
593 |
+
"logps/chosen": -0.669482946395874,
|
594 |
+
"logps/rejected": -1.7058660984039307,
|
595 |
+
"loss": 0.6868,
|
596 |
+
"rewards/accuracies": 0.6625000238418579,
|
597 |
+
"rewards/chosen": -1.004224419593811,
|
598 |
+
"rewards/margins": 1.5545748472213745,
|
599 |
+
"rewards/rejected": -2.5587992668151855,
|
600 |
+
"step": 330
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.5336472434765548,
|
604 |
+
"grad_norm": 3.194026231765747,
|
605 |
+
"learning_rate": 4.3924876391293915e-06,
|
606 |
+
"logits/chosen": 16.963787078857422,
|
607 |
+
"logits/rejected": 16.3092041015625,
|
608 |
+
"logps/chosen": -0.7091449499130249,
|
609 |
+
"logps/rejected": -2.1812453269958496,
|
610 |
+
"loss": 0.706,
|
611 |
+
"rewards/accuracies": 0.7250000238418579,
|
612 |
+
"rewards/chosen": -1.0637174844741821,
|
613 |
+
"rewards/margins": 2.208150863647461,
|
614 |
+
"rewards/rejected": -3.2718684673309326,
|
615 |
+
"step": 340
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.5493427506376299,
|
619 |
+
"grad_norm": 0.5639687776565552,
|
620 |
+
"learning_rate": 4.357862063693486e-06,
|
621 |
+
"logits/chosen": 17.019062042236328,
|
622 |
+
"logits/rejected": 16.315940856933594,
|
623 |
+
"logps/chosen": -0.8996315002441406,
|
624 |
+
"logps/rejected": -2.0307648181915283,
|
625 |
+
"loss": 0.674,
|
626 |
+
"rewards/accuracies": 0.75,
|
627 |
+
"rewards/chosen": -1.349447250366211,
|
628 |
+
"rewards/margins": 1.696699857711792,
|
629 |
+
"rewards/rejected": -3.046147108078003,
|
630 |
+
"step": 350
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 0.5493427506376299,
|
634 |
+
"eval_logits/chosen": 16.70261001586914,
|
635 |
+
"eval_logits/rejected": 15.845681190490723,
|
636 |
+
"eval_logps/chosen": -0.9138904809951782,
|
637 |
+
"eval_logps/rejected": -2.5003392696380615,
|
638 |
+
"eval_loss": 0.6938430070877075,
|
639 |
+
"eval_rewards/accuracies": 0.8461538553237915,
|
640 |
+
"eval_rewards/chosen": -1.3708356618881226,
|
641 |
+
"eval_rewards/margins": 2.3796732425689697,
|
642 |
+
"eval_rewards/rejected": -3.75050950050354,
|
643 |
+
"eval_runtime": 14.6072,
|
644 |
+
"eval_samples_per_second": 28.205,
|
645 |
+
"eval_steps_per_second": 3.56,
|
646 |
+
"step": 350
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.5650382577987051,
|
650 |
+
"grad_norm": 0.6917555928230286,
|
651 |
+
"learning_rate": 4.322421568553529e-06,
|
652 |
+
"logits/chosen": 16.269399642944336,
|
653 |
+
"logits/rejected": 15.73193645477295,
|
654 |
+
"logps/chosen": -1.0171478986740112,
|
655 |
+
"logps/rejected": -2.201298236846924,
|
656 |
+
"loss": 0.651,
|
657 |
+
"rewards/accuracies": 0.6499999761581421,
|
658 |
+
"rewards/chosen": -1.525721788406372,
|
659 |
+
"rewards/margins": 1.7762253284454346,
|
660 |
+
"rewards/rejected": -3.3019473552703857,
|
661 |
+
"step": 360
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.5807337649597802,
|
665 |
+
"grad_norm": 1.151584267616272,
|
666 |
+
"learning_rate": 4.286181699082008e-06,
|
667 |
+
"logits/chosen": 15.88188648223877,
|
668 |
+
"logits/rejected": 15.261810302734375,
|
669 |
+
"logps/chosen": -1.2272206544876099,
|
670 |
+
"logps/rejected": -3.0203287601470947,
|
671 |
+
"loss": 0.665,
|
672 |
+
"rewards/accuracies": 0.800000011920929,
|
673 |
+
"rewards/chosen": -1.8408310413360596,
|
674 |
+
"rewards/margins": 2.689661741256714,
|
675 |
+
"rewards/rejected": -4.530492305755615,
|
676 |
+
"step": 370
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.5964292721208554,
|
680 |
+
"grad_norm": 1.1879621744155884,
|
681 |
+
"learning_rate": 4.249158351283414e-06,
|
682 |
+
"logits/chosen": 15.906834602355957,
|
683 |
+
"logits/rejected": 15.42895221710205,
|
684 |
+
"logps/chosen": -1.5027008056640625,
|
685 |
+
"logps/rejected": -2.9172558784484863,
|
686 |
+
"loss": 0.5998,
|
687 |
+
"rewards/accuracies": 0.887499988079071,
|
688 |
+
"rewards/chosen": -2.2540509700775146,
|
689 |
+
"rewards/margins": 2.1218326091766357,
|
690 |
+
"rewards/rejected": -4.37588357925415,
|
691 |
+
"step": 380
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.6121247792819305,
|
695 |
+
"grad_norm": 1.678884744644165,
|
696 |
+
"learning_rate": 4.211367764821722e-06,
|
697 |
+
"logits/chosen": 15.630645751953125,
|
698 |
+
"logits/rejected": 14.888415336608887,
|
699 |
+
"logps/chosen": -2.231367349624634,
|
700 |
+
"logps/rejected": -3.5754780769348145,
|
701 |
+
"loss": 0.5937,
|
702 |
+
"rewards/accuracies": 0.824999988079071,
|
703 |
+
"rewards/chosen": -3.347050905227661,
|
704 |
+
"rewards/margins": 2.0161664485931396,
|
705 |
+
"rewards/rejected": -5.363216876983643,
|
706 |
+
"step": 390
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.6278202864430057,
|
710 |
+
"grad_norm": 2.008671998977661,
|
711 |
+
"learning_rate": 4.172826515897146e-06,
|
712 |
+
"logits/chosen": 15.024614334106445,
|
713 |
+
"logits/rejected": 14.981277465820312,
|
714 |
+
"logps/chosen": -2.665980815887451,
|
715 |
+
"logps/rejected": -3.582763195037842,
|
716 |
+
"loss": 0.5722,
|
717 |
+
"rewards/accuracies": 0.7749999761581421,
|
718 |
+
"rewards/chosen": -3.998971462249756,
|
719 |
+
"rewards/margins": 1.3751739263534546,
|
720 |
+
"rewards/rejected": -5.374145030975342,
|
721 |
+
"step": 400
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.6278202864430057,
|
725 |
+
"eval_logits/chosen": 15.45953369140625,
|
726 |
+
"eval_logits/rejected": 14.663763046264648,
|
727 |
+
"eval_logps/chosen": -2.7269070148468018,
|
728 |
+
"eval_logps/rejected": -4.235719680786133,
|
729 |
+
"eval_loss": 0.5668805837631226,
|
730 |
+
"eval_rewards/accuracies": 0.8846153616905212,
|
731 |
+
"eval_rewards/chosen": -4.090360641479492,
|
732 |
+
"eval_rewards/margins": 2.263219118118286,
|
733 |
+
"eval_rewards/rejected": -6.353579998016357,
|
734 |
+
"eval_runtime": 14.6036,
|
735 |
+
"eval_samples_per_second": 28.212,
|
736 |
+
"eval_steps_per_second": 3.561,
|
737 |
+
"step": 400
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.6435157936040808,
|
741 |
+
"grad_norm": 1.018362045288086,
|
742 |
+
"learning_rate": 4.133551509975264e-06,
|
743 |
+
"logits/chosen": 15.027656555175781,
|
744 |
+
"logits/rejected": 14.74786376953125,
|
745 |
+
"logps/chosen": -2.76598858833313,
|
746 |
+
"logps/rejected": -4.335003852844238,
|
747 |
+
"loss": 0.5412,
|
748 |
+
"rewards/accuracies": 0.8374999761581421,
|
749 |
+
"rewards/chosen": -4.148982524871826,
|
750 |
+
"rewards/margins": 2.3535237312316895,
|
751 |
+
"rewards/rejected": -6.502506256103516,
|
752 |
+
"step": 410
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.659211300765156,
|
756 |
+
"grad_norm": 2.2899765968322754,
|
757 |
+
"learning_rate": 4.093559974371725e-06,
|
758 |
+
"logits/chosen": 15.15197467803955,
|
759 |
+
"logits/rejected": 14.681947708129883,
|
760 |
+
"logps/chosen": -2.9831995964050293,
|
761 |
+
"logps/rejected": -4.723050117492676,
|
762 |
+
"loss": 0.4652,
|
763 |
+
"rewards/accuracies": 0.862500011920929,
|
764 |
+
"rewards/chosen": -4.474799633026123,
|
765 |
+
"rewards/margins": 2.6097757816314697,
|
766 |
+
"rewards/rejected": -7.0845746994018555,
|
767 |
+
"step": 420
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.6749068079262311,
|
771 |
+
"grad_norm": 1.419196605682373,
|
772 |
+
"learning_rate": 4.052869450695776e-06,
|
773 |
+
"logits/chosen": 15.000317573547363,
|
774 |
+
"logits/rejected": 14.538591384887695,
|
775 |
+
"logps/chosen": -3.543004274368286,
|
776 |
+
"logps/rejected": -5.037484169006348,
|
777 |
+
"loss": 0.427,
|
778 |
+
"rewards/accuracies": 0.8999999761581421,
|
779 |
+
"rewards/chosen": -5.314507007598877,
|
780 |
+
"rewards/margins": 2.2417192459106445,
|
781 |
+
"rewards/rejected": -7.556225776672363,
|
782 |
+
"step": 430
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.6906023150873063,
|
786 |
+
"grad_norm": 1.639215111732483,
|
787 |
+
"learning_rate": 4.011497787155938e-06,
|
788 |
+
"logits/chosen": 14.798017501831055,
|
789 |
+
"logits/rejected": 14.236108779907227,
|
790 |
+
"logps/chosen": -4.154418468475342,
|
791 |
+
"logps/rejected": -6.0606184005737305,
|
792 |
+
"loss": 0.4692,
|
793 |
+
"rewards/accuracies": 0.8374999761581421,
|
794 |
+
"rewards/chosen": -6.231626987457275,
|
795 |
+
"rewards/margins": 2.859299421310425,
|
796 |
+
"rewards/rejected": -9.090926170349121,
|
797 |
+
"step": 440
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.7062978222483814,
|
801 |
+
"grad_norm": 1.6229957342147827,
|
802 |
+
"learning_rate": 3.969463130731183e-06,
|
803 |
+
"logits/chosen": 14.495908737182617,
|
804 |
+
"logits/rejected": 13.978658676147461,
|
805 |
+
"logps/chosen": -3.4806721210479736,
|
806 |
+
"logps/rejected": -5.746390342712402,
|
807 |
+
"loss": 0.4218,
|
808 |
+
"rewards/accuracies": 0.8500000238418579,
|
809 |
+
"rewards/chosen": -5.221007823944092,
|
810 |
+
"rewards/margins": 3.3985772132873535,
|
811 |
+
"rewards/rejected": -8.619585037231445,
|
812 |
+
"step": 450
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.7062978222483814,
|
816 |
+
"eval_logits/chosen": 15.033548355102539,
|
817 |
+
"eval_logits/rejected": 14.20669174194336,
|
818 |
+
"eval_logps/chosen": -3.423999547958374,
|
819 |
+
"eval_logps/rejected": -5.855647563934326,
|
820 |
+
"eval_loss": 0.45794492959976196,
|
821 |
+
"eval_rewards/accuracies": 0.942307710647583,
|
822 |
+
"eval_rewards/chosen": -5.135998725891113,
|
823 |
+
"eval_rewards/margins": 3.6474733352661133,
|
824 |
+
"eval_rewards/rejected": -8.783472061157227,
|
825 |
+
"eval_runtime": 14.6088,
|
826 |
+
"eval_samples_per_second": 28.202,
|
827 |
+
"eval_steps_per_second": 3.559,
|
828 |
+
"step": 450
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.7219933294094566,
|
832 |
+
"grad_norm": 1.7993106842041016,
|
833 |
+
"learning_rate": 3.92678391921108e-06,
|
834 |
+
"logits/chosen": 14.569323539733887,
|
835 |
+
"logits/rejected": 13.937005996704102,
|
836 |
+
"logps/chosen": -3.3623528480529785,
|
837 |
+
"logps/rejected": -5.784353733062744,
|
838 |
+
"loss": 0.3675,
|
839 |
+
"rewards/accuracies": 0.8999999761581421,
|
840 |
+
"rewards/chosen": -5.043529033660889,
|
841 |
+
"rewards/margins": 3.6330013275146484,
|
842 |
+
"rewards/rejected": -8.676530838012695,
|
843 |
+
"step": 460
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.7376888365705316,
|
847 |
+
"grad_norm": 2.1828088760375977,
|
848 |
+
"learning_rate": 3.88347887310836e-06,
|
849 |
+
"logits/chosen": 13.90056037902832,
|
850 |
+
"logits/rejected": 13.489587783813477,
|
851 |
+
"logps/chosen": -3.959341049194336,
|
852 |
+
"logps/rejected": -6.217314720153809,
|
853 |
+
"loss": 0.3653,
|
854 |
+
"rewards/accuracies": 0.862500011920929,
|
855 |
+
"rewards/chosen": -5.939011573791504,
|
856 |
+
"rewards/margins": 3.3869614601135254,
|
857 |
+
"rewards/rejected": -9.325971603393555,
|
858 |
+
"step": 470
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.7533843437316068,
|
862 |
+
"grad_norm": 2.128547191619873,
|
863 |
+
"learning_rate": 3.839566987447492e-06,
|
864 |
+
"logits/chosen": 14.113011360168457,
|
865 |
+
"logits/rejected": 13.571691513061523,
|
866 |
+
"logps/chosen": -4.004420280456543,
|
867 |
+
"logps/rejected": -6.216452121734619,
|
868 |
+
"loss": 0.3439,
|
869 |
+
"rewards/accuracies": 0.9125000238418579,
|
870 |
+
"rewards/chosen": -6.0066304206848145,
|
871 |
+
"rewards/margins": 3.3180477619171143,
|
872 |
+
"rewards/rejected": -9.324677467346191,
|
873 |
+
"step": 480
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.7690798508926819,
|
877 |
+
"grad_norm": 3.2651569843292236,
|
878 |
+
"learning_rate": 3.795067523432826e-06,
|
879 |
+
"logits/chosen": 13.918218612670898,
|
880 |
+
"logits/rejected": 13.147412300109863,
|
881 |
+
"logps/chosen": -4.574521064758301,
|
882 |
+
"logps/rejected": -7.411087989807129,
|
883 |
+
"loss": 0.3645,
|
884 |
+
"rewards/accuracies": 0.8999999761581421,
|
885 |
+
"rewards/chosen": -6.861782073974609,
|
886 |
+
"rewards/margins": 4.254849910736084,
|
887 |
+
"rewards/rejected": -11.116632461547852,
|
888 |
+
"step": 490
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 0.7847753580537571,
|
892 |
+
"grad_norm": 2.163595676422119,
|
893 |
+
"learning_rate": 3.7500000000000005e-06,
|
894 |
+
"logits/chosen": 13.972379684448242,
|
895 |
+
"logits/rejected": 13.390825271606445,
|
896 |
+
"logps/chosen": -3.931866407394409,
|
897 |
+
"logps/rejected": -6.547454833984375,
|
898 |
+
"loss": 0.3698,
|
899 |
+
"rewards/accuracies": 0.9125000238418579,
|
900 |
+
"rewards/chosen": -5.897799491882324,
|
901 |
+
"rewards/margins": 3.923382520675659,
|
902 |
+
"rewards/rejected": -9.821184158325195,
|
903 |
+
"step": 500
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.7847753580537571,
|
907 |
+
"eval_logits/chosen": 14.325434684753418,
|
908 |
+
"eval_logits/rejected": 13.4517822265625,
|
909 |
+
"eval_logps/chosen": -3.7717440128326416,
|
910 |
+
"eval_logps/rejected": -6.710938453674316,
|
911 |
+
"eval_loss": 0.38915327191352844,
|
912 |
+
"eval_rewards/accuracies": 0.942307710647583,
|
913 |
+
"eval_rewards/chosen": -5.657615661621094,
|
914 |
+
"eval_rewards/margins": 4.408792018890381,
|
915 |
+
"eval_rewards/rejected": -10.066408157348633,
|
916 |
+
"eval_runtime": 14.5996,
|
917 |
+
"eval_samples_per_second": 28.22,
|
918 |
+
"eval_steps_per_second": 3.562,
|
919 |
+
"step": 500
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.8004708652148322,
|
923 |
+
"grad_norm": 2.7098453044891357,
|
924 |
+
"learning_rate": 3.7043841852542884e-06,
|
925 |
+
"logits/chosen": 13.909749984741211,
|
926 |
+
"logits/rejected": 13.060315132141113,
|
927 |
+
"logps/chosen": -3.848449230194092,
|
928 |
+
"logps/rejected": -6.747067928314209,
|
929 |
+
"loss": 0.3547,
|
930 |
+
"rewards/accuracies": 0.875,
|
931 |
+
"rewards/chosen": -5.772673606872559,
|
932 |
+
"rewards/margins": 4.347928524017334,
|
933 |
+
"rewards/rejected": -10.120603561401367,
|
934 |
+
"step": 510
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.8161663723759074,
|
938 |
+
"grad_norm": 1.693467140197754,
|
939 |
+
"learning_rate": 3.658240087799655e-06,
|
940 |
+
"logits/chosen": 13.52336311340332,
|
941 |
+
"logits/rejected": 13.026924133300781,
|
942 |
+
"logps/chosen": -4.218991279602051,
|
943 |
+
"logps/rejected": -6.984036445617676,
|
944 |
+
"loss": 0.3718,
|
945 |
+
"rewards/accuracies": 0.9375,
|
946 |
+
"rewards/chosen": -6.328486442565918,
|
947 |
+
"rewards/margins": 4.1475677490234375,
|
948 |
+
"rewards/rejected": -10.476054191589355,
|
949 |
+
"step": 520
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.8318618795369825,
|
953 |
+
"grad_norm": 2.4496915340423584,
|
954 |
+
"learning_rate": 3.611587947962319e-06,
|
955 |
+
"logits/chosen": 13.840197563171387,
|
956 |
+
"logits/rejected": 13.181543350219727,
|
957 |
+
"logps/chosen": -4.708582401275635,
|
958 |
+
"logps/rejected": -7.19864559173584,
|
959 |
+
"loss": 0.329,
|
960 |
+
"rewards/accuracies": 0.925000011920929,
|
961 |
+
"rewards/chosen": -7.062872886657715,
|
962 |
+
"rewards/margins": 3.7350947856903076,
|
963 |
+
"rewards/rejected": -10.797967910766602,
|
964 |
+
"step": 530
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.8475573866980577,
|
968 |
+
"grad_norm": 5.772508144378662,
|
969 |
+
"learning_rate": 3.564448228912682e-06,
|
970 |
+
"logits/chosen": 13.432130813598633,
|
971 |
+
"logits/rejected": 12.825490951538086,
|
972 |
+
"logps/chosen": -4.506819248199463,
|
973 |
+
"logps/rejected": -7.506214141845703,
|
974 |
+
"loss": 0.2544,
|
975 |
+
"rewards/accuracies": 0.925000011920929,
|
976 |
+
"rewards/chosen": -6.760228633880615,
|
977 |
+
"rewards/margins": 4.499091625213623,
|
978 |
+
"rewards/rejected": -11.259321212768555,
|
979 |
+
"step": 540
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.8632528938591328,
|
983 |
+
"grad_norm": 1.7776503562927246,
|
984 |
+
"learning_rate": 3.516841607689501e-06,
|
985 |
+
"logits/chosen": 13.536295890808105,
|
986 |
+
"logits/rejected": 12.703726768493652,
|
987 |
+
"logps/chosen": -4.724976062774658,
|
988 |
+
"logps/rejected": -7.864454746246338,
|
989 |
+
"loss": 0.2795,
|
990 |
+
"rewards/accuracies": 0.925000011920929,
|
991 |
+
"rewards/chosen": -7.087464332580566,
|
992 |
+
"rewards/margins": 4.7092180252075195,
|
993 |
+
"rewards/rejected": -11.796682357788086,
|
994 |
+
"step": 550
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.8632528938591328,
|
998 |
+
"eval_logits/chosen": 13.692171096801758,
|
999 |
+
"eval_logits/rejected": 12.81371021270752,
|
1000 |
+
"eval_logps/chosen": -4.32358980178833,
|
1001 |
+
"eval_logps/rejected": -7.658167839050293,
|
1002 |
+
"eval_loss": 0.335475891828537,
|
1003 |
+
"eval_rewards/accuracies": 0.942307710647583,
|
1004 |
+
"eval_rewards/chosen": -6.485384464263916,
|
1005 |
+
"eval_rewards/margins": 5.00186824798584,
|
1006 |
+
"eval_rewards/rejected": -11.487252235412598,
|
1007 |
+
"eval_runtime": 14.6093,
|
1008 |
+
"eval_samples_per_second": 28.201,
|
1009 |
+
"eval_steps_per_second": 3.559,
|
1010 |
+
"step": 550
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.878948401020208,
|
1014 |
+
"grad_norm": 1.7613197565078735,
|
1015 |
+
"learning_rate": 3.4687889661302577e-06,
|
1016 |
+
"logits/chosen": 13.689091682434082,
|
1017 |
+
"logits/rejected": 12.911500930786133,
|
1018 |
+
"logps/chosen": -3.8375942707061768,
|
1019 |
+
"logps/rejected": -6.98319149017334,
|
1020 |
+
"loss": 0.3008,
|
1021 |
+
"rewards/accuracies": 0.9125000238418579,
|
1022 |
+
"rewards/chosen": -5.7563910484313965,
|
1023 |
+
"rewards/margins": 4.7183966636657715,
|
1024 |
+
"rewards/rejected": -10.474787712097168,
|
1025 |
+
"step": 560
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.8946439081812831,
|
1029 |
+
"grad_norm": 2.1285247802734375,
|
1030 |
+
"learning_rate": 3.4203113817116955e-06,
|
1031 |
+
"logits/chosen": 13.902356147766113,
|
1032 |
+
"logits/rejected": 12.766775131225586,
|
1033 |
+
"logps/chosen": -3.7727108001708984,
|
1034 |
+
"logps/rejected": -7.6362409591674805,
|
1035 |
+
"loss": 0.2816,
|
1036 |
+
"rewards/accuracies": 0.9375,
|
1037 |
+
"rewards/chosen": -5.6590657234191895,
|
1038 |
+
"rewards/margins": 5.795297622680664,
|
1039 |
+
"rewards/rejected": -11.454363822937012,
|
1040 |
+
"step": 570
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.9103394153423583,
|
1044 |
+
"grad_norm": 1.6965669393539429,
|
1045 |
+
"learning_rate": 3.3714301183045382e-06,
|
1046 |
+
"logits/chosen": 13.374112129211426,
|
1047 |
+
"logits/rejected": 12.414613723754883,
|
1048 |
+
"logps/chosen": -4.747832298278809,
|
1049 |
+
"logps/rejected": -8.099973678588867,
|
1050 |
+
"loss": 0.2921,
|
1051 |
+
"rewards/accuracies": 0.9125000238418579,
|
1052 |
+
"rewards/chosen": -7.121748924255371,
|
1053 |
+
"rewards/margins": 5.028212547302246,
|
1054 |
+
"rewards/rejected": -12.1499605178833,
|
1055 |
+
"step": 580
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.9260349225034334,
|
1059 |
+
"grad_norm": 2.5470242500305176,
|
1060 |
+
"learning_rate": 3.3221666168464584e-06,
|
1061 |
+
"logits/chosen": 13.287660598754883,
|
1062 |
+
"logits/rejected": 12.554139137268066,
|
1063 |
+
"logps/chosen": -4.818625450134277,
|
1064 |
+
"logps/rejected": -8.005637168884277,
|
1065 |
+
"loss": 0.3155,
|
1066 |
+
"rewards/accuracies": 0.949999988079071,
|
1067 |
+
"rewards/chosen": -7.227938175201416,
|
1068 |
+
"rewards/margins": 4.780518531799316,
|
1069 |
+
"rewards/rejected": -12.008456230163574,
|
1070 |
+
"step": 590
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.9417304296645085,
|
1074 |
+
"grad_norm": 2.374859571456909,
|
1075 |
+
"learning_rate": 3.272542485937369e-06,
|
1076 |
+
"logits/chosen": 13.152572631835938,
|
1077 |
+
"logits/rejected": 12.557012557983398,
|
1078 |
+
"logps/chosen": -3.7581982612609863,
|
1079 |
+
"logps/rejected": -6.985205173492432,
|
1080 |
+
"loss": 0.2565,
|
1081 |
+
"rewards/accuracies": 0.9375,
|
1082 |
+
"rewards/chosen": -5.6372971534729,
|
1083 |
+
"rewards/margins": 4.840510368347168,
|
1084 |
+
"rewards/rejected": -10.477807998657227,
|
1085 |
+
"step": 600
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.9417304296645085,
|
1089 |
+
"eval_logits/chosen": 13.585193634033203,
|
1090 |
+
"eval_logits/rejected": 12.657953262329102,
|
1091 |
+
"eval_logps/chosen": -4.077207088470459,
|
1092 |
+
"eval_logps/rejected": -7.660572528839111,
|
1093 |
+
"eval_loss": 0.30504748225212097,
|
1094 |
+
"eval_rewards/accuracies": 0.9615384340286255,
|
1095 |
+
"eval_rewards/chosen": -6.115810871124268,
|
1096 |
+
"eval_rewards/margins": 5.375046730041504,
|
1097 |
+
"eval_rewards/rejected": -11.49085807800293,
|
1098 |
+
"eval_runtime": 14.6046,
|
1099 |
+
"eval_samples_per_second": 28.21,
|
1100 |
+
"eval_steps_per_second": 3.561,
|
1101 |
+
"step": 600
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.9574259368255836,
|
1105 |
+
"grad_norm": 3.3574252128601074,
|
1106 |
+
"learning_rate": 3.222579492361179e-06,
|
1107 |
+
"logits/chosen": 12.703638076782227,
|
1108 |
+
"logits/rejected": 11.910614013671875,
|
1109 |
+
"logps/chosen": -4.188838005065918,
|
1110 |
+
"logps/rejected": -7.538239479064941,
|
1111 |
+
"loss": 0.2527,
|
1112 |
+
"rewards/accuracies": 0.9624999761581421,
|
1113 |
+
"rewards/chosen": -6.283257961273193,
|
1114 |
+
"rewards/margins": 5.024100303649902,
|
1115 |
+
"rewards/rejected": -11.30735969543457,
|
1116 |
+
"step": 610
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.9731214439866588,
|
1120 |
+
"grad_norm": 1.726338505744934,
|
1121 |
+
"learning_rate": 3.1722995515381644e-06,
|
1122 |
+
"logits/chosen": 13.002418518066406,
|
1123 |
+
"logits/rejected": 12.060869216918945,
|
1124 |
+
"logps/chosen": -4.711850166320801,
|
1125 |
+
"logps/rejected": -8.62987995147705,
|
1126 |
+
"loss": 0.2895,
|
1127 |
+
"rewards/accuracies": 0.9624999761581421,
|
1128 |
+
"rewards/chosen": -7.067776679992676,
|
1129 |
+
"rewards/margins": 5.877043724060059,
|
1130 |
+
"rewards/rejected": -12.944819450378418,
|
1131 |
+
"step": 620
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.9888169511477339,
|
1135 |
+
"grad_norm": 2.5146796703338623,
|
1136 |
+
"learning_rate": 3.121724717912138e-06,
|
1137 |
+
"logits/chosen": 13.190832138061523,
|
1138 |
+
"logits/rejected": 11.927602767944336,
|
1139 |
+
"logps/chosen": -4.228806495666504,
|
1140 |
+
"logps/rejected": -8.436616897583008,
|
1141 |
+
"loss": 0.2284,
|
1142 |
+
"rewards/accuracies": 0.9750000238418579,
|
1143 |
+
"rewards/chosen": -6.343210220336914,
|
1144 |
+
"rewards/margins": 6.311715602874756,
|
1145 |
+
"rewards/rejected": -12.654926300048828,
|
1146 |
+
"step": 630
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 1.003139101432215,
|
1150 |
+
"grad_norm": 4.229348659515381,
|
1151 |
+
"learning_rate": 3.0708771752766397e-06,
|
1152 |
+
"logits/chosen": 13.159438133239746,
|
1153 |
+
"logits/rejected": 12.417133331298828,
|
1154 |
+
"logps/chosen": -4.084325313568115,
|
1155 |
+
"logps/rejected": -7.705818176269531,
|
1156 |
+
"loss": 0.2276,
|
1157 |
+
"rewards/accuracies": 0.9178082346916199,
|
1158 |
+
"rewards/chosen": -6.126489162445068,
|
1159 |
+
"rewards/margins": 5.432239055633545,
|
1160 |
+
"rewards/rejected": -11.558727264404297,
|
1161 |
+
"step": 640
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.0188346085932902,
|
1165 |
+
"grad_norm": 4.93217134475708,
|
1166 |
+
"learning_rate": 3.019779227044398e-06,
|
1167 |
+
"logits/chosen": 13.347890853881836,
|
1168 |
+
"logits/rejected": 12.535311698913574,
|
1169 |
+
"logps/chosen": -4.311320781707764,
|
1170 |
+
"logps/rejected": -7.402029514312744,
|
1171 |
+
"loss": 0.2353,
|
1172 |
+
"rewards/accuracies": 0.9375,
|
1173 |
+
"rewards/chosen": -6.466981410980225,
|
1174 |
+
"rewards/margins": 4.636063098907471,
|
1175 |
+
"rewards/rejected": -11.103044509887695,
|
1176 |
+
"step": 650
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 1.0188346085932902,
|
1180 |
+
"eval_logits/chosen": 13.296299934387207,
|
1181 |
+
"eval_logits/rejected": 12.358522415161133,
|
1182 |
+
"eval_logps/chosen": -4.177649974822998,
|
1183 |
+
"eval_logps/rejected": -8.009714126586914,
|
1184 |
+
"eval_loss": 0.28009530901908875,
|
1185 |
+
"eval_rewards/accuracies": 0.9615384340286255,
|
1186 |
+
"eval_rewards/chosen": -6.266475200653076,
|
1187 |
+
"eval_rewards/margins": 5.748095989227295,
|
1188 |
+
"eval_rewards/rejected": -12.014572143554688,
|
1189 |
+
"eval_runtime": 14.6091,
|
1190 |
+
"eval_samples_per_second": 28.202,
|
1191 |
+
"eval_steps_per_second": 3.559,
|
1192 |
+
"step": 650
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.0345301157543654,
|
1196 |
+
"grad_norm": 2.0475847721099854,
|
1197 |
+
"learning_rate": 2.9684532864643123e-06,
|
1198 |
+
"logits/chosen": 13.43058967590332,
|
1199 |
+
"logits/rejected": 12.661652565002441,
|
1200 |
+
"logps/chosen": -3.9617011547088623,
|
1201 |
+
"logps/rejected": -7.092957973480225,
|
1202 |
+
"loss": 0.2562,
|
1203 |
+
"rewards/accuracies": 0.9125000238418579,
|
1204 |
+
"rewards/chosen": -5.942551136016846,
|
1205 |
+
"rewards/margins": 4.69688606262207,
|
1206 |
+
"rewards/rejected": -10.639436721801758,
|
1207 |
+
"step": 660
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 1.0502256229154405,
|
1211 |
+
"grad_norm": 4.578652381896973,
|
1212 |
+
"learning_rate": 2.9169218667902562e-06,
|
1213 |
+
"logits/chosen": 13.032757759094238,
|
1214 |
+
"logits/rejected": 12.292248725891113,
|
1215 |
+
"logps/chosen": -3.679547071456909,
|
1216 |
+
"logps/rejected": -7.649219512939453,
|
1217 |
+
"loss": 0.2271,
|
1218 |
+
"rewards/accuracies": 0.987500011920929,
|
1219 |
+
"rewards/chosen": -5.519320487976074,
|
1220 |
+
"rewards/margins": 5.9545087814331055,
|
1221 |
+
"rewards/rejected": -11.47382926940918,
|
1222 |
+
"step": 670
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 1.0659211300765157,
|
1226 |
+
"grad_norm": 3.0983850955963135,
|
1227 |
+
"learning_rate": 2.8652075714060296e-06,
|
1228 |
+
"logits/chosen": 12.6952486038208,
|
1229 |
+
"logits/rejected": 11.917645454406738,
|
1230 |
+
"logps/chosen": -4.468019008636475,
|
1231 |
+
"logps/rejected": -8.505170822143555,
|
1232 |
+
"loss": 0.179,
|
1233 |
+
"rewards/accuracies": 0.9375,
|
1234 |
+
"rewards/chosen": -6.702028751373291,
|
1235 |
+
"rewards/margins": 6.055727958679199,
|
1236 |
+
"rewards/rejected": -12.757757186889648,
|
1237 |
+
"step": 680
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 1.0816166372375908,
|
1241 |
+
"grad_norm": 3.071026086807251,
|
1242 |
+
"learning_rate": 2.813333083910761e-06,
|
1243 |
+
"logits/chosen": 12.464409828186035,
|
1244 |
+
"logits/rejected": 11.680208206176758,
|
1245 |
+
"logps/chosen": -4.6339874267578125,
|
1246 |
+
"logps/rejected": -8.639189720153809,
|
1247 |
+
"loss": 0.2541,
|
1248 |
+
"rewards/accuracies": 0.9750000238418579,
|
1249 |
+
"rewards/chosen": -6.950981140136719,
|
1250 |
+
"rewards/margins": 6.007803440093994,
|
1251 |
+
"rewards/rejected": -12.958784103393555,
|
1252 |
+
"step": 690
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 1.097312144398666,
|
1256 |
+
"grad_norm": 1.3732093572616577,
|
1257 |
+
"learning_rate": 2.761321158169134e-06,
|
1258 |
+
"logits/chosen": 12.308462142944336,
|
1259 |
+
"logits/rejected": 11.674012184143066,
|
1260 |
+
"logps/chosen": -4.638761043548584,
|
1261 |
+
"logps/rejected": -8.936636924743652,
|
1262 |
+
"loss": 0.1919,
|
1263 |
+
"rewards/accuracies": 0.987500011920929,
|
1264 |
+
"rewards/chosen": -6.958141326904297,
|
1265 |
+
"rewards/margins": 6.446814060211182,
|
1266 |
+
"rewards/rejected": -13.40495491027832,
|
1267 |
+
"step": 700
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 1.097312144398666,
|
1271 |
+
"eval_logits/chosen": 13.217435836791992,
|
1272 |
+
"eval_logits/rejected": 12.272343635559082,
|
1273 |
+
"eval_logps/chosen": -4.347932815551758,
|
1274 |
+
"eval_logps/rejected": -8.441193580627441,
|
1275 |
+
"eval_loss": 0.25916898250579834,
|
1276 |
+
"eval_rewards/accuracies": 0.9615384340286255,
|
1277 |
+
"eval_rewards/chosen": -6.521899223327637,
|
1278 |
+
"eval_rewards/margins": 6.139890670776367,
|
1279 |
+
"eval_rewards/rejected": -12.661789894104004,
|
1280 |
+
"eval_runtime": 14.6102,
|
1281 |
+
"eval_samples_per_second": 28.2,
|
1282 |
+
"eval_steps_per_second": 3.559,
|
1283 |
+
"step": 700
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.113007651559741,
|
1287 |
+
"grad_norm": 3.5739834308624268,
|
1288 |
+
"learning_rate": 2.70919460833079e-06,
|
1289 |
+
"logits/chosen": 12.828997611999512,
|
1290 |
+
"logits/rejected": 12.09227180480957,
|
1291 |
+
"logps/chosen": -4.3685622215271,
|
1292 |
+
"logps/rejected": -8.672820091247559,
|
1293 |
+
"loss": 0.2187,
|
1294 |
+
"rewards/accuracies": 0.9624999761581421,
|
1295 |
+
"rewards/chosen": -6.552844047546387,
|
1296 |
+
"rewards/margins": 6.456387519836426,
|
1297 |
+
"rewards/rejected": -13.009231567382812,
|
1298 |
+
"step": 710
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.1287031587208163,
|
1302 |
+
"grad_norm": 11.475191116333008,
|
1303 |
+
"learning_rate": 2.6569762988232838e-06,
|
1304 |
+
"logits/chosen": 13.344253540039062,
|
1305 |
+
"logits/rejected": 12.190181732177734,
|
1306 |
+
"logps/chosen": -4.567076206207275,
|
1307 |
+
"logps/rejected": -8.719629287719727,
|
1308 |
+
"loss": 0.1847,
|
1309 |
+
"rewards/accuracies": 0.9375,
|
1310 |
+
"rewards/chosen": -6.85061502456665,
|
1311 |
+
"rewards/margins": 6.228829383850098,
|
1312 |
+
"rewards/rejected": -13.079442977905273,
|
1313 |
+
"step": 720
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 1.1443986658818912,
|
1317 |
+
"grad_norm": 1.8145791292190552,
|
1318 |
+
"learning_rate": 2.604689134322999e-06,
|
1319 |
+
"logits/chosen": 12.794706344604492,
|
1320 |
+
"logits/rejected": 12.407793045043945,
|
1321 |
+
"logps/chosen": -4.447361946105957,
|
1322 |
+
"logps/rejected": -8.19226360321045,
|
1323 |
+
"loss": 0.1914,
|
1324 |
+
"rewards/accuracies": 0.9125000238418579,
|
1325 |
+
"rewards/chosen": -6.67104434967041,
|
1326 |
+
"rewards/margins": 5.6173505783081055,
|
1327 |
+
"rewards/rejected": -12.288395881652832,
|
1328 |
+
"step": 730
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.1600941730429664,
|
1332 |
+
"grad_norm": 3.763374090194702,
|
1333 |
+
"learning_rate": 2.5523560497083927e-06,
|
1334 |
+
"logits/chosen": 12.97741413116455,
|
1335 |
+
"logits/rejected": 12.224584579467773,
|
1336 |
+
"logps/chosen": -4.449431419372559,
|
1337 |
+
"logps/rejected": -8.755613327026367,
|
1338 |
+
"loss": 0.2055,
|
1339 |
+
"rewards/accuracies": 0.9375,
|
1340 |
+
"rewards/chosen": -6.6741461753845215,
|
1341 |
+
"rewards/margins": 6.459272861480713,
|
1342 |
+
"rewards/rejected": -13.133418083190918,
|
1343 |
+
"step": 740
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 1.1757896802040415,
|
1347 |
+
"grad_norm": 2.816288948059082,
|
1348 |
+
"learning_rate": 2.5e-06,
|
1349 |
+
"logits/chosen": 12.736323356628418,
|
1350 |
+
"logits/rejected": 12.039944648742676,
|
1351 |
+
"logps/chosen": -4.300374507904053,
|
1352 |
+
"logps/rejected": -8.570680618286133,
|
1353 |
+
"loss": 0.185,
|
1354 |
+
"rewards/accuracies": 0.949999988079071,
|
1355 |
+
"rewards/chosen": -6.4505615234375,
|
1356 |
+
"rewards/margins": 6.405457973480225,
|
1357 |
+
"rewards/rejected": -12.856019973754883,
|
1358 |
+
"step": 750
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.1757896802040415,
|
1362 |
+
"eval_logits/chosen": 13.174198150634766,
|
1363 |
+
"eval_logits/rejected": 12.189348220825195,
|
1364 |
+
"eval_logps/chosen": -4.302711009979248,
|
1365 |
+
"eval_logps/rejected": -8.745194435119629,
|
1366 |
+
"eval_loss": 0.24307754635810852,
|
1367 |
+
"eval_rewards/accuracies": 0.9615384340286255,
|
1368 |
+
"eval_rewards/chosen": -6.454067707061768,
|
1369 |
+
"eval_rewards/margins": 6.663723945617676,
|
1370 |
+
"eval_rewards/rejected": -13.117791175842285,
|
1371 |
+
"eval_runtime": 14.5945,
|
1372 |
+
"eval_samples_per_second": 28.23,
|
1373 |
+
"eval_steps_per_second": 3.563,
|
1374 |
+
"step": 750
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.1914851873651167,
|
1378 |
+
"grad_norm": 2.6783711910247803,
|
1379 |
+
"learning_rate": 2.447643950291608e-06,
|
1380 |
+
"logits/chosen": 12.992940902709961,
|
1381 |
+
"logits/rejected": 12.16160774230957,
|
1382 |
+
"logps/chosen": -4.402331829071045,
|
1383 |
+
"logps/rejected": -8.848995208740234,
|
1384 |
+
"loss": 0.1958,
|
1385 |
+
"rewards/accuracies": 0.9750000238418579,
|
1386 |
+
"rewards/chosen": -6.603497505187988,
|
1387 |
+
"rewards/margins": 6.6699957847595215,
|
1388 |
+
"rewards/rejected": -13.273493766784668,
|
1389 |
+
"step": 760
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.2071806945261918,
|
1393 |
+
"grad_norm": 1.580244779586792,
|
1394 |
+
"learning_rate": 2.3953108656770018e-06,
|
1395 |
+
"logits/chosen": 12.522805213928223,
|
1396 |
+
"logits/rejected": 11.664339065551758,
|
1397 |
+
"logps/chosen": -3.9605941772460938,
|
1398 |
+
"logps/rejected": -8.103001594543457,
|
1399 |
+
"loss": 0.1921,
|
1400 |
+
"rewards/accuracies": 0.949999988079071,
|
1401 |
+
"rewards/chosen": -5.940891265869141,
|
1402 |
+
"rewards/margins": 6.213610649108887,
|
1403 |
+
"rewards/rejected": -12.154502868652344,
|
1404 |
+
"step": 770
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 1.222876201687267,
|
1408 |
+
"grad_norm": 2.2647345066070557,
|
1409 |
+
"learning_rate": 2.3430237011767166e-06,
|
1410 |
+
"logits/chosen": 12.654630661010742,
|
1411 |
+
"logits/rejected": 11.677509307861328,
|
1412 |
+
"logps/chosen": -4.634467601776123,
|
1413 |
+
"logps/rejected": -9.647830963134766,
|
1414 |
+
"loss": 0.1731,
|
1415 |
+
"rewards/accuracies": 0.987500011920929,
|
1416 |
+
"rewards/chosen": -6.951702117919922,
|
1417 |
+
"rewards/margins": 7.520044803619385,
|
1418 |
+
"rewards/rejected": -14.471745491027832,
|
1419 |
+
"step": 780
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.2385717088483421,
|
1423 |
+
"grad_norm": 3.8534202575683594,
|
1424 |
+
"learning_rate": 2.290805391669212e-06,
|
1425 |
+
"logits/chosen": 12.548233032226562,
|
1426 |
+
"logits/rejected": 11.633279800415039,
|
1427 |
+
"logps/chosen": -4.690009593963623,
|
1428 |
+
"logps/rejected": -8.73483657836914,
|
1429 |
+
"loss": 0.1844,
|
1430 |
+
"rewards/accuracies": 0.949999988079071,
|
1431 |
+
"rewards/chosen": -7.0350141525268555,
|
1432 |
+
"rewards/margins": 6.067240238189697,
|
1433 |
+
"rewards/rejected": -13.102254867553711,
|
1434 |
+
"step": 790
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 1.2542672160094173,
|
1438 |
+
"grad_norm": 2.8962628841400146,
|
1439 |
+
"learning_rate": 2.238678841830867e-06,
|
1440 |
+
"logits/chosen": 11.90459156036377,
|
1441 |
+
"logits/rejected": 11.352374076843262,
|
1442 |
+
"logps/chosen": -4.448246479034424,
|
1443 |
+
"logps/rejected": -8.658299446105957,
|
1444 |
+
"loss": 0.1638,
|
1445 |
+
"rewards/accuracies": 0.949999988079071,
|
1446 |
+
"rewards/chosen": -6.67236852645874,
|
1447 |
+
"rewards/margins": 6.315079689025879,
|
1448 |
+
"rewards/rejected": -12.987447738647461,
|
1449 |
+
"step": 800
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.2542672160094173,
|
1453 |
+
"eval_logits/chosen": 12.893868446350098,
|
1454 |
+
"eval_logits/rejected": 11.863032341003418,
|
1455 |
+
"eval_logps/chosen": -4.604159832000732,
|
1456 |
+
"eval_logps/rejected": -9.257932662963867,
|
1457 |
+
"eval_loss": 0.21881447732448578,
|
1458 |
+
"eval_rewards/accuracies": 0.9615384340286255,
|
1459 |
+
"eval_rewards/chosen": -6.906240463256836,
|
1460 |
+
"eval_rewards/margins": 6.980658531188965,
|
1461 |
+
"eval_rewards/rejected": -13.886898040771484,
|
1462 |
+
"eval_runtime": 14.6079,
|
1463 |
+
"eval_samples_per_second": 28.204,
|
1464 |
+
"eval_steps_per_second": 3.56,
|
1465 |
+
"step": 800
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.2699627231704924,
|
1469 |
+
"grad_norm": 3.5829524993896484,
|
1470 |
+
"learning_rate": 2.186666916089239e-06,
|
1471 |
+
"logits/chosen": 12.411908149719238,
|
1472 |
+
"logits/rejected": 11.730254173278809,
|
1473 |
+
"logps/chosen": -4.65117883682251,
|
1474 |
+
"logps/rejected": -9.094849586486816,
|
1475 |
+
"loss": 0.1827,
|
1476 |
+
"rewards/accuracies": 0.9624999761581421,
|
1477 |
+
"rewards/chosen": -6.976768493652344,
|
1478 |
+
"rewards/margins": 6.665505886077881,
|
1479 |
+
"rewards/rejected": -13.642274856567383,
|
1480 |
+
"step": 810
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 1.2856582303315676,
|
1484 |
+
"grad_norm": 2.836439371109009,
|
1485 |
+
"learning_rate": 2.134792428593971e-06,
|
1486 |
+
"logits/chosen": 12.173138618469238,
|
1487 |
+
"logits/rejected": 11.570637702941895,
|
1488 |
+
"logps/chosen": -4.847201824188232,
|
1489 |
+
"logps/rejected": -8.849002838134766,
|
1490 |
+
"loss": 0.1716,
|
1491 |
+
"rewards/accuracies": 0.949999988079071,
|
1492 |
+
"rewards/chosen": -7.270802974700928,
|
1493 |
+
"rewards/margins": 6.002701282501221,
|
1494 |
+
"rewards/rejected": -13.273503303527832,
|
1495 |
+
"step": 820
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 1.3013537374926427,
|
1499 |
+
"grad_norm": 3.5850038528442383,
|
1500 |
+
"learning_rate": 2.0830781332097446e-06,
|
1501 |
+
"logits/chosen": 12.883340835571289,
|
1502 |
+
"logits/rejected": 12.123892784118652,
|
1503 |
+
"logps/chosen": -4.7816948890686035,
|
1504 |
+
"logps/rejected": -9.729695320129395,
|
1505 |
+
"loss": 0.1652,
|
1506 |
+
"rewards/accuracies": 0.9375,
|
1507 |
+
"rewards/chosen": -7.172542572021484,
|
1508 |
+
"rewards/margins": 7.421999931335449,
|
1509 |
+
"rewards/rejected": -14.594541549682617,
|
1510 |
+
"step": 830
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 1.3170492446537179,
|
1514 |
+
"grad_norm": 1.9497729539871216,
|
1515 |
+
"learning_rate": 2.031546713535688e-06,
|
1516 |
+
"logits/chosen": 12.579580307006836,
|
1517 |
+
"logits/rejected": 11.674839973449707,
|
1518 |
+
"logps/chosen": -4.67056131362915,
|
1519 |
+
"logps/rejected": -9.12755298614502,
|
1520 |
+
"loss": 0.1881,
|
1521 |
+
"rewards/accuracies": 0.9375,
|
1522 |
+
"rewards/chosen": -7.0058417320251465,
|
1523 |
+
"rewards/margins": 6.68548583984375,
|
1524 |
+
"rewards/rejected": -13.691328048706055,
|
1525 |
+
"step": 840
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 1.332744751814793,
|
1529 |
+
"grad_norm": 2.5810794830322266,
|
1530 |
+
"learning_rate": 1.9802207729556023e-06,
|
1531 |
+
"logits/chosen": 12.369009017944336,
|
1532 |
+
"logits/rejected": 11.520233154296875,
|
1533 |
+
"logps/chosen": -4.780073165893555,
|
1534 |
+
"logps/rejected": -9.808363914489746,
|
1535 |
+
"loss": 0.2051,
|
1536 |
+
"rewards/accuracies": 0.987500011920929,
|
1537 |
+
"rewards/chosen": -7.17011022567749,
|
1538 |
+
"rewards/margins": 7.542436122894287,
|
1539 |
+
"rewards/rejected": -14.712547302246094,
|
1540 |
+
"step": 850
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 1.332744751814793,
|
1544 |
+
"eval_logits/chosen": 12.70075511932373,
|
1545 |
+
"eval_logits/rejected": 11.632950782775879,
|
1546 |
+
"eval_logps/chosen": -4.634037494659424,
|
1547 |
+
"eval_logps/rejected": -9.374123573303223,
|
1548 |
+
"eval_loss": 0.20189520716667175,
|
1549 |
+
"eval_rewards/accuracies": 0.9615384340286255,
|
1550 |
+
"eval_rewards/chosen": -6.951055526733398,
|
1551 |
+
"eval_rewards/margins": 7.110130310058594,
|
1552 |
+
"eval_rewards/rejected": -14.061185836791992,
|
1553 |
+
"eval_runtime": 14.6066,
|
1554 |
+
"eval_samples_per_second": 28.206,
|
1555 |
+
"eval_steps_per_second": 3.56,
|
1556 |
+
"step": 850
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.3484402589758682,
|
1560 |
+
"grad_norm": 5.187539577484131,
|
1561 |
+
"learning_rate": 1.9291228247233607e-06,
|
1562 |
+
"logits/chosen": 12.224112510681152,
|
1563 |
+
"logits/rejected": 11.01191234588623,
|
1564 |
+
"logps/chosen": -4.748395919799805,
|
1565 |
+
"logps/rejected": -9.206069946289062,
|
1566 |
+
"loss": 0.2083,
|
1567 |
+
"rewards/accuracies": 0.925000011920929,
|
1568 |
+
"rewards/chosen": -7.122593879699707,
|
1569 |
+
"rewards/margins": 6.686511039733887,
|
1570 |
+
"rewards/rejected": -13.809106826782227,
|
1571 |
+
"step": 860
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 1.3641357661369433,
|
1575 |
+
"grad_norm": 1.1569608449935913,
|
1576 |
+
"learning_rate": 1.8782752820878636e-06,
|
1577 |
+
"logits/chosen": 11.579218864440918,
|
1578 |
+
"logits/rejected": 10.995697975158691,
|
1579 |
+
"logps/chosen": -4.387156009674072,
|
1580 |
+
"logps/rejected": -8.937141418457031,
|
1581 |
+
"loss": 0.1782,
|
1582 |
+
"rewards/accuracies": 0.987500011920929,
|
1583 |
+
"rewards/chosen": -6.580733299255371,
|
1584 |
+
"rewards/margins": 6.824978828430176,
|
1585 |
+
"rewards/rejected": -13.405713081359863,
|
1586 |
+
"step": 870
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 1.3798312732980185,
|
1590 |
+
"grad_norm": 5.9647111892700195,
|
1591 |
+
"learning_rate": 1.827700448461836e-06,
|
1592 |
+
"logits/chosen": 12.533722877502441,
|
1593 |
+
"logits/rejected": 12.121667861938477,
|
1594 |
+
"logps/chosen": -3.9464848041534424,
|
1595 |
+
"logps/rejected": -7.782477378845215,
|
1596 |
+
"loss": 0.237,
|
1597 |
+
"rewards/accuracies": 0.925000011920929,
|
1598 |
+
"rewards/chosen": -5.919726848602295,
|
1599 |
+
"rewards/margins": 5.753990173339844,
|
1600 |
+
"rewards/rejected": -11.67371654510498,
|
1601 |
+
"step": 880
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 1.3955267804590936,
|
1605 |
+
"grad_norm": 3.4284207820892334,
|
1606 |
+
"learning_rate": 1.7774205076388207e-06,
|
1607 |
+
"logits/chosen": 12.185909271240234,
|
1608 |
+
"logits/rejected": 11.781715393066406,
|
1609 |
+
"logps/chosen": -4.110888481140137,
|
1610 |
+
"logps/rejected": -8.276056289672852,
|
1611 |
+
"loss": 0.1904,
|
1612 |
+
"rewards/accuracies": 0.9624999761581421,
|
1613 |
+
"rewards/chosen": -6.166332721710205,
|
1614 |
+
"rewards/margins": 6.2477498054504395,
|
1615 |
+
"rewards/rejected": -12.414082527160645,
|
1616 |
+
"step": 890
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.4112222876201688,
|
1620 |
+
"grad_norm": 2.537830352783203,
|
1621 |
+
"learning_rate": 1.7274575140626318e-06,
|
1622 |
+
"logits/chosen": 12.28978443145752,
|
1623 |
+
"logits/rejected": 11.305529594421387,
|
1624 |
+
"logps/chosen": -3.9210026264190674,
|
1625 |
+
"logps/rejected": -8.545848846435547,
|
1626 |
+
"loss": 0.1508,
|
1627 |
+
"rewards/accuracies": 0.9624999761581421,
|
1628 |
+
"rewards/chosen": -5.881503582000732,
|
1629 |
+
"rewards/margins": 6.937270164489746,
|
1630 |
+
"rewards/rejected": -12.818774223327637,
|
1631 |
+
"step": 900
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 1.4112222876201688,
|
1635 |
+
"eval_logits/chosen": 12.542530059814453,
|
1636 |
+
"eval_logits/rejected": 11.450419425964355,
|
1637 |
+
"eval_logps/chosen": -4.722529888153076,
|
1638 |
+
"eval_logps/rejected": -9.546163558959961,
|
1639 |
+
"eval_loss": 0.18640650808811188,
|
1640 |
+
"eval_rewards/accuracies": 0.9807692170143127,
|
1641 |
+
"eval_rewards/chosen": -7.083794593811035,
|
1642 |
+
"eval_rewards/margins": 7.235450744628906,
|
1643 |
+
"eval_rewards/rejected": -14.319246292114258,
|
1644 |
+
"eval_runtime": 14.6107,
|
1645 |
+
"eval_samples_per_second": 28.199,
|
1646 |
+
"eval_steps_per_second": 3.559,
|
1647 |
+
"step": 900
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.426917794781244,
|
1651 |
+
"grad_norm": 1.1588759422302246,
|
1652 |
+
"learning_rate": 1.677833383153542e-06,
|
1653 |
+
"logits/chosen": 12.432401657104492,
|
1654 |
+
"logits/rejected": 11.247361183166504,
|
1655 |
+
"logps/chosen": -4.893294334411621,
|
1656 |
+
"logps/rejected": -9.311574935913086,
|
1657 |
+
"loss": 0.1446,
|
1658 |
+
"rewards/accuracies": 0.987500011920929,
|
1659 |
+
"rewards/chosen": -7.339941501617432,
|
1660 |
+
"rewards/margins": 6.627419948577881,
|
1661 |
+
"rewards/rejected": -13.967363357543945,
|
1662 |
+
"step": 910
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 1.442613301942319,
|
1666 |
+
"grad_norm": 2.4712307453155518,
|
1667 |
+
"learning_rate": 1.6285698816954626e-06,
|
1668 |
+
"logits/chosen": 12.139798164367676,
|
1669 |
+
"logits/rejected": 11.248186111450195,
|
1670 |
+
"logps/chosen": -5.167681694030762,
|
1671 |
+
"logps/rejected": -10.253265380859375,
|
1672 |
+
"loss": 0.163,
|
1673 |
+
"rewards/accuracies": 0.9750000238418579,
|
1674 |
+
"rewards/chosen": -7.751523017883301,
|
1675 |
+
"rewards/margins": 7.6283769607543945,
|
1676 |
+
"rewards/rejected": -15.379899978637695,
|
1677 |
+
"step": 920
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.4583088091033942,
|
1681 |
+
"grad_norm": 1.881538987159729,
|
1682 |
+
"learning_rate": 1.5796886182883053e-06,
|
1683 |
+
"logits/chosen": 11.9426908493042,
|
1684 |
+
"logits/rejected": 11.341384887695312,
|
1685 |
+
"logps/chosen": -5.030823230743408,
|
1686 |
+
"logps/rejected": -9.114843368530273,
|
1687 |
+
"loss": 0.1773,
|
1688 |
+
"rewards/accuracies": 0.949999988079071,
|
1689 |
+
"rewards/chosen": -7.54623556137085,
|
1690 |
+
"rewards/margins": 6.126028060913086,
|
1691 |
+
"rewards/rejected": -13.672262191772461,
|
1692 |
+
"step": 930
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 1.4740043162644694,
|
1696 |
+
"grad_norm": 5.751014709472656,
|
1697 |
+
"learning_rate": 1.5312110338697427e-06,
|
1698 |
+
"logits/chosen": 11.921320915222168,
|
1699 |
+
"logits/rejected": 11.005578994750977,
|
1700 |
+
"logps/chosen": -4.730319976806641,
|
1701 |
+
"logps/rejected": -9.198332786560059,
|
1702 |
+
"loss": 0.2058,
|
1703 |
+
"rewards/accuracies": 0.9624999761581421,
|
1704 |
+
"rewards/chosen": -7.095480442047119,
|
1705 |
+
"rewards/margins": 6.702019691467285,
|
1706 |
+
"rewards/rejected": -13.797500610351562,
|
1707 |
+
"step": 940
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 1.4896998234255445,
|
1711 |
+
"grad_norm": 2.656139850616455,
|
1712 |
+
"learning_rate": 1.4831583923105e-06,
|
1713 |
+
"logits/chosen": 12.132013320922852,
|
1714 |
+
"logits/rejected": 11.254085540771484,
|
1715 |
+
"logps/chosen": -4.832255840301514,
|
1716 |
+
"logps/rejected": -9.473350524902344,
|
1717 |
+
"loss": 0.1827,
|
1718 |
+
"rewards/accuracies": 0.9624999761581421,
|
1719 |
+
"rewards/chosen": -7.24838399887085,
|
1720 |
+
"rewards/margins": 6.961642265319824,
|
1721 |
+
"rewards/rejected": -14.210027694702148,
|
1722 |
+
"step": 950
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 1.4896998234255445,
|
1726 |
+
"eval_logits/chosen": 12.534186363220215,
|
1727 |
+
"eval_logits/rejected": 11.43524169921875,
|
1728 |
+
"eval_logps/chosen": -4.488946914672852,
|
1729 |
+
"eval_logps/rejected": -9.457845687866211,
|
1730 |
+
"eval_loss": 0.1744592934846878,
|
1731 |
+
"eval_rewards/accuracies": 0.9807692170143127,
|
1732 |
+
"eval_rewards/chosen": -6.733420372009277,
|
1733 |
+
"eval_rewards/margins": 7.4533467292785645,
|
1734 |
+
"eval_rewards/rejected": -14.186767578125,
|
1735 |
+
"eval_runtime": 14.6075,
|
1736 |
+
"eval_samples_per_second": 28.205,
|
1737 |
+
"eval_steps_per_second": 3.56,
|
1738 |
+
"step": 950
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.5053953305866195,
|
1742 |
+
"grad_norm": 4.976431369781494,
|
1743 |
+
"learning_rate": 1.4355517710873184e-06,
|
1744 |
+
"logits/chosen": 12.053160667419434,
|
1745 |
+
"logits/rejected": 11.461877822875977,
|
1746 |
+
"logps/chosen": -4.3384108543396,
|
1747 |
+
"logps/rejected": -8.933584213256836,
|
1748 |
+
"loss": 0.1559,
|
1749 |
+
"rewards/accuracies": 0.949999988079071,
|
1750 |
+
"rewards/chosen": -6.5076165199279785,
|
1751 |
+
"rewards/margins": 6.892758846282959,
|
1752 |
+
"rewards/rejected": -13.400375366210938,
|
1753 |
+
"step": 960
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 1.5210908377476948,
|
1757 |
+
"grad_norm": 2.786695718765259,
|
1758 |
+
"learning_rate": 1.388412052037682e-06,
|
1759 |
+
"logits/chosen": 12.072885513305664,
|
1760 |
+
"logits/rejected": 10.973172187805176,
|
1761 |
+
"logps/chosen": -4.89219331741333,
|
1762 |
+
"logps/rejected": -9.545186996459961,
|
1763 |
+
"loss": 0.1334,
|
1764 |
+
"rewards/accuracies": 0.9375,
|
1765 |
+
"rewards/chosen": -7.338289737701416,
|
1766 |
+
"rewards/margins": 6.979489803314209,
|
1767 |
+
"rewards/rejected": -14.317779541015625,
|
1768 |
+
"step": 970
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 1.5367863449087698,
|
1772 |
+
"grad_norm": 5.252014636993408,
|
1773 |
+
"learning_rate": 1.3417599122003464e-06,
|
1774 |
+
"logits/chosen": 12.37597370147705,
|
1775 |
+
"logits/rejected": 11.43901538848877,
|
1776 |
+
"logps/chosen": -5.274794101715088,
|
1777 |
+
"logps/rejected": -9.821117401123047,
|
1778 |
+
"loss": 0.1477,
|
1779 |
+
"rewards/accuracies": 0.949999988079071,
|
1780 |
+
"rewards/chosen": -7.912191867828369,
|
1781 |
+
"rewards/margins": 6.819484710693359,
|
1782 |
+
"rewards/rejected": -14.73167610168457,
|
1783 |
+
"step": 980
|
1784 |
+
},
|
1785 |
+
{
|
1786 |
+
"epoch": 1.5524818520698451,
|
1787 |
+
"grad_norm": 2.243185520172119,
|
1788 |
+
"learning_rate": 1.2956158147457116e-06,
|
1789 |
+
"logits/chosen": 11.921972274780273,
|
1790 |
+
"logits/rejected": 11.30908489227295,
|
1791 |
+
"logps/chosen": -5.393095970153809,
|
1792 |
+
"logps/rejected": -10.215553283691406,
|
1793 |
+
"loss": 0.1561,
|
1794 |
+
"rewards/accuracies": 0.949999988079071,
|
1795 |
+
"rewards/chosen": -8.089644432067871,
|
1796 |
+
"rewards/margins": 7.233686923980713,
|
1797 |
+
"rewards/rejected": -15.323330879211426,
|
1798 |
+
"step": 990
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 1.56817735923092,
|
1802 |
+
"grad_norm": 3.4886062145233154,
|
1803 |
+
"learning_rate": 1.2500000000000007e-06,
|
1804 |
+
"logits/chosen": 11.753881454467773,
|
1805 |
+
"logits/rejected": 11.269731521606445,
|
1806 |
+
"logps/chosen": -5.015429496765137,
|
1807 |
+
"logps/rejected": -10.169350624084473,
|
1808 |
+
"loss": 0.1771,
|
1809 |
+
"rewards/accuracies": 0.9750000238418579,
|
1810 |
+
"rewards/chosen": -7.523144721984863,
|
1811 |
+
"rewards/margins": 7.7308807373046875,
|
1812 |
+
"rewards/rejected": -15.25402545928955,
|
1813 |
+
"step": 1000
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 1.56817735923092,
|
1817 |
+
"eval_logits/chosen": 12.437786102294922,
|
1818 |
+
"eval_logits/rejected": 11.32490348815918,
|
1819 |
+
"eval_logps/chosen": -4.6446380615234375,
|
1820 |
+
"eval_logps/rejected": -9.707358360290527,
|
1821 |
+
"eval_loss": 0.16595196723937988,
|
1822 |
+
"eval_rewards/accuracies": 0.9807692170143127,
|
1823 |
+
"eval_rewards/chosen": -6.966956615447998,
|
1824 |
+
"eval_rewards/margins": 7.594080448150635,
|
1825 |
+
"eval_rewards/rejected": -14.561037063598633,
|
1826 |
+
"eval_runtime": 14.6109,
|
1827 |
+
"eval_samples_per_second": 28.198,
|
1828 |
+
"eval_steps_per_second": 3.559,
|
1829 |
+
"step": 1000
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 1.5838728663919954,
|
1833 |
+
"grad_norm": 1.7607649564743042,
|
1834 |
+
"learning_rate": 1.204932476567175e-06,
|
1835 |
+
"logits/chosen": 11.258343696594238,
|
1836 |
+
"logits/rejected": 10.613565444946289,
|
1837 |
+
"logps/chosen": -4.758576393127441,
|
1838 |
+
"logps/rejected": -9.250303268432617,
|
1839 |
+
"loss": 0.1668,
|
1840 |
+
"rewards/accuracies": 0.9750000238418579,
|
1841 |
+
"rewards/chosen": -7.137864589691162,
|
1842 |
+
"rewards/margins": 6.7375898361206055,
|
1843 |
+
"rewards/rejected": -13.875455856323242,
|
1844 |
+
"step": 1010
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 1.5995683735530704,
|
1848 |
+
"grad_norm": 3.2954118251800537,
|
1849 |
+
"learning_rate": 1.160433012552508e-06,
|
1850 |
+
"logits/chosen": 12.226592063903809,
|
1851 |
+
"logits/rejected": 11.355180740356445,
|
1852 |
+
"logps/chosen": -4.198899269104004,
|
1853 |
+
"logps/rejected": -8.675564765930176,
|
1854 |
+
"loss": 0.1824,
|
1855 |
+
"rewards/accuracies": 0.9624999761581421,
|
1856 |
+
"rewards/chosen": -6.298348903656006,
|
1857 |
+
"rewards/margins": 6.714995384216309,
|
1858 |
+
"rewards/rejected": -13.013345718383789,
|
1859 |
+
"step": 1020
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 1.6152638807141457,
|
1863 |
+
"grad_norm": 2.833040237426758,
|
1864 |
+
"learning_rate": 1.11652112689164e-06,
|
1865 |
+
"logits/chosen": 11.937528610229492,
|
1866 |
+
"logits/rejected": 11.127592086791992,
|
1867 |
+
"logps/chosen": -4.438723087310791,
|
1868 |
+
"logps/rejected": -9.106756210327148,
|
1869 |
+
"loss": 0.1567,
|
1870 |
+
"rewards/accuracies": 0.987500011920929,
|
1871 |
+
"rewards/chosen": -6.658083915710449,
|
1872 |
+
"rewards/margins": 7.002050876617432,
|
1873 |
+
"rewards/rejected": -13.660135269165039,
|
1874 |
+
"step": 1030
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 1.6309593878752207,
|
1878 |
+
"grad_norm": 2.0544891357421875,
|
1879 |
+
"learning_rate": 1.073216080788921e-06,
|
1880 |
+
"logits/chosen": 12.242444038391113,
|
1881 |
+
"logits/rejected": 11.25694465637207,
|
1882 |
+
"logps/chosen": -4.525513172149658,
|
1883 |
+
"logps/rejected": -9.212661743164062,
|
1884 |
+
"loss": 0.1682,
|
1885 |
+
"rewards/accuracies": 0.987500011920929,
|
1886 |
+
"rewards/chosen": -6.78826904296875,
|
1887 |
+
"rewards/margins": 7.030723571777344,
|
1888 |
+
"rewards/rejected": -13.818992614746094,
|
1889 |
+
"step": 1040
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 1.6466548950362958,
|
1893 |
+
"grad_norm": 1.6990854740142822,
|
1894 |
+
"learning_rate": 1.0305368692688175e-06,
|
1895 |
+
"logits/chosen": 11.99101448059082,
|
1896 |
+
"logits/rejected": 11.161852836608887,
|
1897 |
+
"logps/chosen": -4.299143314361572,
|
1898 |
+
"logps/rejected": -9.032526016235352,
|
1899 |
+
"loss": 0.1143,
|
1900 |
+
"rewards/accuracies": 0.9624999761581421,
|
1901 |
+
"rewards/chosen": -6.448714256286621,
|
1902 |
+
"rewards/margins": 7.100072383880615,
|
1903 |
+
"rewards/rejected": -13.548787117004395,
|
1904 |
+
"step": 1050
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 1.6466548950362958,
|
1908 |
+
"eval_logits/chosen": 12.486811637878418,
|
1909 |
+
"eval_logits/rejected": 11.354048728942871,
|
1910 |
+
"eval_logps/chosen": -4.389483451843262,
|
1911 |
+
"eval_logps/rejected": -9.478667259216309,
|
1912 |
+
"eval_loss": 0.16117088496685028,
|
1913 |
+
"eval_rewards/accuracies": 0.9807692170143127,
|
1914 |
+
"eval_rewards/chosen": -6.584225654602051,
|
1915 |
+
"eval_rewards/margins": 7.633774280548096,
|
1916 |
+
"eval_rewards/rejected": -14.217998504638672,
|
1917 |
+
"eval_runtime": 14.6006,
|
1918 |
+
"eval_samples_per_second": 28.218,
|
1919 |
+
"eval_steps_per_second": 3.561,
|
1920 |
+
"step": 1050
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.662350402197371,
|
1924 |
+
"grad_norm": 3.3203821182250977,
|
1925 |
+
"learning_rate": 9.88502212844063e-07,
|
1926 |
+
"logits/chosen": 12.17997932434082,
|
1927 |
+
"logits/rejected": 11.155837059020996,
|
1928 |
+
"logps/chosen": -4.206795692443848,
|
1929 |
+
"logps/rejected": -9.341482162475586,
|
1930 |
+
"loss": 0.1631,
|
1931 |
+
"rewards/accuracies": 1.0,
|
1932 |
+
"rewards/chosen": -6.310193061828613,
|
1933 |
+
"rewards/margins": 7.702028751373291,
|
1934 |
+
"rewards/rejected": -14.012222290039062,
|
1935 |
+
"step": 1060
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.678045909358446,
|
1939 |
+
"grad_norm": 2.4238297939300537,
|
1940 |
+
"learning_rate": 9.471305493042243e-07,
|
1941 |
+
"logits/chosen": 11.849737167358398,
|
1942 |
+
"logits/rejected": 10.839106559753418,
|
1943 |
+
"logps/chosen": -4.497702598571777,
|
1944 |
+
"logps/rejected": -9.431967735290527,
|
1945 |
+
"loss": 0.1347,
|
1946 |
+
"rewards/accuracies": 1.0,
|
1947 |
+
"rewards/chosen": -6.746554374694824,
|
1948 |
+
"rewards/margins": 7.401397705078125,
|
1949 |
+
"rewards/rejected": -14.14795207977295,
|
1950 |
+
"step": 1070
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 1.6937414165195213,
|
1954 |
+
"grad_norm": 1.895890712738037,
|
1955 |
+
"learning_rate": 9.064400256282757e-07,
|
1956 |
+
"logits/chosen": 12.01026725769043,
|
1957 |
+
"logits/rejected": 11.010753631591797,
|
1958 |
+
"logps/chosen": -4.6886305809021,
|
1959 |
+
"logps/rejected": -9.496674537658691,
|
1960 |
+
"loss": 0.1076,
|
1961 |
+
"rewards/accuracies": 0.9750000238418579,
|
1962 |
+
"rewards/chosen": -7.032945156097412,
|
1963 |
+
"rewards/margins": 7.212066650390625,
|
1964 |
+
"rewards/rejected": -14.245012283325195,
|
1965 |
+
"step": 1080
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 1.7094369236805964,
|
1969 |
+
"grad_norm": 4.748386859893799,
|
1970 |
+
"learning_rate": 8.664484900247363e-07,
|
1971 |
+
"logits/chosen": 11.74091911315918,
|
1972 |
+
"logits/rejected": 11.233245849609375,
|
1973 |
+
"logps/chosen": -5.176927089691162,
|
1974 |
+
"logps/rejected": -9.68712043762207,
|
1975 |
+
"loss": 0.1532,
|
1976 |
+
"rewards/accuracies": 0.9624999761581421,
|
1977 |
+
"rewards/chosen": -7.765390872955322,
|
1978 |
+
"rewards/margins": 6.765290260314941,
|
1979 |
+
"rewards/rejected": -14.530679702758789,
|
1980 |
+
"step": 1090
|
1981 |
+
},
|
1982 |
+
{
|
1983 |
+
"epoch": 1.7251324308416716,
|
1984 |
+
"grad_norm": 2.932032346725464,
|
1985 |
+
"learning_rate": 8.271734841028553e-07,
|
1986 |
+
"logits/chosen": 11.53050708770752,
|
1987 |
+
"logits/rejected": 10.704401969909668,
|
1988 |
+
"logps/chosen": -5.003798484802246,
|
1989 |
+
"logps/rejected": -10.222925186157227,
|
1990 |
+
"loss": 0.1632,
|
1991 |
+
"rewards/accuracies": 0.9624999761581421,
|
1992 |
+
"rewards/chosen": -7.505698204040527,
|
1993 |
+
"rewards/margins": 7.8286895751953125,
|
1994 |
+
"rewards/rejected": -15.334388732910156,
|
1995 |
+
"step": 1100
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 1.7251324308416716,
|
1999 |
+
"eval_logits/chosen": 12.376419067382812,
|
2000 |
+
"eval_logits/rejected": 11.235088348388672,
|
2001 |
+
"eval_logps/chosen": -4.780559539794922,
|
2002 |
+
"eval_logps/rejected": -9.94357967376709,
|
2003 |
+
"eval_loss": 0.1563359946012497,
|
2004 |
+
"eval_rewards/accuracies": 0.9807692170143127,
|
2005 |
+
"eval_rewards/chosen": -7.170839309692383,
|
2006 |
+
"eval_rewards/margins": 7.744529724121094,
|
2007 |
+
"eval_rewards/rejected": -14.915369033813477,
|
2008 |
+
"eval_runtime": 14.5952,
|
2009 |
+
"eval_samples_per_second": 28.229,
|
2010 |
+
"eval_steps_per_second": 3.563,
|
2011 |
+
"step": 1100
|
2012 |
+
}
|
2013 |
+
],
|
2014 |
+
"logging_steps": 10,
|
2015 |
+
"max_steps": 1500,
|
2016 |
+
"num_input_tokens_seen": 0,
|
2017 |
+
"num_train_epochs": 3,
|
2018 |
+
"save_steps": 50,
|
2019 |
+
"stateful_callbacks": {
|
2020 |
+
"TrainerControl": {
|
2021 |
+
"args": {
|
2022 |
+
"should_epoch_stop": false,
|
2023 |
+
"should_evaluate": false,
|
2024 |
+
"should_log": false,
|
2025 |
+
"should_save": true,
|
2026 |
+
"should_training_stop": false
|
2027 |
+
},
|
2028 |
+
"attributes": {}
|
2029 |
+
}
|
2030 |
+
},
|
2031 |
+
"total_flos": 2.6301544564313293e+18,
|
2032 |
+
"train_batch_size": 1,
|
2033 |
+
"trial_name": null,
|
2034 |
+
"trial_params": null
|
2035 |
+
}
|
checkpoint-1100/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5163ac022a6b5f37a143d69c025be3610fb33a65145b769bdd1d9b31cc494442
|
3 |
+
size 7224
|
checkpoint-1100/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|