ziansu commited on
Commit
4827a6e
·
verified ·
1 Parent(s): 9f534c6

Training in progress, step 1200, checkpoint

Browse files
Files changed (28) hide show
  1. checkpoint-1200/README.md +202 -0
  2. checkpoint-1200/adapter_config.json +34 -0
  3. checkpoint-1200/adapter_model.safetensors +3 -0
  4. checkpoint-1200/global_step1199/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1200/global_step1199/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1200/global_step1199/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1200/global_step1199/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1200/global_step1199/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1200/global_step1199/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1200/global_step1199/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1200/global_step1199/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1200/global_step1199/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1200/latest +1 -0
  14. checkpoint-1200/rng_state_0.pth +3 -0
  15. checkpoint-1200/rng_state_1.pth +3 -0
  16. checkpoint-1200/rng_state_2.pth +3 -0
  17. checkpoint-1200/rng_state_3.pth +3 -0
  18. checkpoint-1200/rng_state_4.pth +3 -0
  19. checkpoint-1200/rng_state_5.pth +3 -0
  20. checkpoint-1200/rng_state_6.pth +3 -0
  21. checkpoint-1200/rng_state_7.pth +3 -0
  22. checkpoint-1200/scheduler.pt +3 -0
  23. checkpoint-1200/special_tokens_map.json +30 -0
  24. checkpoint-1200/tokenizer.json +0 -0
  25. checkpoint-1200/tokenizer_config.json +133 -0
  26. checkpoint-1200/trainer_state.json +2217 -0
  27. checkpoint-1200/training_args.bin +3 -0
  28. checkpoint-1200/zero_to_fp32.py +674 -0
checkpoint-1200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1200/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "qkv_proj",
27
+ "down_proj",
28
+ "gate_up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f833b957652935b9372a7ea25a47b1ccad67b7610e560bb5ee3c7e3c8964a5dc
3
+ size 25200088
checkpoint-1200/global_step1199/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d305e148ca407edbc8bf0c3c9302b73ce9a131dcfa4b513c8163d46f8995ee54
3
+ size 18881328
checkpoint-1200/global_step1199/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8debbc266ea10ffe488bf69be1d0ee8ef3a3e8ae30952b0f70139ad488ae5a96
3
+ size 18881328
checkpoint-1200/global_step1199/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72403a6c8815fc1b8728907aebb279fe715411aef6a8cb0ff947953cd8ac0f75
3
+ size 18881328
checkpoint-1200/global_step1199/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e3b925f5279416186ec013c6a28ce9830f3500a6c4114e5e049d6190a108dd6
3
+ size 18881392
checkpoint-1200/global_step1199/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f443e00aabb50350f6ca1fdea6e2fc9e98e9a34c9e208484569825cf5d226495
3
+ size 18881392
checkpoint-1200/global_step1199/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a58b9d429f26f4e63d98d5e7e0f9b5f33d2a96e3daf31c40e2ea76f0b4dafb0
3
+ size 18881392
checkpoint-1200/global_step1199/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e24ebd27b09e3e6f952936138b65259a6f87ddb0538af0bd51e7c00d68a6435
3
+ size 18881392
checkpoint-1200/global_step1199/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ebcf5c306c8f19487377c401d29eb1b24239791877dd678fd945298310f627c
3
+ size 18881392
checkpoint-1200/global_step1199/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95264200eb57bdb89acc3cc11ec97f8c4dde97d60e697557588ff4e62dd3f592
3
+ size 25379244
checkpoint-1200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1199
checkpoint-1200/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:479e628a41471621ed71e5888d4bc3eecd148e78c535bc6314d7d47b1c46d139
3
+ size 15984
checkpoint-1200/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:977d4030d8e6485cb5e6f8932d356d077b621fc5e3a3a17c1cd7300e3c3aa378
3
+ size 15984
checkpoint-1200/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6cee236c0b6ea406dfd78dc5d74c5d225be0fa30781914f3736a59b5bf50da8
3
+ size 15984
checkpoint-1200/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:151976a0e4efc5762247214e2e9304a5c082e878962f2b322e00eb30ef03cab3
3
+ size 15984
checkpoint-1200/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea64ac8295f29f6c548b206fafc96dea4fe6bf7d44797d6d0470afa88b072460
3
+ size 15984
checkpoint-1200/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f61787141f0f1134f74a65e87d4d3ea74e81f6b9d697755ee30ef0b88b18ddba
3
+ size 15984
checkpoint-1200/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:787193a355e21da1f4d95b759a157a105a86b3062286f0d9df1eb7fd2c5cd54c
3
+ size 15984
checkpoint-1200/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8b1b9e4e9a20f686ee92a48f0a8089eb687a9e2a7b8be07f71fdf84e2fcf1a4
3
+ size 15984
checkpoint-1200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35b4cc7927ca0f1b9b45cd00f72746408c82d953cb952c75e7569243d9fa3f0c
3
+ size 1064
checkpoint-1200/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1200/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-1200/trainer_state.json ADDED
@@ -0,0 +1,2217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.882087502452423,
5
+ "eval_steps": 50,
6
+ "global_step": 1200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015695507161075144,
13
+ "grad_norm": 0.07061820477247238,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 15.001790046691895,
16
+ "logits/rejected": 14.624488830566406,
17
+ "logps/chosen": -0.33085882663726807,
18
+ "logps/rejected": -0.24924471974372864,
19
+ "loss": 1.0519,
20
+ "rewards/accuracies": 0.23749999701976776,
21
+ "rewards/chosen": -0.4962882399559021,
22
+ "rewards/margins": -0.12242116779088974,
23
+ "rewards/rejected": -0.37386709451675415,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.03139101432215029,
28
+ "grad_norm": 0.060370542109012604,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 15.272351264953613,
31
+ "logits/rejected": 14.801017761230469,
32
+ "logps/chosen": -0.3379867672920227,
33
+ "logps/rejected": -0.24759705364704132,
34
+ "loss": 1.0494,
35
+ "rewards/accuracies": 0.15000000596046448,
36
+ "rewards/chosen": -0.5069801211357117,
37
+ "rewards/margins": -0.13558456301689148,
38
+ "rewards/rejected": -0.3713955581188202,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.047086521483225424,
43
+ "grad_norm": 0.050332240760326385,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 15.569372177124023,
46
+ "logits/rejected": 15.249380111694336,
47
+ "logps/chosen": -0.3347483277320862,
48
+ "logps/rejected": -0.275604784488678,
49
+ "loss": 1.0375,
50
+ "rewards/accuracies": 0.21250000596046448,
51
+ "rewards/chosen": -0.5021225214004517,
52
+ "rewards/margins": -0.08871528506278992,
53
+ "rewards/rejected": -0.41340717673301697,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.06278202864430057,
58
+ "grad_norm": 0.054660990834236145,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 15.344067573547363,
61
+ "logits/rejected": 14.881669998168945,
62
+ "logps/chosen": -0.3336474299430847,
63
+ "logps/rejected": -0.27252259850502014,
64
+ "loss": 1.0375,
65
+ "rewards/accuracies": 0.20000000298023224,
66
+ "rewards/chosen": -0.5004712343215942,
67
+ "rewards/margins": -0.09168727695941925,
68
+ "rewards/rejected": -0.40878385305404663,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.07847753580537571,
73
+ "grad_norm": 0.060405269265174866,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 15.5701904296875,
76
+ "logits/rejected": 15.60998821258545,
77
+ "logps/chosen": -0.3075069785118103,
78
+ "logps/rejected": -0.24850216507911682,
79
+ "loss": 1.0341,
80
+ "rewards/accuracies": 0.20000000298023224,
81
+ "rewards/chosen": -0.46126049757003784,
82
+ "rewards/margins": -0.08850721269845963,
83
+ "rewards/rejected": -0.3727532923221588,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.07847753580537571,
88
+ "eval_logits/chosen": 15.719181060791016,
89
+ "eval_logits/rejected": 15.20205307006836,
90
+ "eval_logps/chosen": -0.32490479946136475,
91
+ "eval_logps/rejected": -0.26058924198150635,
92
+ "eval_loss": 1.0295902490615845,
93
+ "eval_rewards/accuracies": 0.26923078298568726,
94
+ "eval_rewards/chosen": -0.48735716938972473,
95
+ "eval_rewards/margins": -0.09647335112094879,
96
+ "eval_rewards/rejected": -0.39088380336761475,
97
+ "eval_runtime": 14.6102,
98
+ "eval_samples_per_second": 28.199,
99
+ "eval_steps_per_second": 3.559,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.09417304296645085,
104
+ "grad_norm": 0.06511708348989487,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 15.571348190307617,
107
+ "logits/rejected": 15.418828010559082,
108
+ "logps/chosen": -0.3217025101184845,
109
+ "logps/rejected": -0.2813836932182312,
110
+ "loss": 1.0385,
111
+ "rewards/accuracies": 0.23749999701976776,
112
+ "rewards/chosen": -0.48255378007888794,
113
+ "rewards/margins": -0.060478221625089645,
114
+ "rewards/rejected": -0.4220755696296692,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.109868550127526,
119
+ "grad_norm": 0.06922140717506409,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 15.926614761352539,
122
+ "logits/rejected": 15.90565299987793,
123
+ "logps/chosen": -0.34742942452430725,
124
+ "logps/rejected": -0.26853513717651367,
125
+ "loss": 1.0417,
126
+ "rewards/accuracies": 0.21250000596046448,
127
+ "rewards/chosen": -0.5211440324783325,
128
+ "rewards/margins": -0.11834144592285156,
129
+ "rewards/rejected": -0.40280264616012573,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.12556405728860115,
134
+ "grad_norm": 0.07853339612483978,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 15.876957893371582,
137
+ "logits/rejected": 15.636863708496094,
138
+ "logps/chosen": -0.34999752044677734,
139
+ "logps/rejected": -0.2652502655982971,
140
+ "loss": 1.0255,
141
+ "rewards/accuracies": 0.1875,
142
+ "rewards/chosen": -0.524996280670166,
143
+ "rewards/margins": -0.12712089717388153,
144
+ "rewards/rejected": -0.3978753685951233,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.14125956444967627,
149
+ "grad_norm": 0.07262148708105087,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 16.037456512451172,
152
+ "logits/rejected": 15.742408752441406,
153
+ "logps/chosen": -0.32482510805130005,
154
+ "logps/rejected": -0.2520079016685486,
155
+ "loss": 1.0297,
156
+ "rewards/accuracies": 0.21250000596046448,
157
+ "rewards/chosen": -0.48723769187927246,
158
+ "rewards/margins": -0.1092257872223854,
159
+ "rewards/rejected": -0.3780118525028229,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.15695507161075142,
164
+ "grad_norm": 0.08407289534807205,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 16.34904670715332,
167
+ "logits/rejected": 16.30767059326172,
168
+ "logps/chosen": -0.3302846848964691,
169
+ "logps/rejected": -0.2799247205257416,
170
+ "loss": 1.0285,
171
+ "rewards/accuracies": 0.2750000059604645,
172
+ "rewards/chosen": -0.4954269826412201,
173
+ "rewards/margins": -0.07553993165493011,
174
+ "rewards/rejected": -0.41988706588745117,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.15695507161075142,
179
+ "eval_logits/chosen": 16.43848419189453,
180
+ "eval_logits/rejected": 15.978095054626465,
181
+ "eval_logps/chosen": -0.3256901502609253,
182
+ "eval_logps/rejected": -0.2794351279735565,
183
+ "eval_loss": 1.0174708366394043,
184
+ "eval_rewards/accuracies": 0.2884615361690521,
185
+ "eval_rewards/chosen": -0.4885352551937103,
186
+ "eval_rewards/margins": -0.06938254088163376,
187
+ "eval_rewards/rejected": -0.41915270686149597,
188
+ "eval_runtime": 14.607,
189
+ "eval_samples_per_second": 28.206,
190
+ "eval_steps_per_second": 3.56,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.17265057877182657,
195
+ "grad_norm": 0.07448805868625641,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 16.681476593017578,
198
+ "logits/rejected": 16.208908081054688,
199
+ "logps/chosen": -0.3410753309726715,
200
+ "logps/rejected": -0.28177398443222046,
201
+ "loss": 1.0364,
202
+ "rewards/accuracies": 0.2874999940395355,
203
+ "rewards/chosen": -0.5116130113601685,
204
+ "rewards/margins": -0.08895199000835419,
205
+ "rewards/rejected": -0.4226610064506531,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.1883460859329017,
210
+ "grad_norm": 0.17266640067100525,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 16.73276710510254,
213
+ "logits/rejected": 16.46255111694336,
214
+ "logps/chosen": -0.30808666348457336,
215
+ "logps/rejected": -0.2663067877292633,
216
+ "loss": 1.0242,
217
+ "rewards/accuracies": 0.23749999701976776,
218
+ "rewards/chosen": -0.46213001012802124,
219
+ "rewards/margins": -0.0626697838306427,
220
+ "rewards/rejected": -0.39946022629737854,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.20404159309397685,
225
+ "grad_norm": 0.1035998985171318,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 16.380239486694336,
228
+ "logits/rejected": 16.233612060546875,
229
+ "logps/chosen": -0.32250356674194336,
230
+ "logps/rejected": -0.27460020780563354,
231
+ "loss": 1.0162,
232
+ "rewards/accuracies": 0.2874999940395355,
233
+ "rewards/chosen": -0.48375529050827026,
234
+ "rewards/margins": -0.0718550831079483,
235
+ "rewards/rejected": -0.41190028190612793,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.219737100255052,
240
+ "grad_norm": 0.0961030125617981,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 16.440303802490234,
243
+ "logits/rejected": 16.233903884887695,
244
+ "logps/chosen": -0.33421438932418823,
245
+ "logps/rejected": -0.2857271134853363,
246
+ "loss": 1.0008,
247
+ "rewards/accuracies": 0.3125,
248
+ "rewards/chosen": -0.5013214945793152,
249
+ "rewards/margins": -0.07273083180189133,
250
+ "rewards/rejected": -0.42859068512916565,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.23543260741612712,
255
+ "grad_norm": 0.14799565076828003,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 16.600738525390625,
258
+ "logits/rejected": 16.536447525024414,
259
+ "logps/chosen": -0.3243326246738434,
260
+ "logps/rejected": -0.3061785101890564,
261
+ "loss": 1.0085,
262
+ "rewards/accuracies": 0.3375000059604645,
263
+ "rewards/chosen": -0.4864989221096039,
264
+ "rewards/margins": -0.027231160551309586,
265
+ "rewards/rejected": -0.459267795085907,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.23543260741612712,
270
+ "eval_logits/chosen": 16.8078556060791,
271
+ "eval_logits/rejected": 16.311922073364258,
272
+ "eval_logps/chosen": -0.326242595911026,
273
+ "eval_logps/rejected": -0.3398977816104889,
274
+ "eval_loss": 0.9791463017463684,
275
+ "eval_rewards/accuracies": 0.4038461446762085,
276
+ "eval_rewards/chosen": -0.4893638789653778,
277
+ "eval_rewards/margins": 0.020482787862420082,
278
+ "eval_rewards/rejected": -0.5098467469215393,
279
+ "eval_runtime": 14.6072,
280
+ "eval_samples_per_second": 28.205,
281
+ "eval_steps_per_second": 3.56,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.2511281145772023,
286
+ "grad_norm": 0.11464422941207886,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 16.586620330810547,
289
+ "logits/rejected": 16.253028869628906,
290
+ "logps/chosen": -0.33331993222236633,
291
+ "logps/rejected": -0.35580095648765564,
292
+ "loss": 0.9827,
293
+ "rewards/accuracies": 0.42500001192092896,
294
+ "rewards/chosen": -0.49997982382774353,
295
+ "rewards/margins": 0.03372158855199814,
296
+ "rewards/rejected": -0.5337014198303223,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.2668236217382774,
301
+ "grad_norm": 0.09462621062994003,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 16.220312118530273,
304
+ "logits/rejected": 16.105356216430664,
305
+ "logps/chosen": -0.2957116663455963,
306
+ "logps/rejected": -0.3528788089752197,
307
+ "loss": 0.9716,
308
+ "rewards/accuracies": 0.4625000059604645,
309
+ "rewards/chosen": -0.44356757402420044,
310
+ "rewards/margins": 0.08575066924095154,
311
+ "rewards/rejected": -0.5293182134628296,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.28251912889935255,
316
+ "grad_norm": 0.10995513945817947,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 16.811044692993164,
319
+ "logits/rejected": 16.43205451965332,
320
+ "logps/chosen": -0.3263992369174957,
321
+ "logps/rejected": -0.35878634452819824,
322
+ "loss": 0.9546,
323
+ "rewards/accuracies": 0.4124999940395355,
324
+ "rewards/chosen": -0.4895988404750824,
325
+ "rewards/margins": 0.04858064278960228,
326
+ "rewards/rejected": -0.5381795167922974,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.2982146360604277,
331
+ "grad_norm": 0.1348036825656891,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 16.816158294677734,
334
+ "logits/rejected": 16.55413055419922,
335
+ "logps/chosen": -0.31842875480651855,
336
+ "logps/rejected": -0.3791810870170593,
337
+ "loss": 0.9472,
338
+ "rewards/accuracies": 0.5249999761581421,
339
+ "rewards/chosen": -0.47764310240745544,
340
+ "rewards/margins": 0.09112847596406937,
341
+ "rewards/rejected": -0.5687715411186218,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.31391014322150285,
346
+ "grad_norm": 0.13393694162368774,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 17.075885772705078,
349
+ "logits/rejected": 16.982004165649414,
350
+ "logps/chosen": -0.3368823528289795,
351
+ "logps/rejected": -0.3636801540851593,
352
+ "loss": 0.9455,
353
+ "rewards/accuracies": 0.375,
354
+ "rewards/chosen": -0.5053235292434692,
355
+ "rewards/margins": 0.04019671678543091,
356
+ "rewards/rejected": -0.5455202460289001,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.31391014322150285,
361
+ "eval_logits/chosen": 17.17239761352539,
362
+ "eval_logits/rejected": 16.609193801879883,
363
+ "eval_logps/chosen": -0.33508703112602234,
364
+ "eval_logps/rejected": -0.4493505656719208,
365
+ "eval_loss": 0.9283667802810669,
366
+ "eval_rewards/accuracies": 0.4615384638309479,
367
+ "eval_rewards/chosen": -0.5026305913925171,
368
+ "eval_rewards/margins": 0.17139528691768646,
369
+ "eval_rewards/rejected": -0.67402583360672,
370
+ "eval_runtime": 14.5913,
371
+ "eval_samples_per_second": 28.236,
372
+ "eval_steps_per_second": 3.564,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.329605650382578,
377
+ "grad_norm": 0.14985737204551697,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 16.92913246154785,
380
+ "logits/rejected": 16.648632049560547,
381
+ "logps/chosen": -0.3326043486595154,
382
+ "logps/rejected": -0.4218205511569977,
383
+ "loss": 0.9225,
384
+ "rewards/accuracies": 0.48750001192092896,
385
+ "rewards/chosen": -0.4989064335823059,
386
+ "rewards/margins": 0.13382436335086823,
387
+ "rewards/rejected": -0.6327308416366577,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.34530115754365315,
392
+ "grad_norm": 0.16972233355045319,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 17.074562072753906,
395
+ "logits/rejected": 16.863161087036133,
396
+ "logps/chosen": -0.3645358383655548,
397
+ "logps/rejected": -0.5221719145774841,
398
+ "loss": 0.9264,
399
+ "rewards/accuracies": 0.512499988079071,
400
+ "rewards/chosen": -0.5468038320541382,
401
+ "rewards/margins": 0.23645417392253876,
402
+ "rewards/rejected": -0.7832580208778381,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.3609966647047283,
407
+ "grad_norm": 0.20796354115009308,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 17.4168643951416,
410
+ "logits/rejected": 17.00813102722168,
411
+ "logps/chosen": -0.35443297028541565,
412
+ "logps/rejected": -0.5115998983383179,
413
+ "loss": 0.9037,
414
+ "rewards/accuracies": 0.512499988079071,
415
+ "rewards/chosen": -0.5316494703292847,
416
+ "rewards/margins": 0.23575039207935333,
417
+ "rewards/rejected": -0.767399787902832,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.3766921718658034,
422
+ "grad_norm": 0.1932348757982254,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 17.034719467163086,
425
+ "logits/rejected": 16.65166664123535,
426
+ "logps/chosen": -0.3426091969013214,
427
+ "logps/rejected": -0.47884297370910645,
428
+ "loss": 0.9154,
429
+ "rewards/accuracies": 0.5625,
430
+ "rewards/chosen": -0.5139138102531433,
431
+ "rewards/margins": 0.20435063540935516,
432
+ "rewards/rejected": -0.7182644605636597,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.39238767902687854,
437
+ "grad_norm": 1.016450047492981,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 16.935081481933594,
440
+ "logits/rejected": 16.65024185180664,
441
+ "logps/chosen": -0.41738080978393555,
442
+ "logps/rejected": -0.48515433073043823,
443
+ "loss": 0.8774,
444
+ "rewards/accuracies": 0.42500001192092896,
445
+ "rewards/chosen": -0.6260712146759033,
446
+ "rewards/margins": 0.10166029632091522,
447
+ "rewards/rejected": -0.7277315258979797,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.39238767902687854,
452
+ "eval_logits/chosen": 17.221881866455078,
453
+ "eval_logits/rejected": 16.536666870117188,
454
+ "eval_logps/chosen": -0.3716265559196472,
455
+ "eval_logps/rejected": -0.87992262840271,
456
+ "eval_loss": 0.8047741651535034,
457
+ "eval_rewards/accuracies": 0.5,
458
+ "eval_rewards/chosen": -0.5574398636817932,
459
+ "eval_rewards/margins": 0.7624441981315613,
460
+ "eval_rewards/rejected": -1.3198840618133545,
461
+ "eval_runtime": 14.6008,
462
+ "eval_samples_per_second": 28.218,
463
+ "eval_steps_per_second": 3.561,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.4080831861879537,
468
+ "grad_norm": 0.2831684648990631,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 17.084096908569336,
471
+ "logits/rejected": 16.564823150634766,
472
+ "logps/chosen": -0.38100525736808777,
473
+ "logps/rejected": -0.8173269033432007,
474
+ "loss": 0.8197,
475
+ "rewards/accuracies": 0.4375,
476
+ "rewards/chosen": -0.5715079307556152,
477
+ "rewards/margins": 0.6544824838638306,
478
+ "rewards/rejected": -1.2259904146194458,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.42377869334902885,
483
+ "grad_norm": 0.9195305109024048,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 17.316537857055664,
486
+ "logits/rejected": 16.623016357421875,
487
+ "logps/chosen": -0.4713365435600281,
488
+ "logps/rejected": -1.2184536457061768,
489
+ "loss": 0.7493,
490
+ "rewards/accuracies": 0.4375,
491
+ "rewards/chosen": -0.7070047855377197,
492
+ "rewards/margins": 1.120675802230835,
493
+ "rewards/rejected": -1.8276805877685547,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.439474200510104,
498
+ "grad_norm": 0.5542411804199219,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 17.173168182373047,
501
+ "logits/rejected": 16.759702682495117,
502
+ "logps/chosen": -0.4629506468772888,
503
+ "logps/rejected": -1.3020483255386353,
504
+ "loss": 0.7638,
505
+ "rewards/accuracies": 0.637499988079071,
506
+ "rewards/chosen": -0.6944260597229004,
507
+ "rewards/margins": 1.2586463689804077,
508
+ "rewards/rejected": -1.9530725479125977,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.45516970767117915,
513
+ "grad_norm": 0.2836654782295227,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 17.022424697875977,
516
+ "logits/rejected": 16.43834114074707,
517
+ "logps/chosen": -0.527222216129303,
518
+ "logps/rejected": -1.632965087890625,
519
+ "loss": 0.7466,
520
+ "rewards/accuracies": 0.6625000238418579,
521
+ "rewards/chosen": -0.7908332943916321,
522
+ "rewards/margins": 1.6586145162582397,
523
+ "rewards/rejected": -2.4494476318359375,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.47086521483225424,
528
+ "grad_norm": 0.658358097076416,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 16.6541690826416,
531
+ "logits/rejected": 16.34103012084961,
532
+ "logps/chosen": -0.50589519739151,
533
+ "logps/rejected": -1.8910831212997437,
534
+ "loss": 0.6982,
535
+ "rewards/accuracies": 0.699999988079071,
536
+ "rewards/chosen": -0.7588427662849426,
537
+ "rewards/margins": 2.077782154083252,
538
+ "rewards/rejected": -2.8366246223449707,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.47086521483225424,
543
+ "eval_logits/chosen": 16.950870513916016,
544
+ "eval_logits/rejected": 16.154659271240234,
545
+ "eval_logps/chosen": -0.5594518184661865,
546
+ "eval_logps/rejected": -1.9617934226989746,
547
+ "eval_loss": 0.7422243356704712,
548
+ "eval_rewards/accuracies": 0.7115384340286255,
549
+ "eval_rewards/chosen": -0.839177668094635,
550
+ "eval_rewards/margins": 2.103512763977051,
551
+ "eval_rewards/rejected": -2.942690372467041,
552
+ "eval_runtime": 14.5969,
553
+ "eval_samples_per_second": 28.225,
554
+ "eval_steps_per_second": 3.562,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.4865607219933294,
559
+ "grad_norm": 1.1044840812683105,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 17.233802795410156,
562
+ "logits/rejected": 16.292484283447266,
563
+ "logps/chosen": -0.5940151214599609,
564
+ "logps/rejected": -2.041588306427002,
565
+ "loss": 0.7415,
566
+ "rewards/accuracies": 0.6625000238418579,
567
+ "rewards/chosen": -0.8910226821899414,
568
+ "rewards/margins": 2.1713600158691406,
569
+ "rewards/rejected": -3.062382459640503,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.5022562291544046,
574
+ "grad_norm": 0.524356484413147,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 17.155719757080078,
577
+ "logits/rejected": 16.328996658325195,
578
+ "logps/chosen": -0.6095865964889526,
579
+ "logps/rejected": -1.831730604171753,
580
+ "loss": 0.7249,
581
+ "rewards/accuracies": 0.6499999761581421,
582
+ "rewards/chosen": -0.9143797755241394,
583
+ "rewards/margins": 1.8332160711288452,
584
+ "rewards/rejected": -2.747596025466919,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.5179517363154797,
589
+ "grad_norm": 0.4383145570755005,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 16.774551391601562,
592
+ "logits/rejected": 16.532238006591797,
593
+ "logps/chosen": -0.669482946395874,
594
+ "logps/rejected": -1.7058660984039307,
595
+ "loss": 0.6868,
596
+ "rewards/accuracies": 0.6625000238418579,
597
+ "rewards/chosen": -1.004224419593811,
598
+ "rewards/margins": 1.5545748472213745,
599
+ "rewards/rejected": -2.5587992668151855,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.5336472434765548,
604
+ "grad_norm": 3.194026231765747,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 16.963787078857422,
607
+ "logits/rejected": 16.3092041015625,
608
+ "logps/chosen": -0.7091449499130249,
609
+ "logps/rejected": -2.1812453269958496,
610
+ "loss": 0.706,
611
+ "rewards/accuracies": 0.7250000238418579,
612
+ "rewards/chosen": -1.0637174844741821,
613
+ "rewards/margins": 2.208150863647461,
614
+ "rewards/rejected": -3.2718684673309326,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.5493427506376299,
619
+ "grad_norm": 0.5639687776565552,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 17.019062042236328,
622
+ "logits/rejected": 16.315940856933594,
623
+ "logps/chosen": -0.8996315002441406,
624
+ "logps/rejected": -2.0307648181915283,
625
+ "loss": 0.674,
626
+ "rewards/accuracies": 0.75,
627
+ "rewards/chosen": -1.349447250366211,
628
+ "rewards/margins": 1.696699857711792,
629
+ "rewards/rejected": -3.046147108078003,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.5493427506376299,
634
+ "eval_logits/chosen": 16.70261001586914,
635
+ "eval_logits/rejected": 15.845681190490723,
636
+ "eval_logps/chosen": -0.9138904809951782,
637
+ "eval_logps/rejected": -2.5003392696380615,
638
+ "eval_loss": 0.6938430070877075,
639
+ "eval_rewards/accuracies": 0.8461538553237915,
640
+ "eval_rewards/chosen": -1.3708356618881226,
641
+ "eval_rewards/margins": 2.3796732425689697,
642
+ "eval_rewards/rejected": -3.75050950050354,
643
+ "eval_runtime": 14.6072,
644
+ "eval_samples_per_second": 28.205,
645
+ "eval_steps_per_second": 3.56,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.5650382577987051,
650
+ "grad_norm": 0.6917555928230286,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 16.269399642944336,
653
+ "logits/rejected": 15.73193645477295,
654
+ "logps/chosen": -1.0171478986740112,
655
+ "logps/rejected": -2.201298236846924,
656
+ "loss": 0.651,
657
+ "rewards/accuracies": 0.6499999761581421,
658
+ "rewards/chosen": -1.525721788406372,
659
+ "rewards/margins": 1.7762253284454346,
660
+ "rewards/rejected": -3.3019473552703857,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.5807337649597802,
665
+ "grad_norm": 1.151584267616272,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 15.88188648223877,
668
+ "logits/rejected": 15.261810302734375,
669
+ "logps/chosen": -1.2272206544876099,
670
+ "logps/rejected": -3.0203287601470947,
671
+ "loss": 0.665,
672
+ "rewards/accuracies": 0.800000011920929,
673
+ "rewards/chosen": -1.8408310413360596,
674
+ "rewards/margins": 2.689661741256714,
675
+ "rewards/rejected": -4.530492305755615,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.5964292721208554,
680
+ "grad_norm": 1.1879621744155884,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 15.906834602355957,
683
+ "logits/rejected": 15.42895221710205,
684
+ "logps/chosen": -1.5027008056640625,
685
+ "logps/rejected": -2.9172558784484863,
686
+ "loss": 0.5998,
687
+ "rewards/accuracies": 0.887499988079071,
688
+ "rewards/chosen": -2.2540509700775146,
689
+ "rewards/margins": 2.1218326091766357,
690
+ "rewards/rejected": -4.37588357925415,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.6121247792819305,
695
+ "grad_norm": 1.678884744644165,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 15.630645751953125,
698
+ "logits/rejected": 14.888415336608887,
699
+ "logps/chosen": -2.231367349624634,
700
+ "logps/rejected": -3.5754780769348145,
701
+ "loss": 0.5937,
702
+ "rewards/accuracies": 0.824999988079071,
703
+ "rewards/chosen": -3.347050905227661,
704
+ "rewards/margins": 2.0161664485931396,
705
+ "rewards/rejected": -5.363216876983643,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.6278202864430057,
710
+ "grad_norm": 2.008671998977661,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 15.024614334106445,
713
+ "logits/rejected": 14.981277465820312,
714
+ "logps/chosen": -2.665980815887451,
715
+ "logps/rejected": -3.582763195037842,
716
+ "loss": 0.5722,
717
+ "rewards/accuracies": 0.7749999761581421,
718
+ "rewards/chosen": -3.998971462249756,
719
+ "rewards/margins": 1.3751739263534546,
720
+ "rewards/rejected": -5.374145030975342,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.6278202864430057,
725
+ "eval_logits/chosen": 15.45953369140625,
726
+ "eval_logits/rejected": 14.663763046264648,
727
+ "eval_logps/chosen": -2.7269070148468018,
728
+ "eval_logps/rejected": -4.235719680786133,
729
+ "eval_loss": 0.5668805837631226,
730
+ "eval_rewards/accuracies": 0.8846153616905212,
731
+ "eval_rewards/chosen": -4.090360641479492,
732
+ "eval_rewards/margins": 2.263219118118286,
733
+ "eval_rewards/rejected": -6.353579998016357,
734
+ "eval_runtime": 14.6036,
735
+ "eval_samples_per_second": 28.212,
736
+ "eval_steps_per_second": 3.561,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.6435157936040808,
741
+ "grad_norm": 1.018362045288086,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 15.027656555175781,
744
+ "logits/rejected": 14.74786376953125,
745
+ "logps/chosen": -2.76598858833313,
746
+ "logps/rejected": -4.335003852844238,
747
+ "loss": 0.5412,
748
+ "rewards/accuracies": 0.8374999761581421,
749
+ "rewards/chosen": -4.148982524871826,
750
+ "rewards/margins": 2.3535237312316895,
751
+ "rewards/rejected": -6.502506256103516,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.659211300765156,
756
+ "grad_norm": 2.2899765968322754,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 15.15197467803955,
759
+ "logits/rejected": 14.681947708129883,
760
+ "logps/chosen": -2.9831995964050293,
761
+ "logps/rejected": -4.723050117492676,
762
+ "loss": 0.4652,
763
+ "rewards/accuracies": 0.862500011920929,
764
+ "rewards/chosen": -4.474799633026123,
765
+ "rewards/margins": 2.6097757816314697,
766
+ "rewards/rejected": -7.0845746994018555,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.6749068079262311,
771
+ "grad_norm": 1.419196605682373,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 15.000317573547363,
774
+ "logits/rejected": 14.538591384887695,
775
+ "logps/chosen": -3.543004274368286,
776
+ "logps/rejected": -5.037484169006348,
777
+ "loss": 0.427,
778
+ "rewards/accuracies": 0.8999999761581421,
779
+ "rewards/chosen": -5.314507007598877,
780
+ "rewards/margins": 2.2417192459106445,
781
+ "rewards/rejected": -7.556225776672363,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.6906023150873063,
786
+ "grad_norm": 1.639215111732483,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 14.798017501831055,
789
+ "logits/rejected": 14.236108779907227,
790
+ "logps/chosen": -4.154418468475342,
791
+ "logps/rejected": -6.0606184005737305,
792
+ "loss": 0.4692,
793
+ "rewards/accuracies": 0.8374999761581421,
794
+ "rewards/chosen": -6.231626987457275,
795
+ "rewards/margins": 2.859299421310425,
796
+ "rewards/rejected": -9.090926170349121,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.7062978222483814,
801
+ "grad_norm": 1.6229957342147827,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 14.495908737182617,
804
+ "logits/rejected": 13.978658676147461,
805
+ "logps/chosen": -3.4806721210479736,
806
+ "logps/rejected": -5.746390342712402,
807
+ "loss": 0.4218,
808
+ "rewards/accuracies": 0.8500000238418579,
809
+ "rewards/chosen": -5.221007823944092,
810
+ "rewards/margins": 3.3985772132873535,
811
+ "rewards/rejected": -8.619585037231445,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.7062978222483814,
816
+ "eval_logits/chosen": 15.033548355102539,
817
+ "eval_logits/rejected": 14.20669174194336,
818
+ "eval_logps/chosen": -3.423999547958374,
819
+ "eval_logps/rejected": -5.855647563934326,
820
+ "eval_loss": 0.45794492959976196,
821
+ "eval_rewards/accuracies": 0.942307710647583,
822
+ "eval_rewards/chosen": -5.135998725891113,
823
+ "eval_rewards/margins": 3.6474733352661133,
824
+ "eval_rewards/rejected": -8.783472061157227,
825
+ "eval_runtime": 14.6088,
826
+ "eval_samples_per_second": 28.202,
827
+ "eval_steps_per_second": 3.559,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.7219933294094566,
832
+ "grad_norm": 1.7993106842041016,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 14.569323539733887,
835
+ "logits/rejected": 13.937005996704102,
836
+ "logps/chosen": -3.3623528480529785,
837
+ "logps/rejected": -5.784353733062744,
838
+ "loss": 0.3675,
839
+ "rewards/accuracies": 0.8999999761581421,
840
+ "rewards/chosen": -5.043529033660889,
841
+ "rewards/margins": 3.6330013275146484,
842
+ "rewards/rejected": -8.676530838012695,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.7376888365705316,
847
+ "grad_norm": 2.1828088760375977,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 13.90056037902832,
850
+ "logits/rejected": 13.489587783813477,
851
+ "logps/chosen": -3.959341049194336,
852
+ "logps/rejected": -6.217314720153809,
853
+ "loss": 0.3653,
854
+ "rewards/accuracies": 0.862500011920929,
855
+ "rewards/chosen": -5.939011573791504,
856
+ "rewards/margins": 3.3869614601135254,
857
+ "rewards/rejected": -9.325971603393555,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.7533843437316068,
862
+ "grad_norm": 2.128547191619873,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 14.113011360168457,
865
+ "logits/rejected": 13.571691513061523,
866
+ "logps/chosen": -4.004420280456543,
867
+ "logps/rejected": -6.216452121734619,
868
+ "loss": 0.3439,
869
+ "rewards/accuracies": 0.9125000238418579,
870
+ "rewards/chosen": -6.0066304206848145,
871
+ "rewards/margins": 3.3180477619171143,
872
+ "rewards/rejected": -9.324677467346191,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.7690798508926819,
877
+ "grad_norm": 3.2651569843292236,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 13.918218612670898,
880
+ "logits/rejected": 13.147412300109863,
881
+ "logps/chosen": -4.574521064758301,
882
+ "logps/rejected": -7.411087989807129,
883
+ "loss": 0.3645,
884
+ "rewards/accuracies": 0.8999999761581421,
885
+ "rewards/chosen": -6.861782073974609,
886
+ "rewards/margins": 4.254849910736084,
887
+ "rewards/rejected": -11.116632461547852,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.7847753580537571,
892
+ "grad_norm": 2.163595676422119,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 13.972379684448242,
895
+ "logits/rejected": 13.390825271606445,
896
+ "logps/chosen": -3.931866407394409,
897
+ "logps/rejected": -6.547454833984375,
898
+ "loss": 0.3698,
899
+ "rewards/accuracies": 0.9125000238418579,
900
+ "rewards/chosen": -5.897799491882324,
901
+ "rewards/margins": 3.923382520675659,
902
+ "rewards/rejected": -9.821184158325195,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.7847753580537571,
907
+ "eval_logits/chosen": 14.325434684753418,
908
+ "eval_logits/rejected": 13.4517822265625,
909
+ "eval_logps/chosen": -3.7717440128326416,
910
+ "eval_logps/rejected": -6.710938453674316,
911
+ "eval_loss": 0.38915327191352844,
912
+ "eval_rewards/accuracies": 0.942307710647583,
913
+ "eval_rewards/chosen": -5.657615661621094,
914
+ "eval_rewards/margins": 4.408792018890381,
915
+ "eval_rewards/rejected": -10.066408157348633,
916
+ "eval_runtime": 14.5996,
917
+ "eval_samples_per_second": 28.22,
918
+ "eval_steps_per_second": 3.562,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.8004708652148322,
923
+ "grad_norm": 2.7098453044891357,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 13.909749984741211,
926
+ "logits/rejected": 13.060315132141113,
927
+ "logps/chosen": -3.848449230194092,
928
+ "logps/rejected": -6.747067928314209,
929
+ "loss": 0.3547,
930
+ "rewards/accuracies": 0.875,
931
+ "rewards/chosen": -5.772673606872559,
932
+ "rewards/margins": 4.347928524017334,
933
+ "rewards/rejected": -10.120603561401367,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.8161663723759074,
938
+ "grad_norm": 1.693467140197754,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 13.52336311340332,
941
+ "logits/rejected": 13.026924133300781,
942
+ "logps/chosen": -4.218991279602051,
943
+ "logps/rejected": -6.984036445617676,
944
+ "loss": 0.3718,
945
+ "rewards/accuracies": 0.9375,
946
+ "rewards/chosen": -6.328486442565918,
947
+ "rewards/margins": 4.1475677490234375,
948
+ "rewards/rejected": -10.476054191589355,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.8318618795369825,
953
+ "grad_norm": 2.4496915340423584,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 13.840197563171387,
956
+ "logits/rejected": 13.181543350219727,
957
+ "logps/chosen": -4.708582401275635,
958
+ "logps/rejected": -7.19864559173584,
959
+ "loss": 0.329,
960
+ "rewards/accuracies": 0.925000011920929,
961
+ "rewards/chosen": -7.062872886657715,
962
+ "rewards/margins": 3.7350947856903076,
963
+ "rewards/rejected": -10.797967910766602,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.8475573866980577,
968
+ "grad_norm": 5.772508144378662,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 13.432130813598633,
971
+ "logits/rejected": 12.825490951538086,
972
+ "logps/chosen": -4.506819248199463,
973
+ "logps/rejected": -7.506214141845703,
974
+ "loss": 0.2544,
975
+ "rewards/accuracies": 0.925000011920929,
976
+ "rewards/chosen": -6.760228633880615,
977
+ "rewards/margins": 4.499091625213623,
978
+ "rewards/rejected": -11.259321212768555,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.8632528938591328,
983
+ "grad_norm": 1.7776503562927246,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 13.536295890808105,
986
+ "logits/rejected": 12.703726768493652,
987
+ "logps/chosen": -4.724976062774658,
988
+ "logps/rejected": -7.864454746246338,
989
+ "loss": 0.2795,
990
+ "rewards/accuracies": 0.925000011920929,
991
+ "rewards/chosen": -7.087464332580566,
992
+ "rewards/margins": 4.7092180252075195,
993
+ "rewards/rejected": -11.796682357788086,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.8632528938591328,
998
+ "eval_logits/chosen": 13.692171096801758,
999
+ "eval_logits/rejected": 12.81371021270752,
1000
+ "eval_logps/chosen": -4.32358980178833,
1001
+ "eval_logps/rejected": -7.658167839050293,
1002
+ "eval_loss": 0.335475891828537,
1003
+ "eval_rewards/accuracies": 0.942307710647583,
1004
+ "eval_rewards/chosen": -6.485384464263916,
1005
+ "eval_rewards/margins": 5.00186824798584,
1006
+ "eval_rewards/rejected": -11.487252235412598,
1007
+ "eval_runtime": 14.6093,
1008
+ "eval_samples_per_second": 28.201,
1009
+ "eval_steps_per_second": 3.559,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.878948401020208,
1014
+ "grad_norm": 1.7613197565078735,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 13.689091682434082,
1017
+ "logits/rejected": 12.911500930786133,
1018
+ "logps/chosen": -3.8375942707061768,
1019
+ "logps/rejected": -6.98319149017334,
1020
+ "loss": 0.3008,
1021
+ "rewards/accuracies": 0.9125000238418579,
1022
+ "rewards/chosen": -5.7563910484313965,
1023
+ "rewards/margins": 4.7183966636657715,
1024
+ "rewards/rejected": -10.474787712097168,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.8946439081812831,
1029
+ "grad_norm": 2.1285247802734375,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 13.902356147766113,
1032
+ "logits/rejected": 12.766775131225586,
1033
+ "logps/chosen": -3.7727108001708984,
1034
+ "logps/rejected": -7.6362409591674805,
1035
+ "loss": 0.2816,
1036
+ "rewards/accuracies": 0.9375,
1037
+ "rewards/chosen": -5.6590657234191895,
1038
+ "rewards/margins": 5.795297622680664,
1039
+ "rewards/rejected": -11.454363822937012,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.9103394153423583,
1044
+ "grad_norm": 1.6965669393539429,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 13.374112129211426,
1047
+ "logits/rejected": 12.414613723754883,
1048
+ "logps/chosen": -4.747832298278809,
1049
+ "logps/rejected": -8.099973678588867,
1050
+ "loss": 0.2921,
1051
+ "rewards/accuracies": 0.9125000238418579,
1052
+ "rewards/chosen": -7.121748924255371,
1053
+ "rewards/margins": 5.028212547302246,
1054
+ "rewards/rejected": -12.1499605178833,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.9260349225034334,
1059
+ "grad_norm": 2.5470242500305176,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 13.287660598754883,
1062
+ "logits/rejected": 12.554139137268066,
1063
+ "logps/chosen": -4.818625450134277,
1064
+ "logps/rejected": -8.005637168884277,
1065
+ "loss": 0.3155,
1066
+ "rewards/accuracies": 0.949999988079071,
1067
+ "rewards/chosen": -7.227938175201416,
1068
+ "rewards/margins": 4.780518531799316,
1069
+ "rewards/rejected": -12.008456230163574,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.9417304296645085,
1074
+ "grad_norm": 2.374859571456909,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 13.152572631835938,
1077
+ "logits/rejected": 12.557012557983398,
1078
+ "logps/chosen": -3.7581982612609863,
1079
+ "logps/rejected": -6.985205173492432,
1080
+ "loss": 0.2565,
1081
+ "rewards/accuracies": 0.9375,
1082
+ "rewards/chosen": -5.6372971534729,
1083
+ "rewards/margins": 4.840510368347168,
1084
+ "rewards/rejected": -10.477807998657227,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.9417304296645085,
1089
+ "eval_logits/chosen": 13.585193634033203,
1090
+ "eval_logits/rejected": 12.657953262329102,
1091
+ "eval_logps/chosen": -4.077207088470459,
1092
+ "eval_logps/rejected": -7.660572528839111,
1093
+ "eval_loss": 0.30504748225212097,
1094
+ "eval_rewards/accuracies": 0.9615384340286255,
1095
+ "eval_rewards/chosen": -6.115810871124268,
1096
+ "eval_rewards/margins": 5.375046730041504,
1097
+ "eval_rewards/rejected": -11.49085807800293,
1098
+ "eval_runtime": 14.6046,
1099
+ "eval_samples_per_second": 28.21,
1100
+ "eval_steps_per_second": 3.561,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.9574259368255836,
1105
+ "grad_norm": 3.3574252128601074,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 12.703638076782227,
1108
+ "logits/rejected": 11.910614013671875,
1109
+ "logps/chosen": -4.188838005065918,
1110
+ "logps/rejected": -7.538239479064941,
1111
+ "loss": 0.2527,
1112
+ "rewards/accuracies": 0.9624999761581421,
1113
+ "rewards/chosen": -6.283257961273193,
1114
+ "rewards/margins": 5.024100303649902,
1115
+ "rewards/rejected": -11.30735969543457,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.9731214439866588,
1120
+ "grad_norm": 1.726338505744934,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 13.002418518066406,
1123
+ "logits/rejected": 12.060869216918945,
1124
+ "logps/chosen": -4.711850166320801,
1125
+ "logps/rejected": -8.62987995147705,
1126
+ "loss": 0.2895,
1127
+ "rewards/accuracies": 0.9624999761581421,
1128
+ "rewards/chosen": -7.067776679992676,
1129
+ "rewards/margins": 5.877043724060059,
1130
+ "rewards/rejected": -12.944819450378418,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.9888169511477339,
1135
+ "grad_norm": 2.5146796703338623,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 13.190832138061523,
1138
+ "logits/rejected": 11.927602767944336,
1139
+ "logps/chosen": -4.228806495666504,
1140
+ "logps/rejected": -8.436616897583008,
1141
+ "loss": 0.2284,
1142
+ "rewards/accuracies": 0.9750000238418579,
1143
+ "rewards/chosen": -6.343210220336914,
1144
+ "rewards/margins": 6.311715602874756,
1145
+ "rewards/rejected": -12.654926300048828,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 1.003139101432215,
1150
+ "grad_norm": 4.229348659515381,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 13.159438133239746,
1153
+ "logits/rejected": 12.417133331298828,
1154
+ "logps/chosen": -4.084325313568115,
1155
+ "logps/rejected": -7.705818176269531,
1156
+ "loss": 0.2276,
1157
+ "rewards/accuracies": 0.9178082346916199,
1158
+ "rewards/chosen": -6.126489162445068,
1159
+ "rewards/margins": 5.432239055633545,
1160
+ "rewards/rejected": -11.558727264404297,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 1.0188346085932902,
1165
+ "grad_norm": 4.93217134475708,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 13.347890853881836,
1168
+ "logits/rejected": 12.535311698913574,
1169
+ "logps/chosen": -4.311320781707764,
1170
+ "logps/rejected": -7.402029514312744,
1171
+ "loss": 0.2353,
1172
+ "rewards/accuracies": 0.9375,
1173
+ "rewards/chosen": -6.466981410980225,
1174
+ "rewards/margins": 4.636063098907471,
1175
+ "rewards/rejected": -11.103044509887695,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 1.0188346085932902,
1180
+ "eval_logits/chosen": 13.296299934387207,
1181
+ "eval_logits/rejected": 12.358522415161133,
1182
+ "eval_logps/chosen": -4.177649974822998,
1183
+ "eval_logps/rejected": -8.009714126586914,
1184
+ "eval_loss": 0.28009530901908875,
1185
+ "eval_rewards/accuracies": 0.9615384340286255,
1186
+ "eval_rewards/chosen": -6.266475200653076,
1187
+ "eval_rewards/margins": 5.748095989227295,
1188
+ "eval_rewards/rejected": -12.014572143554688,
1189
+ "eval_runtime": 14.6091,
1190
+ "eval_samples_per_second": 28.202,
1191
+ "eval_steps_per_second": 3.559,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 1.0345301157543654,
1196
+ "grad_norm": 2.0475847721099854,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 13.43058967590332,
1199
+ "logits/rejected": 12.661652565002441,
1200
+ "logps/chosen": -3.9617011547088623,
1201
+ "logps/rejected": -7.092957973480225,
1202
+ "loss": 0.2562,
1203
+ "rewards/accuracies": 0.9125000238418579,
1204
+ "rewards/chosen": -5.942551136016846,
1205
+ "rewards/margins": 4.69688606262207,
1206
+ "rewards/rejected": -10.639436721801758,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 1.0502256229154405,
1211
+ "grad_norm": 4.578652381896973,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 13.032757759094238,
1214
+ "logits/rejected": 12.292248725891113,
1215
+ "logps/chosen": -3.679547071456909,
1216
+ "logps/rejected": -7.649219512939453,
1217
+ "loss": 0.2271,
1218
+ "rewards/accuracies": 0.987500011920929,
1219
+ "rewards/chosen": -5.519320487976074,
1220
+ "rewards/margins": 5.9545087814331055,
1221
+ "rewards/rejected": -11.47382926940918,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 1.0659211300765157,
1226
+ "grad_norm": 3.0983850955963135,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 12.6952486038208,
1229
+ "logits/rejected": 11.917645454406738,
1230
+ "logps/chosen": -4.468019008636475,
1231
+ "logps/rejected": -8.505170822143555,
1232
+ "loss": 0.179,
1233
+ "rewards/accuracies": 0.9375,
1234
+ "rewards/chosen": -6.702028751373291,
1235
+ "rewards/margins": 6.055727958679199,
1236
+ "rewards/rejected": -12.757757186889648,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 1.0816166372375908,
1241
+ "grad_norm": 3.071026086807251,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 12.464409828186035,
1244
+ "logits/rejected": 11.680208206176758,
1245
+ "logps/chosen": -4.6339874267578125,
1246
+ "logps/rejected": -8.639189720153809,
1247
+ "loss": 0.2541,
1248
+ "rewards/accuracies": 0.9750000238418579,
1249
+ "rewards/chosen": -6.950981140136719,
1250
+ "rewards/margins": 6.007803440093994,
1251
+ "rewards/rejected": -12.958784103393555,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 1.097312144398666,
1256
+ "grad_norm": 1.3732093572616577,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 12.308462142944336,
1259
+ "logits/rejected": 11.674012184143066,
1260
+ "logps/chosen": -4.638761043548584,
1261
+ "logps/rejected": -8.936636924743652,
1262
+ "loss": 0.1919,
1263
+ "rewards/accuracies": 0.987500011920929,
1264
+ "rewards/chosen": -6.958141326904297,
1265
+ "rewards/margins": 6.446814060211182,
1266
+ "rewards/rejected": -13.40495491027832,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 1.097312144398666,
1271
+ "eval_logits/chosen": 13.217435836791992,
1272
+ "eval_logits/rejected": 12.272343635559082,
1273
+ "eval_logps/chosen": -4.347932815551758,
1274
+ "eval_logps/rejected": -8.441193580627441,
1275
+ "eval_loss": 0.25916898250579834,
1276
+ "eval_rewards/accuracies": 0.9615384340286255,
1277
+ "eval_rewards/chosen": -6.521899223327637,
1278
+ "eval_rewards/margins": 6.139890670776367,
1279
+ "eval_rewards/rejected": -12.661789894104004,
1280
+ "eval_runtime": 14.6102,
1281
+ "eval_samples_per_second": 28.2,
1282
+ "eval_steps_per_second": 3.559,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 1.113007651559741,
1287
+ "grad_norm": 3.5739834308624268,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 12.828997611999512,
1290
+ "logits/rejected": 12.09227180480957,
1291
+ "logps/chosen": -4.3685622215271,
1292
+ "logps/rejected": -8.672820091247559,
1293
+ "loss": 0.2187,
1294
+ "rewards/accuracies": 0.9624999761581421,
1295
+ "rewards/chosen": -6.552844047546387,
1296
+ "rewards/margins": 6.456387519836426,
1297
+ "rewards/rejected": -13.009231567382812,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 1.1287031587208163,
1302
+ "grad_norm": 11.475191116333008,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 13.344253540039062,
1305
+ "logits/rejected": 12.190181732177734,
1306
+ "logps/chosen": -4.567076206207275,
1307
+ "logps/rejected": -8.719629287719727,
1308
+ "loss": 0.1847,
1309
+ "rewards/accuracies": 0.9375,
1310
+ "rewards/chosen": -6.85061502456665,
1311
+ "rewards/margins": 6.228829383850098,
1312
+ "rewards/rejected": -13.079442977905273,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 1.1443986658818912,
1317
+ "grad_norm": 1.8145791292190552,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 12.794706344604492,
1320
+ "logits/rejected": 12.407793045043945,
1321
+ "logps/chosen": -4.447361946105957,
1322
+ "logps/rejected": -8.19226360321045,
1323
+ "loss": 0.1914,
1324
+ "rewards/accuracies": 0.9125000238418579,
1325
+ "rewards/chosen": -6.67104434967041,
1326
+ "rewards/margins": 5.6173505783081055,
1327
+ "rewards/rejected": -12.288395881652832,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 1.1600941730429664,
1332
+ "grad_norm": 3.763374090194702,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 12.97741413116455,
1335
+ "logits/rejected": 12.224584579467773,
1336
+ "logps/chosen": -4.449431419372559,
1337
+ "logps/rejected": -8.755613327026367,
1338
+ "loss": 0.2055,
1339
+ "rewards/accuracies": 0.9375,
1340
+ "rewards/chosen": -6.6741461753845215,
1341
+ "rewards/margins": 6.459272861480713,
1342
+ "rewards/rejected": -13.133418083190918,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 1.1757896802040415,
1347
+ "grad_norm": 2.816288948059082,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 12.736323356628418,
1350
+ "logits/rejected": 12.039944648742676,
1351
+ "logps/chosen": -4.300374507904053,
1352
+ "logps/rejected": -8.570680618286133,
1353
+ "loss": 0.185,
1354
+ "rewards/accuracies": 0.949999988079071,
1355
+ "rewards/chosen": -6.4505615234375,
1356
+ "rewards/margins": 6.405457973480225,
1357
+ "rewards/rejected": -12.856019973754883,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 1.1757896802040415,
1362
+ "eval_logits/chosen": 13.174198150634766,
1363
+ "eval_logits/rejected": 12.189348220825195,
1364
+ "eval_logps/chosen": -4.302711009979248,
1365
+ "eval_logps/rejected": -8.745194435119629,
1366
+ "eval_loss": 0.24307754635810852,
1367
+ "eval_rewards/accuracies": 0.9615384340286255,
1368
+ "eval_rewards/chosen": -6.454067707061768,
1369
+ "eval_rewards/margins": 6.663723945617676,
1370
+ "eval_rewards/rejected": -13.117791175842285,
1371
+ "eval_runtime": 14.5945,
1372
+ "eval_samples_per_second": 28.23,
1373
+ "eval_steps_per_second": 3.563,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 1.1914851873651167,
1378
+ "grad_norm": 2.6783711910247803,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 12.992940902709961,
1381
+ "logits/rejected": 12.16160774230957,
1382
+ "logps/chosen": -4.402331829071045,
1383
+ "logps/rejected": -8.848995208740234,
1384
+ "loss": 0.1958,
1385
+ "rewards/accuracies": 0.9750000238418579,
1386
+ "rewards/chosen": -6.603497505187988,
1387
+ "rewards/margins": 6.6699957847595215,
1388
+ "rewards/rejected": -13.273493766784668,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 1.2071806945261918,
1393
+ "grad_norm": 1.580244779586792,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 12.522805213928223,
1396
+ "logits/rejected": 11.664339065551758,
1397
+ "logps/chosen": -3.9605941772460938,
1398
+ "logps/rejected": -8.103001594543457,
1399
+ "loss": 0.1921,
1400
+ "rewards/accuracies": 0.949999988079071,
1401
+ "rewards/chosen": -5.940891265869141,
1402
+ "rewards/margins": 6.213610649108887,
1403
+ "rewards/rejected": -12.154502868652344,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 1.222876201687267,
1408
+ "grad_norm": 2.2647345066070557,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 12.654630661010742,
1411
+ "logits/rejected": 11.677509307861328,
1412
+ "logps/chosen": -4.634467601776123,
1413
+ "logps/rejected": -9.647830963134766,
1414
+ "loss": 0.1731,
1415
+ "rewards/accuracies": 0.987500011920929,
1416
+ "rewards/chosen": -6.951702117919922,
1417
+ "rewards/margins": 7.520044803619385,
1418
+ "rewards/rejected": -14.471745491027832,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 1.2385717088483421,
1423
+ "grad_norm": 3.8534202575683594,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 12.548233032226562,
1426
+ "logits/rejected": 11.633279800415039,
1427
+ "logps/chosen": -4.690009593963623,
1428
+ "logps/rejected": -8.73483657836914,
1429
+ "loss": 0.1844,
1430
+ "rewards/accuracies": 0.949999988079071,
1431
+ "rewards/chosen": -7.0350141525268555,
1432
+ "rewards/margins": 6.067240238189697,
1433
+ "rewards/rejected": -13.102254867553711,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 1.2542672160094173,
1438
+ "grad_norm": 2.8962628841400146,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 11.90459156036377,
1441
+ "logits/rejected": 11.352374076843262,
1442
+ "logps/chosen": -4.448246479034424,
1443
+ "logps/rejected": -8.658299446105957,
1444
+ "loss": 0.1638,
1445
+ "rewards/accuracies": 0.949999988079071,
1446
+ "rewards/chosen": -6.67236852645874,
1447
+ "rewards/margins": 6.315079689025879,
1448
+ "rewards/rejected": -12.987447738647461,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 1.2542672160094173,
1453
+ "eval_logits/chosen": 12.893868446350098,
1454
+ "eval_logits/rejected": 11.863032341003418,
1455
+ "eval_logps/chosen": -4.604159832000732,
1456
+ "eval_logps/rejected": -9.257932662963867,
1457
+ "eval_loss": 0.21881447732448578,
1458
+ "eval_rewards/accuracies": 0.9615384340286255,
1459
+ "eval_rewards/chosen": -6.906240463256836,
1460
+ "eval_rewards/margins": 6.980658531188965,
1461
+ "eval_rewards/rejected": -13.886898040771484,
1462
+ "eval_runtime": 14.6079,
1463
+ "eval_samples_per_second": 28.204,
1464
+ "eval_steps_per_second": 3.56,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 1.2699627231704924,
1469
+ "grad_norm": 3.5829524993896484,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 12.411908149719238,
1472
+ "logits/rejected": 11.730254173278809,
1473
+ "logps/chosen": -4.65117883682251,
1474
+ "logps/rejected": -9.094849586486816,
1475
+ "loss": 0.1827,
1476
+ "rewards/accuracies": 0.9624999761581421,
1477
+ "rewards/chosen": -6.976768493652344,
1478
+ "rewards/margins": 6.665505886077881,
1479
+ "rewards/rejected": -13.642274856567383,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 1.2856582303315676,
1484
+ "grad_norm": 2.836439371109009,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 12.173138618469238,
1487
+ "logits/rejected": 11.570637702941895,
1488
+ "logps/chosen": -4.847201824188232,
1489
+ "logps/rejected": -8.849002838134766,
1490
+ "loss": 0.1716,
1491
+ "rewards/accuracies": 0.949999988079071,
1492
+ "rewards/chosen": -7.270802974700928,
1493
+ "rewards/margins": 6.002701282501221,
1494
+ "rewards/rejected": -13.273503303527832,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 1.3013537374926427,
1499
+ "grad_norm": 3.5850038528442383,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 12.883340835571289,
1502
+ "logits/rejected": 12.123892784118652,
1503
+ "logps/chosen": -4.7816948890686035,
1504
+ "logps/rejected": -9.729695320129395,
1505
+ "loss": 0.1652,
1506
+ "rewards/accuracies": 0.9375,
1507
+ "rewards/chosen": -7.172542572021484,
1508
+ "rewards/margins": 7.421999931335449,
1509
+ "rewards/rejected": -14.594541549682617,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 1.3170492446537179,
1514
+ "grad_norm": 1.9497729539871216,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 12.579580307006836,
1517
+ "logits/rejected": 11.674839973449707,
1518
+ "logps/chosen": -4.67056131362915,
1519
+ "logps/rejected": -9.12755298614502,
1520
+ "loss": 0.1881,
1521
+ "rewards/accuracies": 0.9375,
1522
+ "rewards/chosen": -7.0058417320251465,
1523
+ "rewards/margins": 6.68548583984375,
1524
+ "rewards/rejected": -13.691328048706055,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 1.332744751814793,
1529
+ "grad_norm": 2.5810794830322266,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 12.369009017944336,
1532
+ "logits/rejected": 11.520233154296875,
1533
+ "logps/chosen": -4.780073165893555,
1534
+ "logps/rejected": -9.808363914489746,
1535
+ "loss": 0.2051,
1536
+ "rewards/accuracies": 0.987500011920929,
1537
+ "rewards/chosen": -7.17011022567749,
1538
+ "rewards/margins": 7.542436122894287,
1539
+ "rewards/rejected": -14.712547302246094,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 1.332744751814793,
1544
+ "eval_logits/chosen": 12.70075511932373,
1545
+ "eval_logits/rejected": 11.632950782775879,
1546
+ "eval_logps/chosen": -4.634037494659424,
1547
+ "eval_logps/rejected": -9.374123573303223,
1548
+ "eval_loss": 0.20189520716667175,
1549
+ "eval_rewards/accuracies": 0.9615384340286255,
1550
+ "eval_rewards/chosen": -6.951055526733398,
1551
+ "eval_rewards/margins": 7.110130310058594,
1552
+ "eval_rewards/rejected": -14.061185836791992,
1553
+ "eval_runtime": 14.6066,
1554
+ "eval_samples_per_second": 28.206,
1555
+ "eval_steps_per_second": 3.56,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 1.3484402589758682,
1560
+ "grad_norm": 5.187539577484131,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 12.224112510681152,
1563
+ "logits/rejected": 11.01191234588623,
1564
+ "logps/chosen": -4.748395919799805,
1565
+ "logps/rejected": -9.206069946289062,
1566
+ "loss": 0.2083,
1567
+ "rewards/accuracies": 0.925000011920929,
1568
+ "rewards/chosen": -7.122593879699707,
1569
+ "rewards/margins": 6.686511039733887,
1570
+ "rewards/rejected": -13.809106826782227,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 1.3641357661369433,
1575
+ "grad_norm": 1.1569608449935913,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 11.579218864440918,
1578
+ "logits/rejected": 10.995697975158691,
1579
+ "logps/chosen": -4.387156009674072,
1580
+ "logps/rejected": -8.937141418457031,
1581
+ "loss": 0.1782,
1582
+ "rewards/accuracies": 0.987500011920929,
1583
+ "rewards/chosen": -6.580733299255371,
1584
+ "rewards/margins": 6.824978828430176,
1585
+ "rewards/rejected": -13.405713081359863,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 1.3798312732980185,
1590
+ "grad_norm": 5.9647111892700195,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 12.533722877502441,
1593
+ "logits/rejected": 12.121667861938477,
1594
+ "logps/chosen": -3.9464848041534424,
1595
+ "logps/rejected": -7.782477378845215,
1596
+ "loss": 0.237,
1597
+ "rewards/accuracies": 0.925000011920929,
1598
+ "rewards/chosen": -5.919726848602295,
1599
+ "rewards/margins": 5.753990173339844,
1600
+ "rewards/rejected": -11.67371654510498,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 1.3955267804590936,
1605
+ "grad_norm": 3.4284207820892334,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 12.185909271240234,
1608
+ "logits/rejected": 11.781715393066406,
1609
+ "logps/chosen": -4.110888481140137,
1610
+ "logps/rejected": -8.276056289672852,
1611
+ "loss": 0.1904,
1612
+ "rewards/accuracies": 0.9624999761581421,
1613
+ "rewards/chosen": -6.166332721710205,
1614
+ "rewards/margins": 6.2477498054504395,
1615
+ "rewards/rejected": -12.414082527160645,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 1.4112222876201688,
1620
+ "grad_norm": 2.537830352783203,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 12.28978443145752,
1623
+ "logits/rejected": 11.305529594421387,
1624
+ "logps/chosen": -3.9210026264190674,
1625
+ "logps/rejected": -8.545848846435547,
1626
+ "loss": 0.1508,
1627
+ "rewards/accuracies": 0.9624999761581421,
1628
+ "rewards/chosen": -5.881503582000732,
1629
+ "rewards/margins": 6.937270164489746,
1630
+ "rewards/rejected": -12.818774223327637,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 1.4112222876201688,
1635
+ "eval_logits/chosen": 12.542530059814453,
1636
+ "eval_logits/rejected": 11.450419425964355,
1637
+ "eval_logps/chosen": -4.722529888153076,
1638
+ "eval_logps/rejected": -9.546163558959961,
1639
+ "eval_loss": 0.18640650808811188,
1640
+ "eval_rewards/accuracies": 0.9807692170143127,
1641
+ "eval_rewards/chosen": -7.083794593811035,
1642
+ "eval_rewards/margins": 7.235450744628906,
1643
+ "eval_rewards/rejected": -14.319246292114258,
1644
+ "eval_runtime": 14.6107,
1645
+ "eval_samples_per_second": 28.199,
1646
+ "eval_steps_per_second": 3.559,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 1.426917794781244,
1651
+ "grad_norm": 1.1588759422302246,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 12.432401657104492,
1654
+ "logits/rejected": 11.247361183166504,
1655
+ "logps/chosen": -4.893294334411621,
1656
+ "logps/rejected": -9.311574935913086,
1657
+ "loss": 0.1446,
1658
+ "rewards/accuracies": 0.987500011920929,
1659
+ "rewards/chosen": -7.339941501617432,
1660
+ "rewards/margins": 6.627419948577881,
1661
+ "rewards/rejected": -13.967363357543945,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 1.442613301942319,
1666
+ "grad_norm": 2.4712307453155518,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 12.139798164367676,
1669
+ "logits/rejected": 11.248186111450195,
1670
+ "logps/chosen": -5.167681694030762,
1671
+ "logps/rejected": -10.253265380859375,
1672
+ "loss": 0.163,
1673
+ "rewards/accuracies": 0.9750000238418579,
1674
+ "rewards/chosen": -7.751523017883301,
1675
+ "rewards/margins": 7.6283769607543945,
1676
+ "rewards/rejected": -15.379899978637695,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 1.4583088091033942,
1681
+ "grad_norm": 1.881538987159729,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 11.9426908493042,
1684
+ "logits/rejected": 11.341384887695312,
1685
+ "logps/chosen": -5.030823230743408,
1686
+ "logps/rejected": -9.114843368530273,
1687
+ "loss": 0.1773,
1688
+ "rewards/accuracies": 0.949999988079071,
1689
+ "rewards/chosen": -7.54623556137085,
1690
+ "rewards/margins": 6.126028060913086,
1691
+ "rewards/rejected": -13.672262191772461,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 1.4740043162644694,
1696
+ "grad_norm": 5.751014709472656,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 11.921320915222168,
1699
+ "logits/rejected": 11.005578994750977,
1700
+ "logps/chosen": -4.730319976806641,
1701
+ "logps/rejected": -9.198332786560059,
1702
+ "loss": 0.2058,
1703
+ "rewards/accuracies": 0.9624999761581421,
1704
+ "rewards/chosen": -7.095480442047119,
1705
+ "rewards/margins": 6.702019691467285,
1706
+ "rewards/rejected": -13.797500610351562,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 1.4896998234255445,
1711
+ "grad_norm": 2.656139850616455,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 12.132013320922852,
1714
+ "logits/rejected": 11.254085540771484,
1715
+ "logps/chosen": -4.832255840301514,
1716
+ "logps/rejected": -9.473350524902344,
1717
+ "loss": 0.1827,
1718
+ "rewards/accuracies": 0.9624999761581421,
1719
+ "rewards/chosen": -7.24838399887085,
1720
+ "rewards/margins": 6.961642265319824,
1721
+ "rewards/rejected": -14.210027694702148,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 1.4896998234255445,
1726
+ "eval_logits/chosen": 12.534186363220215,
1727
+ "eval_logits/rejected": 11.43524169921875,
1728
+ "eval_logps/chosen": -4.488946914672852,
1729
+ "eval_logps/rejected": -9.457845687866211,
1730
+ "eval_loss": 0.1744592934846878,
1731
+ "eval_rewards/accuracies": 0.9807692170143127,
1732
+ "eval_rewards/chosen": -6.733420372009277,
1733
+ "eval_rewards/margins": 7.4533467292785645,
1734
+ "eval_rewards/rejected": -14.186767578125,
1735
+ "eval_runtime": 14.6075,
1736
+ "eval_samples_per_second": 28.205,
1737
+ "eval_steps_per_second": 3.56,
1738
+ "step": 950
1739
+ },
1740
+ {
1741
+ "epoch": 1.5053953305866195,
1742
+ "grad_norm": 4.976431369781494,
1743
+ "learning_rate": 1.4355517710873184e-06,
1744
+ "logits/chosen": 12.053160667419434,
1745
+ "logits/rejected": 11.461877822875977,
1746
+ "logps/chosen": -4.3384108543396,
1747
+ "logps/rejected": -8.933584213256836,
1748
+ "loss": 0.1559,
1749
+ "rewards/accuracies": 0.949999988079071,
1750
+ "rewards/chosen": -6.5076165199279785,
1751
+ "rewards/margins": 6.892758846282959,
1752
+ "rewards/rejected": -13.400375366210938,
1753
+ "step": 960
1754
+ },
1755
+ {
1756
+ "epoch": 1.5210908377476948,
1757
+ "grad_norm": 2.786695718765259,
1758
+ "learning_rate": 1.388412052037682e-06,
1759
+ "logits/chosen": 12.072885513305664,
1760
+ "logits/rejected": 10.973172187805176,
1761
+ "logps/chosen": -4.89219331741333,
1762
+ "logps/rejected": -9.545186996459961,
1763
+ "loss": 0.1334,
1764
+ "rewards/accuracies": 0.9375,
1765
+ "rewards/chosen": -7.338289737701416,
1766
+ "rewards/margins": 6.979489803314209,
1767
+ "rewards/rejected": -14.317779541015625,
1768
+ "step": 970
1769
+ },
1770
+ {
1771
+ "epoch": 1.5367863449087698,
1772
+ "grad_norm": 5.252014636993408,
1773
+ "learning_rate": 1.3417599122003464e-06,
1774
+ "logits/chosen": 12.37597370147705,
1775
+ "logits/rejected": 11.43901538848877,
1776
+ "logps/chosen": -5.274794101715088,
1777
+ "logps/rejected": -9.821117401123047,
1778
+ "loss": 0.1477,
1779
+ "rewards/accuracies": 0.949999988079071,
1780
+ "rewards/chosen": -7.912191867828369,
1781
+ "rewards/margins": 6.819484710693359,
1782
+ "rewards/rejected": -14.73167610168457,
1783
+ "step": 980
1784
+ },
1785
+ {
1786
+ "epoch": 1.5524818520698451,
1787
+ "grad_norm": 2.243185520172119,
1788
+ "learning_rate": 1.2956158147457116e-06,
1789
+ "logits/chosen": 11.921972274780273,
1790
+ "logits/rejected": 11.30908489227295,
1791
+ "logps/chosen": -5.393095970153809,
1792
+ "logps/rejected": -10.215553283691406,
1793
+ "loss": 0.1561,
1794
+ "rewards/accuracies": 0.949999988079071,
1795
+ "rewards/chosen": -8.089644432067871,
1796
+ "rewards/margins": 7.233686923980713,
1797
+ "rewards/rejected": -15.323330879211426,
1798
+ "step": 990
1799
+ },
1800
+ {
1801
+ "epoch": 1.56817735923092,
1802
+ "grad_norm": 3.4886062145233154,
1803
+ "learning_rate": 1.2500000000000007e-06,
1804
+ "logits/chosen": 11.753881454467773,
1805
+ "logits/rejected": 11.269731521606445,
1806
+ "logps/chosen": -5.015429496765137,
1807
+ "logps/rejected": -10.169350624084473,
1808
+ "loss": 0.1771,
1809
+ "rewards/accuracies": 0.9750000238418579,
1810
+ "rewards/chosen": -7.523144721984863,
1811
+ "rewards/margins": 7.7308807373046875,
1812
+ "rewards/rejected": -15.25402545928955,
1813
+ "step": 1000
1814
+ },
1815
+ {
1816
+ "epoch": 1.56817735923092,
1817
+ "eval_logits/chosen": 12.437786102294922,
1818
+ "eval_logits/rejected": 11.32490348815918,
1819
+ "eval_logps/chosen": -4.6446380615234375,
1820
+ "eval_logps/rejected": -9.707358360290527,
1821
+ "eval_loss": 0.16595196723937988,
1822
+ "eval_rewards/accuracies": 0.9807692170143127,
1823
+ "eval_rewards/chosen": -6.966956615447998,
1824
+ "eval_rewards/margins": 7.594080448150635,
1825
+ "eval_rewards/rejected": -14.561037063598633,
1826
+ "eval_runtime": 14.6109,
1827
+ "eval_samples_per_second": 28.198,
1828
+ "eval_steps_per_second": 3.559,
1829
+ "step": 1000
1830
+ },
1831
+ {
1832
+ "epoch": 1.5838728663919954,
1833
+ "grad_norm": 1.7607649564743042,
1834
+ "learning_rate": 1.204932476567175e-06,
1835
+ "logits/chosen": 11.258343696594238,
1836
+ "logits/rejected": 10.613565444946289,
1837
+ "logps/chosen": -4.758576393127441,
1838
+ "logps/rejected": -9.250303268432617,
1839
+ "loss": 0.1668,
1840
+ "rewards/accuracies": 0.9750000238418579,
1841
+ "rewards/chosen": -7.137864589691162,
1842
+ "rewards/margins": 6.7375898361206055,
1843
+ "rewards/rejected": -13.875455856323242,
1844
+ "step": 1010
1845
+ },
1846
+ {
1847
+ "epoch": 1.5995683735530704,
1848
+ "grad_norm": 3.2954118251800537,
1849
+ "learning_rate": 1.160433012552508e-06,
1850
+ "logits/chosen": 12.226592063903809,
1851
+ "logits/rejected": 11.355180740356445,
1852
+ "logps/chosen": -4.198899269104004,
1853
+ "logps/rejected": -8.675564765930176,
1854
+ "loss": 0.1824,
1855
+ "rewards/accuracies": 0.9624999761581421,
1856
+ "rewards/chosen": -6.298348903656006,
1857
+ "rewards/margins": 6.714995384216309,
1858
+ "rewards/rejected": -13.013345718383789,
1859
+ "step": 1020
1860
+ },
1861
+ {
1862
+ "epoch": 1.6152638807141457,
1863
+ "grad_norm": 2.833040237426758,
1864
+ "learning_rate": 1.11652112689164e-06,
1865
+ "logits/chosen": 11.937528610229492,
1866
+ "logits/rejected": 11.127592086791992,
1867
+ "logps/chosen": -4.438723087310791,
1868
+ "logps/rejected": -9.106756210327148,
1869
+ "loss": 0.1567,
1870
+ "rewards/accuracies": 0.987500011920929,
1871
+ "rewards/chosen": -6.658083915710449,
1872
+ "rewards/margins": 7.002050876617432,
1873
+ "rewards/rejected": -13.660135269165039,
1874
+ "step": 1030
1875
+ },
1876
+ {
1877
+ "epoch": 1.6309593878752207,
1878
+ "grad_norm": 2.0544891357421875,
1879
+ "learning_rate": 1.073216080788921e-06,
1880
+ "logits/chosen": 12.242444038391113,
1881
+ "logits/rejected": 11.25694465637207,
1882
+ "logps/chosen": -4.525513172149658,
1883
+ "logps/rejected": -9.212661743164062,
1884
+ "loss": 0.1682,
1885
+ "rewards/accuracies": 0.987500011920929,
1886
+ "rewards/chosen": -6.78826904296875,
1887
+ "rewards/margins": 7.030723571777344,
1888
+ "rewards/rejected": -13.818992614746094,
1889
+ "step": 1040
1890
+ },
1891
+ {
1892
+ "epoch": 1.6466548950362958,
1893
+ "grad_norm": 1.6990854740142822,
1894
+ "learning_rate": 1.0305368692688175e-06,
1895
+ "logits/chosen": 11.99101448059082,
1896
+ "logits/rejected": 11.161852836608887,
1897
+ "logps/chosen": -4.299143314361572,
1898
+ "logps/rejected": -9.032526016235352,
1899
+ "loss": 0.1143,
1900
+ "rewards/accuracies": 0.9624999761581421,
1901
+ "rewards/chosen": -6.448714256286621,
1902
+ "rewards/margins": 7.100072383880615,
1903
+ "rewards/rejected": -13.548787117004395,
1904
+ "step": 1050
1905
+ },
1906
+ {
1907
+ "epoch": 1.6466548950362958,
1908
+ "eval_logits/chosen": 12.486811637878418,
1909
+ "eval_logits/rejected": 11.354048728942871,
1910
+ "eval_logps/chosen": -4.389483451843262,
1911
+ "eval_logps/rejected": -9.478667259216309,
1912
+ "eval_loss": 0.16117088496685028,
1913
+ "eval_rewards/accuracies": 0.9807692170143127,
1914
+ "eval_rewards/chosen": -6.584225654602051,
1915
+ "eval_rewards/margins": 7.633774280548096,
1916
+ "eval_rewards/rejected": -14.217998504638672,
1917
+ "eval_runtime": 14.6006,
1918
+ "eval_samples_per_second": 28.218,
1919
+ "eval_steps_per_second": 3.561,
1920
+ "step": 1050
1921
+ },
1922
+ {
1923
+ "epoch": 1.662350402197371,
1924
+ "grad_norm": 3.3203821182250977,
1925
+ "learning_rate": 9.88502212844063e-07,
1926
+ "logits/chosen": 12.17997932434082,
1927
+ "logits/rejected": 11.155837059020996,
1928
+ "logps/chosen": -4.206795692443848,
1929
+ "logps/rejected": -9.341482162475586,
1930
+ "loss": 0.1631,
1931
+ "rewards/accuracies": 1.0,
1932
+ "rewards/chosen": -6.310193061828613,
1933
+ "rewards/margins": 7.702028751373291,
1934
+ "rewards/rejected": -14.012222290039062,
1935
+ "step": 1060
1936
+ },
1937
+ {
1938
+ "epoch": 1.678045909358446,
1939
+ "grad_norm": 2.4238297939300537,
1940
+ "learning_rate": 9.471305493042243e-07,
1941
+ "logits/chosen": 11.849737167358398,
1942
+ "logits/rejected": 10.839106559753418,
1943
+ "logps/chosen": -4.497702598571777,
1944
+ "logps/rejected": -9.431967735290527,
1945
+ "loss": 0.1347,
1946
+ "rewards/accuracies": 1.0,
1947
+ "rewards/chosen": -6.746554374694824,
1948
+ "rewards/margins": 7.401397705078125,
1949
+ "rewards/rejected": -14.14795207977295,
1950
+ "step": 1070
1951
+ },
1952
+ {
1953
+ "epoch": 1.6937414165195213,
1954
+ "grad_norm": 1.895890712738037,
1955
+ "learning_rate": 9.064400256282757e-07,
1956
+ "logits/chosen": 12.01026725769043,
1957
+ "logits/rejected": 11.010753631591797,
1958
+ "logps/chosen": -4.6886305809021,
1959
+ "logps/rejected": -9.496674537658691,
1960
+ "loss": 0.1076,
1961
+ "rewards/accuracies": 0.9750000238418579,
1962
+ "rewards/chosen": -7.032945156097412,
1963
+ "rewards/margins": 7.212066650390625,
1964
+ "rewards/rejected": -14.245012283325195,
1965
+ "step": 1080
1966
+ },
1967
+ {
1968
+ "epoch": 1.7094369236805964,
1969
+ "grad_norm": 4.748386859893799,
1970
+ "learning_rate": 8.664484900247363e-07,
1971
+ "logits/chosen": 11.74091911315918,
1972
+ "logits/rejected": 11.233245849609375,
1973
+ "logps/chosen": -5.176927089691162,
1974
+ "logps/rejected": -9.68712043762207,
1975
+ "loss": 0.1532,
1976
+ "rewards/accuracies": 0.9624999761581421,
1977
+ "rewards/chosen": -7.765390872955322,
1978
+ "rewards/margins": 6.765290260314941,
1979
+ "rewards/rejected": -14.530679702758789,
1980
+ "step": 1090
1981
+ },
1982
+ {
1983
+ "epoch": 1.7251324308416716,
1984
+ "grad_norm": 2.932032346725464,
1985
+ "learning_rate": 8.271734841028553e-07,
1986
+ "logits/chosen": 11.53050708770752,
1987
+ "logits/rejected": 10.704401969909668,
1988
+ "logps/chosen": -5.003798484802246,
1989
+ "logps/rejected": -10.222925186157227,
1990
+ "loss": 0.1632,
1991
+ "rewards/accuracies": 0.9624999761581421,
1992
+ "rewards/chosen": -7.505698204040527,
1993
+ "rewards/margins": 7.8286895751953125,
1994
+ "rewards/rejected": -15.334388732910156,
1995
+ "step": 1100
1996
+ },
1997
+ {
1998
+ "epoch": 1.7251324308416716,
1999
+ "eval_logits/chosen": 12.376419067382812,
2000
+ "eval_logits/rejected": 11.235088348388672,
2001
+ "eval_logps/chosen": -4.780559539794922,
2002
+ "eval_logps/rejected": -9.94357967376709,
2003
+ "eval_loss": 0.1563359946012497,
2004
+ "eval_rewards/accuracies": 0.9807692170143127,
2005
+ "eval_rewards/chosen": -7.170839309692383,
2006
+ "eval_rewards/margins": 7.744529724121094,
2007
+ "eval_rewards/rejected": -14.915369033813477,
2008
+ "eval_runtime": 14.5952,
2009
+ "eval_samples_per_second": 28.229,
2010
+ "eval_steps_per_second": 3.563,
2011
+ "step": 1100
2012
+ },
2013
+ {
2014
+ "epoch": 1.7408279380027467,
2015
+ "grad_norm": 3.4405391216278076,
2016
+ "learning_rate": 7.886322351782782e-07,
2017
+ "logits/chosen": 12.490205764770508,
2018
+ "logits/rejected": 11.409021377563477,
2019
+ "logps/chosen": -4.385369300842285,
2020
+ "logps/rejected": -9.336843490600586,
2021
+ "loss": 0.1579,
2022
+ "rewards/accuracies": 0.9624999761581421,
2023
+ "rewards/chosen": -6.578053951263428,
2024
+ "rewards/margins": 7.427211761474609,
2025
+ "rewards/rejected": -14.005266189575195,
2026
+ "step": 1110
2027
+ },
2028
+ {
2029
+ "epoch": 1.7565234451638219,
2030
+ "grad_norm": 4.066647529602051,
2031
+ "learning_rate": 7.508416487165862e-07,
2032
+ "logits/chosen": 11.967781066894531,
2033
+ "logits/rejected": 11.07763671875,
2034
+ "logps/chosen": -4.826973915100098,
2035
+ "logps/rejected": -9.608440399169922,
2036
+ "loss": 0.1603,
2037
+ "rewards/accuracies": 0.9375,
2038
+ "rewards/chosen": -7.2404608726501465,
2039
+ "rewards/margins": 7.172199249267578,
2040
+ "rewards/rejected": -14.412660598754883,
2041
+ "step": 1120
2042
+ },
2043
+ {
2044
+ "epoch": 1.772218952324897,
2045
+ "grad_norm": 1.7111518383026123,
2046
+ "learning_rate": 7.138183009179922e-07,
2047
+ "logits/chosen": 12.116536140441895,
2048
+ "logits/rejected": 11.637681007385254,
2049
+ "logps/chosen": -4.51651668548584,
2050
+ "logps/rejected": -9.084489822387695,
2051
+ "loss": 0.1428,
2052
+ "rewards/accuracies": 0.9750000238418579,
2053
+ "rewards/chosen": -6.77477502822876,
2054
+ "rewards/margins": 6.8519606590271,
2055
+ "rewards/rejected": -13.626734733581543,
2056
+ "step": 1130
2057
+ },
2058
+ {
2059
+ "epoch": 1.7879144594859722,
2060
+ "grad_norm": 4.302910804748535,
2061
+ "learning_rate": 6.775784314464717e-07,
2062
+ "logits/chosen": 11.709549903869629,
2063
+ "logits/rejected": 11.382287979125977,
2064
+ "logps/chosen": -5.279540061950684,
2065
+ "logps/rejected": -9.892831802368164,
2066
+ "loss": 0.163,
2067
+ "rewards/accuracies": 0.9375,
2068
+ "rewards/chosen": -7.919310569763184,
2069
+ "rewards/margins": 6.919938564300537,
2070
+ "rewards/rejected": -14.839248657226562,
2071
+ "step": 1140
2072
+ },
2073
+ {
2074
+ "epoch": 1.8036099666470473,
2075
+ "grad_norm": 0.8747031092643738,
2076
+ "learning_rate": 6.421379363065142e-07,
2077
+ "logits/chosen": 12.214895248413086,
2078
+ "logits/rejected": 11.334197998046875,
2079
+ "logps/chosen": -4.599240303039551,
2080
+ "logps/rejected": -8.940774917602539,
2081
+ "loss": 0.1288,
2082
+ "rewards/accuracies": 0.9750000238418579,
2083
+ "rewards/chosen": -6.898859977722168,
2084
+ "rewards/margins": 6.512301445007324,
2085
+ "rewards/rejected": -13.411161422729492,
2086
+ "step": 1150
2087
+ },
2088
+ {
2089
+ "epoch": 1.8036099666470473,
2090
+ "eval_logits/chosen": 12.347259521484375,
2091
+ "eval_logits/rejected": 11.185004234313965,
2092
+ "eval_logps/chosen": -4.888545036315918,
2093
+ "eval_logps/rejected": -10.101993560791016,
2094
+ "eval_loss": 0.15526321530342102,
2095
+ "eval_rewards/accuracies": 0.9807692170143127,
2096
+ "eval_rewards/chosen": -7.332817077636719,
2097
+ "eval_rewards/margins": 7.8201727867126465,
2098
+ "eval_rewards/rejected": -15.15299129486084,
2099
+ "eval_runtime": 14.6049,
2100
+ "eval_samples_per_second": 28.21,
2101
+ "eval_steps_per_second": 3.56,
2102
+ "step": 1150
2103
+ },
2104
+ {
2105
+ "epoch": 1.8193054738081225,
2106
+ "grad_norm": 1.8233786821365356,
2107
+ "learning_rate": 6.075123608706093e-07,
2108
+ "logits/chosen": 11.725976943969727,
2109
+ "logits/rejected": 11.068318367004395,
2110
+ "logps/chosen": -5.016218185424805,
2111
+ "logps/rejected": -9.066827774047852,
2112
+ "loss": 0.1241,
2113
+ "rewards/accuracies": 0.9750000238418579,
2114
+ "rewards/chosen": -7.524327278137207,
2115
+ "rewards/margins": 6.075912952423096,
2116
+ "rewards/rejected": -13.600239753723145,
2117
+ "step": 1160
2118
+ },
2119
+ {
2120
+ "epoch": 1.8350009809691976,
2121
+ "grad_norm": 1.6913511753082275,
2122
+ "learning_rate": 5.737168930605272e-07,
2123
+ "logits/chosen": 11.813165664672852,
2124
+ "logits/rejected": 10.936023712158203,
2125
+ "logps/chosen": -5.16327428817749,
2126
+ "logps/rejected": -9.918088912963867,
2127
+ "loss": 0.1337,
2128
+ "rewards/accuracies": 0.9750000238418579,
2129
+ "rewards/chosen": -7.744911193847656,
2130
+ "rewards/margins": 7.132222652435303,
2131
+ "rewards/rejected": -14.877134323120117,
2132
+ "step": 1170
2133
+ },
2134
+ {
2135
+ "epoch": 1.8506964881302728,
2136
+ "grad_norm": 4.435967445373535,
2137
+ "learning_rate": 5.407663566854008e-07,
2138
+ "logits/chosen": 11.606057167053223,
2139
+ "logits/rejected": 10.97921085357666,
2140
+ "logps/chosen": -5.703640937805176,
2141
+ "logps/rejected": -10.870219230651855,
2142
+ "loss": 0.1245,
2143
+ "rewards/accuracies": 0.9624999761581421,
2144
+ "rewards/chosen": -8.555461883544922,
2145
+ "rewards/margins": 7.749865531921387,
2146
+ "rewards/rejected": -16.305328369140625,
2147
+ "step": 1180
2148
+ },
2149
+ {
2150
+ "epoch": 1.8663919952913477,
2151
+ "grad_norm": 2.9056365489959717,
2152
+ "learning_rate": 5.086752049395094e-07,
2153
+ "logits/chosen": 11.697361946105957,
2154
+ "logits/rejected": 10.928617477416992,
2155
+ "logps/chosen": -5.48267936706543,
2156
+ "logps/rejected": -10.689864158630371,
2157
+ "loss": 0.1251,
2158
+ "rewards/accuracies": 0.987500011920929,
2159
+ "rewards/chosen": -8.224019050598145,
2160
+ "rewards/margins": 7.810777187347412,
2161
+ "rewards/rejected": -16.0347957611084,
2162
+ "step": 1190
2163
+ },
2164
+ {
2165
+ "epoch": 1.882087502452423,
2166
+ "grad_norm": 2.538482904434204,
2167
+ "learning_rate": 4.774575140626317e-07,
2168
+ "logits/chosen": 11.8221435546875,
2169
+ "logits/rejected": 11.30038070678711,
2170
+ "logps/chosen": -5.215182781219482,
2171
+ "logps/rejected": -9.782806396484375,
2172
+ "loss": 0.1543,
2173
+ "rewards/accuracies": 0.9624999761581421,
2174
+ "rewards/chosen": -7.822774410247803,
2175
+ "rewards/margins": 6.851436614990234,
2176
+ "rewards/rejected": -14.674212455749512,
2177
+ "step": 1200
2178
+ },
2179
+ {
2180
+ "epoch": 1.882087502452423,
2181
+ "eval_logits/chosen": 12.300190925598145,
2182
+ "eval_logits/rejected": 11.128490447998047,
2183
+ "eval_logps/chosen": -4.917614936828613,
2184
+ "eval_logps/rejected": -10.187230110168457,
2185
+ "eval_loss": 0.1518644094467163,
2186
+ "eval_rewards/accuracies": 0.9807692170143127,
2187
+ "eval_rewards/chosen": -7.37642240524292,
2188
+ "eval_rewards/margins": 7.904422283172607,
2189
+ "eval_rewards/rejected": -15.280843734741211,
2190
+ "eval_runtime": 14.6081,
2191
+ "eval_samples_per_second": 28.203,
2192
+ "eval_steps_per_second": 3.56,
2193
+ "step": 1200
2194
+ }
2195
+ ],
2196
+ "logging_steps": 10,
2197
+ "max_steps": 1500,
2198
+ "num_input_tokens_seen": 0,
2199
+ "num_train_epochs": 3,
2200
+ "save_steps": 50,
2201
+ "stateful_callbacks": {
2202
+ "TrainerControl": {
2203
+ "args": {
2204
+ "should_epoch_stop": false,
2205
+ "should_evaluate": false,
2206
+ "should_log": false,
2207
+ "should_save": true,
2208
+ "should_training_stop": false
2209
+ },
2210
+ "attributes": {}
2211
+ }
2212
+ },
2213
+ "total_flos": 2.8694519974492897e+18,
2214
+ "train_batch_size": 1,
2215
+ "trial_name": null,
2216
+ "trial_params": null
2217
+ }
checkpoint-1200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5163ac022a6b5f37a143d69c025be3610fb33a65145b769bdd1d9b31cc494442
3
+ size 7224
checkpoint-1200/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)