ziansu commited on
Commit
52333c3
·
verified ·
1 Parent(s): 130cdda

Training in progress, step 800, checkpoint

Browse files
checkpoint-800/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-800/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "gate_up_proj",
27
+ "qkv_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-800/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:864182eeff2d5d13882233a48c798fb85fa04ee78aa6ea4bbc63d231c1085498
3
+ size 25200088
checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d5089cdaa17f2abd703632add10c12182fe949c6b705b0b4f803e5e8f15a55
3
+ size 18881328
checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75957ccc7677b00f26e11c60ba1943a2f3e7b40b48578d31392b773a70548120
3
+ size 18881328
checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8652bc8d27693520a5250d873ec853ab4376443e6a8bb8080dd01d767a077d20
3
+ size 18881328
checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3118ff73c06c720a57be5a01ba62e6641c3aaf452eb2dd6efef1955737380851
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e4c8215868e790b53ccae9680e217bffb967d6432a6456d4b37eb9d145c072
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc62363829f47349cdd821eddccab95c0b060be8f196ff303dd13ef7a0a0837
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a94f707f21c3a0f62136b45f0da4a21cce810691c2bd7222cb4cc103ee86d591
3
+ size 18881392
checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:184d9545798a33e07a3e698d989cdd8b0d4a14412169345cb946b15f2f300976
3
+ size 18881392
checkpoint-800/global_step800/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1054ad8086b8bec6af92baf2cbec97156dcc30f1076cba2be8a0bea98b511b92
3
+ size 25379244
checkpoint-800/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step800
checkpoint-800/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3bae17ea03fef9b7a71d175e609746f5f3fe2a60f3ed13635f6dc665b11f354
3
+ size 15984
checkpoint-800/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:923a360532bddf10ba1645b451f7759402dad170be3620bc17d5f6f4fb00de36
3
+ size 15984
checkpoint-800/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d71813f450c82f8af72c2cd844617dfe5f76fb4aa51ff57fece979d10d0c8170
3
+ size 15984
checkpoint-800/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d5298c6ce71cac9a3de67ce5987382569aedae7042216a68b8a5d6589481a48
3
+ size 15984
checkpoint-800/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216e2aae4ea0e03b6c9709171221e51c73a1ca974c74a698d09a6e0e90e7a102
3
+ size 15984
checkpoint-800/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:549ec918a3957d0f1b3143c1d9ff03581199729925aaa57987967cad5ce3913e
3
+ size 15984
checkpoint-800/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eacf66f46690cb657e6ccb8105ac57343b666f504a27c9e8486c483c383012b9
3
+ size 15984
checkpoint-800/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb94ba11b1ba7011123e588c395190bbe8fd47f934d7816c934d6dc7d11065ba
3
+ size 15984
checkpoint-800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70738be5abb38e8cfb91cc830ac49dd9920dd3cf34dfffcb1efb26bab828bcb1
3
+ size 1064
checkpoint-800/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-800/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-800/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-800/trainer_state.json ADDED
@@ -0,0 +1,1489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.60882800608828,
5
+ "eval_steps": 50,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0076103500761035,
13
+ "grad_norm": 0.058339186012744904,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.268467903137207,
16
+ "logits/rejected": 14.600369453430176,
17
+ "logps/chosen": -0.2669850289821625,
18
+ "logps/rejected": -0.3412467837333679,
19
+ "loss": 0.9049,
20
+ "rewards/accuracies": 0.5625,
21
+ "rewards/chosen": -0.4004775583744049,
22
+ "rewards/margins": 0.11139259487390518,
23
+ "rewards/rejected": -0.5118702054023743,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.015220700152207,
28
+ "grad_norm": 0.049545690417289734,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.14539623260498,
31
+ "logits/rejected": 15.191584587097168,
32
+ "logps/chosen": -0.25579872727394104,
33
+ "logps/rejected": -0.3931494653224945,
34
+ "loss": 0.8989,
35
+ "rewards/accuracies": 0.625,
36
+ "rewards/chosen": -0.38369807600975037,
37
+ "rewards/margins": 0.2060261219739914,
38
+ "rewards/rejected": -0.5897241830825806,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.0228310502283105,
43
+ "grad_norm": 0.061699289828538895,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.284139633178711,
46
+ "logits/rejected": 15.006326675415039,
47
+ "logps/chosen": -0.275672048330307,
48
+ "logps/rejected": -0.3603581488132477,
49
+ "loss": 0.9004,
50
+ "rewards/accuracies": 0.625,
51
+ "rewards/chosen": -0.4135080873966217,
52
+ "rewards/margins": 0.12702910602092743,
53
+ "rewards/rejected": -0.5405372381210327,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.030441400304414,
58
+ "grad_norm": 0.05706426501274109,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.275796890258789,
61
+ "logits/rejected": 14.935521125793457,
62
+ "logps/chosen": -0.2802076041698456,
63
+ "logps/rejected": -0.38278770446777344,
64
+ "loss": 0.9138,
65
+ "rewards/accuracies": 0.512499988079071,
66
+ "rewards/chosen": -0.42031145095825195,
67
+ "rewards/margins": 0.15387018024921417,
68
+ "rewards/rejected": -0.5741815567016602,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.0380517503805175,
73
+ "grad_norm": 0.05318514257669449,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.433627128601074,
76
+ "logits/rejected": 15.458297729492188,
77
+ "logps/chosen": -0.2581387162208557,
78
+ "logps/rejected": -0.38208404183387756,
79
+ "loss": 0.914,
80
+ "rewards/accuracies": 0.612500011920929,
81
+ "rewards/chosen": -0.38720807433128357,
82
+ "rewards/margins": 0.18591801822185516,
83
+ "rewards/rejected": -0.5731261372566223,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.0380517503805175,
88
+ "eval_logits/chosen": 14.396967887878418,
89
+ "eval_logits/rejected": 15.221076965332031,
90
+ "eval_logps/chosen": -0.27519574761390686,
91
+ "eval_logps/rejected": -0.3709692656993866,
92
+ "eval_loss": 0.9084128141403198,
93
+ "eval_rewards/accuracies": 0.5981308221817017,
94
+ "eval_rewards/chosen": -0.4127936065196991,
95
+ "eval_rewards/margins": 0.14366032183170319,
96
+ "eval_rewards/rejected": -0.5564539432525635,
97
+ "eval_runtime": 30.773,
98
+ "eval_samples_per_second": 27.622,
99
+ "eval_steps_per_second": 3.477,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.045662100456621,
104
+ "grad_norm": 0.06310460716485977,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.548416137695312,
107
+ "logits/rejected": 15.526041030883789,
108
+ "logps/chosen": -0.29403647780418396,
109
+ "logps/rejected": -0.40682005882263184,
110
+ "loss": 0.9082,
111
+ "rewards/accuracies": 0.625,
112
+ "rewards/chosen": -0.44105473160743713,
113
+ "rewards/margins": 0.1691754311323166,
114
+ "rewards/rejected": -0.6102300882339478,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.0532724505327245,
119
+ "grad_norm": 0.1258806735277176,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.390210151672363,
122
+ "logits/rejected": 14.817584037780762,
123
+ "logps/chosen": -0.25258123874664307,
124
+ "logps/rejected": -0.36392712593078613,
125
+ "loss": 0.896,
126
+ "rewards/accuracies": 0.637499988079071,
127
+ "rewards/chosen": -0.3788718581199646,
128
+ "rewards/margins": 0.1670188158750534,
129
+ "rewards/rejected": -0.5458906888961792,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.060882800608828,
134
+ "grad_norm": 0.09006265550851822,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 13.844560623168945,
137
+ "logits/rejected": 14.811120986938477,
138
+ "logps/chosen": -0.2630843222141266,
139
+ "logps/rejected": -0.3794577717781067,
140
+ "loss": 0.8977,
141
+ "rewards/accuracies": 0.6875,
142
+ "rewards/chosen": -0.3946264684200287,
143
+ "rewards/margins": 0.17456015944480896,
144
+ "rewards/rejected": -0.5691865682601929,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.0684931506849315,
149
+ "grad_norm": 0.07123688608407974,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 13.927327156066895,
152
+ "logits/rejected": 14.746416091918945,
153
+ "logps/chosen": -0.25282323360443115,
154
+ "logps/rejected": -0.3279832601547241,
155
+ "loss": 0.9092,
156
+ "rewards/accuracies": 0.5249999761581421,
157
+ "rewards/chosen": -0.37923485040664673,
158
+ "rewards/margins": 0.11274002492427826,
159
+ "rewards/rejected": -0.4919748902320862,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.076103500761035,
164
+ "grad_norm": 0.08333446085453033,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.406118392944336,
167
+ "logits/rejected": 14.770090103149414,
168
+ "logps/chosen": -0.28569403290748596,
169
+ "logps/rejected": -0.3596845269203186,
170
+ "loss": 0.8932,
171
+ "rewards/accuracies": 0.5625,
172
+ "rewards/chosen": -0.42854103446006775,
173
+ "rewards/margins": 0.11098580062389374,
174
+ "rewards/rejected": -0.5395268201828003,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.076103500761035,
179
+ "eval_logits/chosen": 13.925265312194824,
180
+ "eval_logits/rejected": 14.808513641357422,
181
+ "eval_logps/chosen": -0.2667020559310913,
182
+ "eval_logps/rejected": -0.3739235997200012,
183
+ "eval_loss": 0.8984279036521912,
184
+ "eval_rewards/accuracies": 0.5981308221817017,
185
+ "eval_rewards/chosen": -0.40005311369895935,
186
+ "eval_rewards/margins": 0.16083234548568726,
187
+ "eval_rewards/rejected": -0.5608854293823242,
188
+ "eval_runtime": 30.7791,
189
+ "eval_samples_per_second": 27.616,
190
+ "eval_steps_per_second": 3.476,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.0837138508371385,
195
+ "grad_norm": 0.08474570512771606,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 13.641456604003906,
198
+ "logits/rejected": 14.799921035766602,
199
+ "logps/chosen": -0.2721528708934784,
200
+ "logps/rejected": -0.38378894329071045,
201
+ "loss": 0.8995,
202
+ "rewards/accuracies": 0.6000000238418579,
203
+ "rewards/chosen": -0.40822935104370117,
204
+ "rewards/margins": 0.1674540936946869,
205
+ "rewards/rejected": -0.5756834149360657,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.091324200913242,
210
+ "grad_norm": 0.1004580408334732,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 13.835454940795898,
213
+ "logits/rejected": 14.882522583007812,
214
+ "logps/chosen": -0.28507837653160095,
215
+ "logps/rejected": -0.39737468957901,
216
+ "loss": 0.8795,
217
+ "rewards/accuracies": 0.574999988079071,
218
+ "rewards/chosen": -0.42761754989624023,
219
+ "rewards/margins": 0.16844449937343597,
220
+ "rewards/rejected": -0.5960620641708374,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.0989345509893455,
225
+ "grad_norm": 0.09537151455879211,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 13.607874870300293,
228
+ "logits/rejected": 14.091131210327148,
229
+ "logps/chosen": -0.2739318013191223,
230
+ "logps/rejected": -0.36800479888916016,
231
+ "loss": 0.8912,
232
+ "rewards/accuracies": 0.6000000238418579,
233
+ "rewards/chosen": -0.4108976721763611,
234
+ "rewards/margins": 0.14110951125621796,
235
+ "rewards/rejected": -0.5520071983337402,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.106544901065449,
240
+ "grad_norm": 0.10281535238027573,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 12.017224311828613,
243
+ "logits/rejected": 13.04835319519043,
244
+ "logps/chosen": -0.24072685837745667,
245
+ "logps/rejected": -0.36906492710113525,
246
+ "loss": 0.8908,
247
+ "rewards/accuracies": 0.6625000238418579,
248
+ "rewards/chosen": -0.3610902428627014,
249
+ "rewards/margins": 0.19250717759132385,
250
+ "rewards/rejected": -0.5535974502563477,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.1141552511415525,
255
+ "grad_norm": 0.707987368106842,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 12.522550582885742,
258
+ "logits/rejected": 13.272679328918457,
259
+ "logps/chosen": -0.2583540081977844,
260
+ "logps/rejected": -0.3796755075454712,
261
+ "loss": 0.8867,
262
+ "rewards/accuracies": 0.5375000238418579,
263
+ "rewards/chosen": -0.38753098249435425,
264
+ "rewards/margins": 0.18198221921920776,
265
+ "rewards/rejected": -0.569513201713562,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.1141552511415525,
270
+ "eval_logits/chosen": 11.989100456237793,
271
+ "eval_logits/rejected": 12.92872142791748,
272
+ "eval_logps/chosen": -0.27158522605895996,
273
+ "eval_logps/rejected": -0.40521273016929626,
274
+ "eval_loss": 0.8765817284584045,
275
+ "eval_rewards/accuracies": 0.5981308221817017,
276
+ "eval_rewards/chosen": -0.40737783908843994,
277
+ "eval_rewards/margins": 0.20044119656085968,
278
+ "eval_rewards/rejected": -0.6078190803527832,
279
+ "eval_runtime": 30.7739,
280
+ "eval_samples_per_second": 27.621,
281
+ "eval_steps_per_second": 3.477,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.121765601217656,
286
+ "grad_norm": 0.19342070817947388,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 11.095940589904785,
289
+ "logits/rejected": 12.351040840148926,
290
+ "logps/chosen": -0.24749942123889923,
291
+ "logps/rejected": -0.43422192335128784,
292
+ "loss": 0.8762,
293
+ "rewards/accuracies": 0.6625000238418579,
294
+ "rewards/chosen": -0.37124913930892944,
295
+ "rewards/margins": 0.2800838053226471,
296
+ "rewards/rejected": -0.6513329744338989,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1293759512937595,
301
+ "grad_norm": 0.19374576210975647,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 10.510068893432617,
304
+ "logits/rejected": 11.507593154907227,
305
+ "logps/chosen": -0.26223134994506836,
306
+ "logps/rejected": -0.43635931611061096,
307
+ "loss": 0.8581,
308
+ "rewards/accuracies": 0.6625000238418579,
309
+ "rewards/chosen": -0.39334696531295776,
310
+ "rewards/margins": 0.2611919641494751,
311
+ "rewards/rejected": -0.6545389294624329,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.136986301369863,
316
+ "grad_norm": 0.20330430567264557,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 9.89570140838623,
319
+ "logits/rejected": 10.669364929199219,
320
+ "logps/chosen": -0.3143860101699829,
321
+ "logps/rejected": -0.46989941596984863,
322
+ "loss": 0.8558,
323
+ "rewards/accuracies": 0.6000000238418579,
324
+ "rewards/chosen": -0.47157901525497437,
325
+ "rewards/margins": 0.23327013850212097,
326
+ "rewards/rejected": -0.704849123954773,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.1445966514459665,
331
+ "grad_norm": 0.22942212224006653,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 8.887057304382324,
334
+ "logits/rejected": 9.542157173156738,
335
+ "logps/chosen": -0.2906036972999573,
336
+ "logps/rejected": -0.4810206890106201,
337
+ "loss": 0.8554,
338
+ "rewards/accuracies": 0.625,
339
+ "rewards/chosen": -0.4359055459499359,
340
+ "rewards/margins": 0.28562551736831665,
341
+ "rewards/rejected": -0.7215310335159302,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.15220700152207,
346
+ "grad_norm": 0.29071903228759766,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 6.791537284851074,
349
+ "logits/rejected": 7.366445064544678,
350
+ "logps/chosen": -0.31382033228874207,
351
+ "logps/rejected": -0.5417486429214478,
352
+ "loss": 0.838,
353
+ "rewards/accuracies": 0.6625000238418579,
354
+ "rewards/chosen": -0.4707304835319519,
355
+ "rewards/margins": 0.34189245104789734,
356
+ "rewards/rejected": -0.8126228451728821,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.15220700152207,
361
+ "eval_logits/chosen": 7.050150394439697,
362
+ "eval_logits/rejected": 7.516275405883789,
363
+ "eval_logps/chosen": -0.3289315402507782,
364
+ "eval_logps/rejected": -0.5481724143028259,
365
+ "eval_loss": 0.813983678817749,
366
+ "eval_rewards/accuracies": 0.6168224215507507,
367
+ "eval_rewards/chosen": -0.4933973252773285,
368
+ "eval_rewards/margins": 0.3288613557815552,
369
+ "eval_rewards/rejected": -0.8222586512565613,
370
+ "eval_runtime": 30.7734,
371
+ "eval_samples_per_second": 27.621,
372
+ "eval_steps_per_second": 3.477,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.1598173515981735,
377
+ "grad_norm": 0.23101097345352173,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 5.132790565490723,
380
+ "logits/rejected": 5.848537445068359,
381
+ "logps/chosen": -0.33372369408607483,
382
+ "logps/rejected": -0.5993582010269165,
383
+ "loss": 0.8212,
384
+ "rewards/accuracies": 0.6625000238418579,
385
+ "rewards/chosen": -0.5005855560302734,
386
+ "rewards/margins": 0.3984517455101013,
387
+ "rewards/rejected": -0.8990373611450195,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.167427701674277,
392
+ "grad_norm": 0.5136363506317139,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 3.807554244995117,
395
+ "logits/rejected": 4.600871562957764,
396
+ "logps/chosen": -0.32092416286468506,
397
+ "logps/rejected": -0.651642918586731,
398
+ "loss": 0.7851,
399
+ "rewards/accuracies": 0.699999988079071,
400
+ "rewards/chosen": -0.4813862442970276,
401
+ "rewards/margins": 0.4960783123970032,
402
+ "rewards/rejected": -0.977464497089386,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.1750380517503805,
407
+ "grad_norm": 0.4106898009777069,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 2.760650396347046,
410
+ "logits/rejected": 2.1608071327209473,
411
+ "logps/chosen": -0.43665003776550293,
412
+ "logps/rejected": -0.8352751731872559,
413
+ "loss": 0.7685,
414
+ "rewards/accuracies": 0.6875,
415
+ "rewards/chosen": -0.6549750566482544,
416
+ "rewards/margins": 0.5979377627372742,
417
+ "rewards/rejected": -1.2529128789901733,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.182648401826484,
422
+ "grad_norm": 0.4719419479370117,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 3.1216347217559814,
425
+ "logits/rejected": 2.7202537059783936,
426
+ "logps/chosen": -0.444007933139801,
427
+ "logps/rejected": -0.7697597742080688,
428
+ "loss": 0.7474,
429
+ "rewards/accuracies": 0.6875,
430
+ "rewards/chosen": -0.6660118699073792,
431
+ "rewards/margins": 0.4886276125907898,
432
+ "rewards/rejected": -1.154639482498169,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.1902587519025875,
437
+ "grad_norm": 0.548523485660553,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 1.3678622245788574,
440
+ "logits/rejected": 0.46835970878601074,
441
+ "logps/chosen": -0.48227253556251526,
442
+ "logps/rejected": -0.997289776802063,
443
+ "loss": 0.7017,
444
+ "rewards/accuracies": 0.6875,
445
+ "rewards/chosen": -0.7234088182449341,
446
+ "rewards/margins": 0.7725256681442261,
447
+ "rewards/rejected": -1.4959346055984497,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.1902587519025875,
452
+ "eval_logits/chosen": 2.1362831592559814,
453
+ "eval_logits/rejected": 1.1932121515274048,
454
+ "eval_logps/chosen": -0.500978946685791,
455
+ "eval_logps/rejected": -1.0073517560958862,
456
+ "eval_loss": 0.6914573907852173,
457
+ "eval_rewards/accuracies": 0.6542056202888489,
458
+ "eval_rewards/chosen": -0.7514683604240417,
459
+ "eval_rewards/margins": 0.7595593929290771,
460
+ "eval_rewards/rejected": -1.5110276937484741,
461
+ "eval_runtime": 30.7706,
462
+ "eval_samples_per_second": 27.624,
463
+ "eval_steps_per_second": 3.477,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.197869101978691,
468
+ "grad_norm": 0.700670063495636,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 2.537666082382202,
471
+ "logits/rejected": 1.3070740699768066,
472
+ "logps/chosen": -0.59038907289505,
473
+ "logps/rejected": -1.0600087642669678,
474
+ "loss": 0.6908,
475
+ "rewards/accuracies": 0.637499988079071,
476
+ "rewards/chosen": -0.8855836987495422,
477
+ "rewards/margins": 0.7044296264648438,
478
+ "rewards/rejected": -1.5900132656097412,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.2054794520547945,
483
+ "grad_norm": 0.6454456448554993,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 2.312289237976074,
486
+ "logits/rejected": 1.6705052852630615,
487
+ "logps/chosen": -0.601074755191803,
488
+ "logps/rejected": -1.12887442111969,
489
+ "loss": 0.6868,
490
+ "rewards/accuracies": 0.637499988079071,
491
+ "rewards/chosen": -0.9016121029853821,
492
+ "rewards/margins": 0.7916995286941528,
493
+ "rewards/rejected": -1.6933116912841797,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.213089802130898,
498
+ "grad_norm": 0.8001136183738708,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 1.6213299036026,
501
+ "logits/rejected": 0.9048928022384644,
502
+ "logps/chosen": -0.6731385588645935,
503
+ "logps/rejected": -1.3181935548782349,
504
+ "loss": 0.632,
505
+ "rewards/accuracies": 0.6499999761581421,
506
+ "rewards/chosen": -1.0097079277038574,
507
+ "rewards/margins": 0.9675822257995605,
508
+ "rewards/rejected": -1.977290153503418,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.2207001522070015,
513
+ "grad_norm": 0.45858490467071533,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 1.0463030338287354,
516
+ "logits/rejected": 0.05798797681927681,
517
+ "logps/chosen": -0.677167534828186,
518
+ "logps/rejected": -1.4764039516448975,
519
+ "loss": 0.6447,
520
+ "rewards/accuracies": 0.7250000238418579,
521
+ "rewards/chosen": -1.0157512426376343,
522
+ "rewards/margins": 1.1988548040390015,
523
+ "rewards/rejected": -2.2146058082580566,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.228310502283105,
528
+ "grad_norm": 0.5778977870941162,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 2.3259291648864746,
531
+ "logits/rejected": 1.6117414236068726,
532
+ "logps/chosen": -0.7591919302940369,
533
+ "logps/rejected": -1.5995824337005615,
534
+ "loss": 0.5702,
535
+ "rewards/accuracies": 0.637499988079071,
536
+ "rewards/chosen": -1.1387879848480225,
537
+ "rewards/margins": 1.2605856657028198,
538
+ "rewards/rejected": -2.3993735313415527,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.228310502283105,
543
+ "eval_logits/chosen": 1.9625831842422485,
544
+ "eval_logits/rejected": 1.028193473815918,
545
+ "eval_logps/chosen": -0.7516441941261292,
546
+ "eval_logps/rejected": -1.771378517150879,
547
+ "eval_loss": 0.5786539912223816,
548
+ "eval_rewards/accuracies": 0.6915887594223022,
549
+ "eval_rewards/chosen": -1.1274662017822266,
550
+ "eval_rewards/margins": 1.5296014547348022,
551
+ "eval_rewards/rejected": -2.6570677757263184,
552
+ "eval_runtime": 30.7716,
553
+ "eval_samples_per_second": 27.623,
554
+ "eval_steps_per_second": 3.477,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.2359208523592085,
559
+ "grad_norm": 0.5383133292198181,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.2824015617370605,
562
+ "logits/rejected": 0.7073851823806763,
563
+ "logps/chosen": -0.8315173387527466,
564
+ "logps/rejected": -1.9733762741088867,
565
+ "loss": 0.587,
566
+ "rewards/accuracies": 0.75,
567
+ "rewards/chosen": -1.2472760677337646,
568
+ "rewards/margins": 1.7127883434295654,
569
+ "rewards/rejected": -2.96006441116333,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.243531202435312,
574
+ "grad_norm": 3.721909284591675,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 1.993947982788086,
577
+ "logits/rejected": 1.192871332168579,
578
+ "logps/chosen": -0.9074883460998535,
579
+ "logps/rejected": -1.9389015436172485,
580
+ "loss": 0.5194,
581
+ "rewards/accuracies": 0.625,
582
+ "rewards/chosen": -1.3612326383590698,
583
+ "rewards/margins": 1.5471194982528687,
584
+ "rewards/rejected": -2.9083518981933594,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.2511415525114155,
589
+ "grad_norm": 0.9611485004425049,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 0.607239305973053,
592
+ "logits/rejected": 0.040740929543972015,
593
+ "logps/chosen": -0.9696615934371948,
594
+ "logps/rejected": -2.3865818977355957,
595
+ "loss": 0.4715,
596
+ "rewards/accuracies": 0.762499988079071,
597
+ "rewards/chosen": -1.4544923305511475,
598
+ "rewards/margins": 2.1253809928894043,
599
+ "rewards/rejected": -3.5798733234405518,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.258751902587519,
604
+ "grad_norm": 3.716665744781494,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.486352801322937,
607
+ "logits/rejected": 0.860406756401062,
608
+ "logps/chosen": -0.9488881826400757,
609
+ "logps/rejected": -2.771193027496338,
610
+ "loss": 0.4584,
611
+ "rewards/accuracies": 0.7749999761581421,
612
+ "rewards/chosen": -1.4233323335647583,
613
+ "rewards/margins": 2.733457088470459,
614
+ "rewards/rejected": -4.156789302825928,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.2663622526636225,
619
+ "grad_norm": 2.496544361114502,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 2.1065332889556885,
622
+ "logits/rejected": 1.4116215705871582,
623
+ "logps/chosen": -0.9290377497673035,
624
+ "logps/rejected": -2.717181444168091,
625
+ "loss": 0.4126,
626
+ "rewards/accuracies": 0.7124999761581421,
627
+ "rewards/chosen": -1.393556833267212,
628
+ "rewards/margins": 2.682215452194214,
629
+ "rewards/rejected": -4.075772285461426,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.2663622526636225,
634
+ "eval_logits/chosen": 2.3063719272613525,
635
+ "eval_logits/rejected": 1.7392665147781372,
636
+ "eval_logps/chosen": -0.9553582072257996,
637
+ "eval_logps/rejected": -2.8578038215637207,
638
+ "eval_loss": 0.43925610184669495,
639
+ "eval_rewards/accuracies": 0.7196261882781982,
640
+ "eval_rewards/chosen": -1.433037281036377,
641
+ "eval_rewards/margins": 2.853668212890625,
642
+ "eval_rewards/rejected": -4.286705493927002,
643
+ "eval_runtime": 30.7732,
644
+ "eval_samples_per_second": 27.621,
645
+ "eval_steps_per_second": 3.477,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.273972602739726,
650
+ "grad_norm": 1.0364434719085693,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 3.5145366191864014,
653
+ "logits/rejected": 2.562318801879883,
654
+ "logps/chosen": -0.9316509366035461,
655
+ "logps/rejected": -2.7451562881469727,
656
+ "loss": 0.4566,
657
+ "rewards/accuracies": 0.675000011920929,
658
+ "rewards/chosen": -1.3974764347076416,
659
+ "rewards/margins": 2.7202582359313965,
660
+ "rewards/rejected": -4.117734432220459,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.2815829528158295,
665
+ "grad_norm": 0.7246320843696594,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 1.6608537435531616,
668
+ "logits/rejected": 1.27449631690979,
669
+ "logps/chosen": -1.0797128677368164,
670
+ "logps/rejected": -3.467390537261963,
671
+ "loss": 0.4299,
672
+ "rewards/accuracies": 0.762499988079071,
673
+ "rewards/chosen": -1.6195694208145142,
674
+ "rewards/margins": 3.5815162658691406,
675
+ "rewards/rejected": -5.201085567474365,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.289193302891933,
680
+ "grad_norm": 0.942298173904419,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 2.1106579303741455,
683
+ "logits/rejected": 1.5492799282073975,
684
+ "logps/chosen": -1.2671682834625244,
685
+ "logps/rejected": -3.201054811477661,
686
+ "loss": 0.4114,
687
+ "rewards/accuracies": 0.7124999761581421,
688
+ "rewards/chosen": -1.900752305984497,
689
+ "rewards/margins": 2.900829792022705,
690
+ "rewards/rejected": -4.801582336425781,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.2968036529680365,
695
+ "grad_norm": 0.4278697371482849,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 3.2620933055877686,
698
+ "logits/rejected": 2.7777600288391113,
699
+ "logps/chosen": -1.0661684274673462,
700
+ "logps/rejected": -3.025578022003174,
701
+ "loss": 0.4259,
702
+ "rewards/accuracies": 0.6499999761581421,
703
+ "rewards/chosen": -1.599252462387085,
704
+ "rewards/margins": 2.9391140937805176,
705
+ "rewards/rejected": -4.53836727142334,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.30441400304414,
710
+ "grad_norm": 0.6019588708877563,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 3.057295560836792,
713
+ "logits/rejected": 2.397916078567505,
714
+ "logps/chosen": -1.0584070682525635,
715
+ "logps/rejected": -3.479670286178589,
716
+ "loss": 0.4167,
717
+ "rewards/accuracies": 0.7124999761581421,
718
+ "rewards/chosen": -1.5876106023788452,
719
+ "rewards/margins": 3.631894588470459,
720
+ "rewards/rejected": -5.219505310058594,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.30441400304414,
725
+ "eval_logits/chosen": 3.2906479835510254,
726
+ "eval_logits/rejected": 2.9191884994506836,
727
+ "eval_logps/chosen": -1.1546303033828735,
728
+ "eval_logps/rejected": -3.499722957611084,
729
+ "eval_loss": 0.4080003499984741,
730
+ "eval_rewards/accuracies": 0.7102803587913513,
731
+ "eval_rewards/chosen": -1.731945514678955,
732
+ "eval_rewards/margins": 3.517639398574829,
733
+ "eval_rewards/rejected": -5.249584674835205,
734
+ "eval_runtime": 30.7819,
735
+ "eval_samples_per_second": 27.614,
736
+ "eval_steps_per_second": 3.476,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.3120243531202435,
741
+ "grad_norm": 0.610105037689209,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 2.7366433143615723,
744
+ "logits/rejected": 2.350151538848877,
745
+ "logps/chosen": -1.3425816297531128,
746
+ "logps/rejected": -4.451743125915527,
747
+ "loss": 0.3834,
748
+ "rewards/accuracies": 0.8125,
749
+ "rewards/chosen": -2.0138726234436035,
750
+ "rewards/margins": 4.663742542266846,
751
+ "rewards/rejected": -6.677615165710449,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.319634703196347,
756
+ "grad_norm": 0.9136129021644592,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 3.8271331787109375,
759
+ "logits/rejected": 3.666091203689575,
760
+ "logps/chosen": -1.3493579626083374,
761
+ "logps/rejected": -3.8569908142089844,
762
+ "loss": 0.397,
763
+ "rewards/accuracies": 0.7124999761581421,
764
+ "rewards/chosen": -2.0240368843078613,
765
+ "rewards/margins": 3.7614493370056152,
766
+ "rewards/rejected": -5.785486221313477,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.3272450532724505,
771
+ "grad_norm": 0.6076493859291077,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 3.027143955230713,
774
+ "logits/rejected": 2.2761549949645996,
775
+ "logps/chosen": -1.2890465259552002,
776
+ "logps/rejected": -4.363173961639404,
777
+ "loss": 0.3623,
778
+ "rewards/accuracies": 0.7875000238418579,
779
+ "rewards/chosen": -1.9335696697235107,
780
+ "rewards/margins": 4.6111907958984375,
781
+ "rewards/rejected": -6.544760704040527,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.334855403348554,
786
+ "grad_norm": 1.0694931745529175,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 3.989302158355713,
789
+ "logits/rejected": 3.3767571449279785,
790
+ "logps/chosen": -1.3799726963043213,
791
+ "logps/rejected": -4.611227512359619,
792
+ "loss": 0.3786,
793
+ "rewards/accuracies": 0.7875000238418579,
794
+ "rewards/chosen": -2.0699591636657715,
795
+ "rewards/margins": 4.846882343292236,
796
+ "rewards/rejected": -6.916840553283691,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3424657534246575,
801
+ "grad_norm": 2.3523929119110107,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 3.046278953552246,
804
+ "logits/rejected": 2.7509286403656006,
805
+ "logps/chosen": -1.577859878540039,
806
+ "logps/rejected": -4.554004669189453,
807
+ "loss": 0.3948,
808
+ "rewards/accuracies": 0.762499988079071,
809
+ "rewards/chosen": -2.3667898178100586,
810
+ "rewards/margins": 4.464217185974121,
811
+ "rewards/rejected": -6.831006050109863,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3424657534246575,
816
+ "eval_logits/chosen": 3.555213451385498,
817
+ "eval_logits/rejected": 3.359722375869751,
818
+ "eval_logps/chosen": -1.6125141382217407,
819
+ "eval_logps/rejected": -4.374329566955566,
820
+ "eval_loss": 0.3748260736465454,
821
+ "eval_rewards/accuracies": 0.7943925261497498,
822
+ "eval_rewards/chosen": -2.418771266937256,
823
+ "eval_rewards/margins": 4.142723560333252,
824
+ "eval_rewards/rejected": -6.56149435043335,
825
+ "eval_runtime": 30.7795,
826
+ "eval_samples_per_second": 27.616,
827
+ "eval_steps_per_second": 3.476,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.350076103500761,
832
+ "grad_norm": 1.113964557647705,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 3.61175274848938,
835
+ "logits/rejected": 3.547903537750244,
836
+ "logps/chosen": -1.7464786767959595,
837
+ "logps/rejected": -5.045803070068359,
838
+ "loss": 0.3717,
839
+ "rewards/accuracies": 0.762499988079071,
840
+ "rewards/chosen": -2.619718074798584,
841
+ "rewards/margins": 4.948986053466797,
842
+ "rewards/rejected": -7.568705081939697,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.3576864535768645,
847
+ "grad_norm": 1.5195355415344238,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 3.0807926654815674,
850
+ "logits/rejected": 3.012016773223877,
851
+ "logps/chosen": -2.164515733718872,
852
+ "logps/rejected": -5.039651393890381,
853
+ "loss": 0.3507,
854
+ "rewards/accuracies": 0.8374999761581421,
855
+ "rewards/chosen": -3.2467732429504395,
856
+ "rewards/margins": 4.312704086303711,
857
+ "rewards/rejected": -7.55947732925415,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.365296803652968,
862
+ "grad_norm": 2.3880045413970947,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 2.4990105628967285,
865
+ "logits/rejected": 2.5192058086395264,
866
+ "logps/chosen": -2.5131685733795166,
867
+ "logps/rejected": -5.811826705932617,
868
+ "loss": 0.3326,
869
+ "rewards/accuracies": 0.949999988079071,
870
+ "rewards/chosen": -3.7697532176971436,
871
+ "rewards/margins": 4.947987079620361,
872
+ "rewards/rejected": -8.717740058898926,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.3729071537290715,
877
+ "grad_norm": 4.61068868637085,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 2.1001622676849365,
880
+ "logits/rejected": 2.0562539100646973,
881
+ "logps/chosen": -2.7572569847106934,
882
+ "logps/rejected": -6.228929042816162,
883
+ "loss": 0.3227,
884
+ "rewards/accuracies": 0.9375,
885
+ "rewards/chosen": -4.135885715484619,
886
+ "rewards/margins": 5.207508563995361,
887
+ "rewards/rejected": -9.343393325805664,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.380517503805175,
892
+ "grad_norm": 8.403047561645508,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 3.1137287616729736,
895
+ "logits/rejected": 2.6646764278411865,
896
+ "logps/chosen": -2.8061861991882324,
897
+ "logps/rejected": -6.236757755279541,
898
+ "loss": 0.3422,
899
+ "rewards/accuracies": 0.862500011920929,
900
+ "rewards/chosen": -4.2092790603637695,
901
+ "rewards/margins": 5.1458563804626465,
902
+ "rewards/rejected": -9.355135917663574,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.380517503805175,
907
+ "eval_logits/chosen": 3.3083701133728027,
908
+ "eval_logits/rejected": 3.13222336769104,
909
+ "eval_logps/chosen": -2.6677865982055664,
910
+ "eval_logps/rejected": -5.843282222747803,
911
+ "eval_loss": 0.30595287680625916,
912
+ "eval_rewards/accuracies": 0.8878504633903503,
913
+ "eval_rewards/chosen": -4.001679420471191,
914
+ "eval_rewards/margins": 4.763244152069092,
915
+ "eval_rewards/rejected": -8.764924049377441,
916
+ "eval_runtime": 30.7793,
917
+ "eval_samples_per_second": 27.616,
918
+ "eval_steps_per_second": 3.476,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.3881278538812785,
923
+ "grad_norm": 2.3582851886749268,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 2.7116522789001465,
926
+ "logits/rejected": 2.5776076316833496,
927
+ "logps/chosen": -2.7367191314697266,
928
+ "logps/rejected": -6.1324052810668945,
929
+ "loss": 0.2649,
930
+ "rewards/accuracies": 0.9750000238418579,
931
+ "rewards/chosen": -4.10507869720459,
932
+ "rewards/margins": 5.093530178070068,
933
+ "rewards/rejected": -9.1986083984375,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.395738203957382,
938
+ "grad_norm": 2.8183226585388184,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 2.327544689178467,
941
+ "logits/rejected": 2.3745343685150146,
942
+ "logps/chosen": -2.6957223415374756,
943
+ "logps/rejected": -6.291537284851074,
944
+ "loss": 0.295,
945
+ "rewards/accuracies": 0.925000011920929,
946
+ "rewards/chosen": -4.043583393096924,
947
+ "rewards/margins": 5.393722057342529,
948
+ "rewards/rejected": -9.437305450439453,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.4033485540334855,
953
+ "grad_norm": 1.8313360214233398,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 2.4468109607696533,
956
+ "logits/rejected": 2.4551472663879395,
957
+ "logps/chosen": -2.7839953899383545,
958
+ "logps/rejected": -6.5379180908203125,
959
+ "loss": 0.2618,
960
+ "rewards/accuracies": 0.875,
961
+ "rewards/chosen": -4.175992965698242,
962
+ "rewards/margins": 5.63088321685791,
963
+ "rewards/rejected": -9.806875228881836,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.410958904109589,
968
+ "grad_norm": 2.2132411003112793,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 3.125279664993286,
971
+ "logits/rejected": 2.7795650959014893,
972
+ "logps/chosen": -3.349208116531372,
973
+ "logps/rejected": -6.923414707183838,
974
+ "loss": 0.2592,
975
+ "rewards/accuracies": 0.925000011920929,
976
+ "rewards/chosen": -5.023811340332031,
977
+ "rewards/margins": 5.361310005187988,
978
+ "rewards/rejected": -10.385122299194336,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.4185692541856925,
983
+ "grad_norm": 6.05848503112793,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 2.841399669647217,
986
+ "logits/rejected": 2.997351884841919,
987
+ "logps/chosen": -3.256176710128784,
988
+ "logps/rejected": -7.098822593688965,
989
+ "loss": 0.2603,
990
+ "rewards/accuracies": 0.9375,
991
+ "rewards/chosen": -4.884264945983887,
992
+ "rewards/margins": 5.763968467712402,
993
+ "rewards/rejected": -10.648235321044922,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.4185692541856925,
998
+ "eval_logits/chosen": 3.109469413757324,
999
+ "eval_logits/rejected": 3.010756492614746,
1000
+ "eval_logps/chosen": -3.216036558151245,
1001
+ "eval_logps/rejected": -6.825747013092041,
1002
+ "eval_loss": 0.27887609601020813,
1003
+ "eval_rewards/accuracies": 0.8878504633903503,
1004
+ "eval_rewards/chosen": -4.824055194854736,
1005
+ "eval_rewards/margins": 5.414565563201904,
1006
+ "eval_rewards/rejected": -10.23862075805664,
1007
+ "eval_runtime": 30.773,
1008
+ "eval_samples_per_second": 27.622,
1009
+ "eval_steps_per_second": 3.477,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.426179604261796,
1014
+ "grad_norm": 1.8734403848648071,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 1.8899682760238647,
1017
+ "logits/rejected": 1.7766664028167725,
1018
+ "logps/chosen": -3.1907763481140137,
1019
+ "logps/rejected": -7.273028373718262,
1020
+ "loss": 0.2669,
1021
+ "rewards/accuracies": 0.8999999761581421,
1022
+ "rewards/chosen": -4.7861647605896,
1023
+ "rewards/margins": 6.123377323150635,
1024
+ "rewards/rejected": -10.909541130065918,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.4337899543378995,
1029
+ "grad_norm": 3.2115261554718018,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 2.563091278076172,
1032
+ "logits/rejected": 2.530696392059326,
1033
+ "logps/chosen": -3.620448589324951,
1034
+ "logps/rejected": -7.546849250793457,
1035
+ "loss": 0.2683,
1036
+ "rewards/accuracies": 0.9750000238418579,
1037
+ "rewards/chosen": -5.430673599243164,
1038
+ "rewards/margins": 5.8896002769470215,
1039
+ "rewards/rejected": -11.320273399353027,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.441400304414003,
1044
+ "grad_norm": 3.684910297393799,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 2.873882293701172,
1047
+ "logits/rejected": 3.193092107772827,
1048
+ "logps/chosen": -3.386859178543091,
1049
+ "logps/rejected": -7.514338493347168,
1050
+ "loss": 0.2715,
1051
+ "rewards/accuracies": 0.8500000238418579,
1052
+ "rewards/chosen": -5.080288887023926,
1053
+ "rewards/margins": 6.191219329833984,
1054
+ "rewards/rejected": -11.271509170532227,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.4490106544901065,
1059
+ "grad_norm": 2.661367416381836,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 2.5157277584075928,
1062
+ "logits/rejected": 2.5739080905914307,
1063
+ "logps/chosen": -3.658534526824951,
1064
+ "logps/rejected": -7.9988884925842285,
1065
+ "loss": 0.2454,
1066
+ "rewards/accuracies": 0.9624999761581421,
1067
+ "rewards/chosen": -5.487801551818848,
1068
+ "rewards/margins": 6.510530948638916,
1069
+ "rewards/rejected": -11.998331069946289,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.45662100456621,
1074
+ "grad_norm": 1.8180292844772339,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 2.6391870975494385,
1077
+ "logits/rejected": 2.72003173828125,
1078
+ "logps/chosen": -3.382587432861328,
1079
+ "logps/rejected": -8.08546257019043,
1080
+ "loss": 0.2706,
1081
+ "rewards/accuracies": 0.875,
1082
+ "rewards/chosen": -5.073880672454834,
1083
+ "rewards/margins": 7.054312229156494,
1084
+ "rewards/rejected": -12.128194808959961,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.45662100456621,
1089
+ "eval_logits/chosen": 3.235776901245117,
1090
+ "eval_logits/rejected": 3.2310192584991455,
1091
+ "eval_logps/chosen": -3.201641082763672,
1092
+ "eval_logps/rejected": -7.113856315612793,
1093
+ "eval_loss": 0.26078400015830994,
1094
+ "eval_rewards/accuracies": 0.8878504633903503,
1095
+ "eval_rewards/chosen": -4.802461624145508,
1096
+ "eval_rewards/margins": 5.8683247566223145,
1097
+ "eval_rewards/rejected": -10.67078685760498,
1098
+ "eval_runtime": 30.7777,
1099
+ "eval_samples_per_second": 27.617,
1100
+ "eval_steps_per_second": 3.477,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.4642313546423135,
1105
+ "grad_norm": 3.1237454414367676,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 3.097729444503784,
1108
+ "logits/rejected": 2.8835232257843018,
1109
+ "logps/chosen": -3.2986862659454346,
1110
+ "logps/rejected": -7.824951171875,
1111
+ "loss": 0.2455,
1112
+ "rewards/accuracies": 0.8999999761581421,
1113
+ "rewards/chosen": -4.948029518127441,
1114
+ "rewards/margins": 6.789399147033691,
1115
+ "rewards/rejected": -11.7374267578125,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.471841704718417,
1120
+ "grad_norm": 2.250023365020752,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 3.303495407104492,
1123
+ "logits/rejected": 3.124060869216919,
1124
+ "logps/chosen": -2.9880855083465576,
1125
+ "logps/rejected": -6.581275939941406,
1126
+ "loss": 0.2754,
1127
+ "rewards/accuracies": 0.875,
1128
+ "rewards/chosen": -4.482128143310547,
1129
+ "rewards/margins": 5.389786243438721,
1130
+ "rewards/rejected": -9.87191390991211,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.4794520547945205,
1135
+ "grad_norm": 4.364448547363281,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 2.8994319438934326,
1138
+ "logits/rejected": 2.593780755996704,
1139
+ "logps/chosen": -3.4450290203094482,
1140
+ "logps/rejected": -7.1797990798950195,
1141
+ "loss": 0.2316,
1142
+ "rewards/accuracies": 0.9750000238418579,
1143
+ "rewards/chosen": -5.167544364929199,
1144
+ "rewards/margins": 5.602154731750488,
1145
+ "rewards/rejected": -10.769698143005371,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.487062404870624,
1150
+ "grad_norm": 3.65561580657959,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 3.1075518131256104,
1153
+ "logits/rejected": 2.8703231811523438,
1154
+ "logps/chosen": -3.26599383354187,
1155
+ "logps/rejected": -7.536534786224365,
1156
+ "loss": 0.2549,
1157
+ "rewards/accuracies": 0.9125000238418579,
1158
+ "rewards/chosen": -4.898990631103516,
1159
+ "rewards/margins": 6.4058122634887695,
1160
+ "rewards/rejected": -11.304803848266602,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.4946727549467275,
1165
+ "grad_norm": 3.1211891174316406,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 3.2364888191223145,
1168
+ "logits/rejected": 3.3938751220703125,
1169
+ "logps/chosen": -3.538849353790283,
1170
+ "logps/rejected": -7.827691555023193,
1171
+ "loss": 0.2571,
1172
+ "rewards/accuracies": 0.9125000238418579,
1173
+ "rewards/chosen": -5.308274269104004,
1174
+ "rewards/margins": 6.433261871337891,
1175
+ "rewards/rejected": -11.741537094116211,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.4946727549467275,
1180
+ "eval_logits/chosen": 3.091616153717041,
1181
+ "eval_logits/rejected": 3.0459396839141846,
1182
+ "eval_logps/chosen": -3.361125946044922,
1183
+ "eval_logps/rejected": -7.390212535858154,
1184
+ "eval_loss": 0.2536354660987854,
1185
+ "eval_rewards/accuracies": 0.8971962332725525,
1186
+ "eval_rewards/chosen": -5.041689395904541,
1187
+ "eval_rewards/margins": 6.043630599975586,
1188
+ "eval_rewards/rejected": -11.085319519042969,
1189
+ "eval_runtime": 30.7751,
1190
+ "eval_samples_per_second": 27.62,
1191
+ "eval_steps_per_second": 3.477,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.502283105022831,
1196
+ "grad_norm": 4.375415802001953,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 1.8274192810058594,
1199
+ "logits/rejected": 1.9628839492797852,
1200
+ "logps/chosen": -3.083608627319336,
1201
+ "logps/rejected": -8.370513916015625,
1202
+ "loss": 0.2166,
1203
+ "rewards/accuracies": 0.9624999761581421,
1204
+ "rewards/chosen": -4.625412940979004,
1205
+ "rewards/margins": 7.930357456207275,
1206
+ "rewards/rejected": -12.555770874023438,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5098934550989346,
1211
+ "grad_norm": 3.6583638191223145,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 2.5409281253814697,
1214
+ "logits/rejected": 2.46968150138855,
1215
+ "logps/chosen": -3.252990245819092,
1216
+ "logps/rejected": -7.6487884521484375,
1217
+ "loss": 0.2103,
1218
+ "rewards/accuracies": 0.9375,
1219
+ "rewards/chosen": -4.879485607147217,
1220
+ "rewards/margins": 6.593697547912598,
1221
+ "rewards/rejected": -11.473182678222656,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.517503805175038,
1226
+ "grad_norm": 2.009876251220703,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 3.553900957107544,
1229
+ "logits/rejected": 3.4104526042938232,
1230
+ "logps/chosen": -2.9901890754699707,
1231
+ "logps/rejected": -7.472288608551025,
1232
+ "loss": 0.2405,
1233
+ "rewards/accuracies": 0.9125000238418579,
1234
+ "rewards/chosen": -4.485283374786377,
1235
+ "rewards/margins": 6.723149299621582,
1236
+ "rewards/rejected": -11.208433151245117,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.5251141552511416,
1241
+ "grad_norm": 2.9065611362457275,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 2.323111057281494,
1244
+ "logits/rejected": 2.0086140632629395,
1245
+ "logps/chosen": -3.430807590484619,
1246
+ "logps/rejected": -8.105338096618652,
1247
+ "loss": 0.2182,
1248
+ "rewards/accuracies": 0.925000011920929,
1249
+ "rewards/chosen": -5.146210670471191,
1250
+ "rewards/margins": 7.011796474456787,
1251
+ "rewards/rejected": -12.15800666809082,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.532724505327245,
1256
+ "grad_norm": 4.097139358520508,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 1.9292926788330078,
1259
+ "logits/rejected": 2.0105385780334473,
1260
+ "logps/chosen": -3.337139129638672,
1261
+ "logps/rejected": -7.7645721435546875,
1262
+ "loss": 0.245,
1263
+ "rewards/accuracies": 0.949999988079071,
1264
+ "rewards/chosen": -5.005709171295166,
1265
+ "rewards/margins": 6.641148567199707,
1266
+ "rewards/rejected": -11.646858215332031,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.532724505327245,
1271
+ "eval_logits/chosen": 2.946713924407959,
1272
+ "eval_logits/rejected": 2.912729501724243,
1273
+ "eval_logps/chosen": -3.3646414279937744,
1274
+ "eval_logps/rejected": -7.633481979370117,
1275
+ "eval_loss": 0.2412233203649521,
1276
+ "eval_rewards/accuracies": 0.9065420627593994,
1277
+ "eval_rewards/chosen": -5.046962261199951,
1278
+ "eval_rewards/margins": 6.403261184692383,
1279
+ "eval_rewards/rejected": -11.450223922729492,
1280
+ "eval_runtime": 30.7742,
1281
+ "eval_samples_per_second": 27.621,
1282
+ "eval_steps_per_second": 3.477,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.5403348554033486,
1287
+ "grad_norm": 4.534071922302246,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 2.4406304359436035,
1290
+ "logits/rejected": 2.713369607925415,
1291
+ "logps/chosen": -3.4392433166503906,
1292
+ "logps/rejected": -8.228872299194336,
1293
+ "loss": 0.2245,
1294
+ "rewards/accuracies": 0.949999988079071,
1295
+ "rewards/chosen": -5.158864498138428,
1296
+ "rewards/margins": 7.184444427490234,
1297
+ "rewards/rejected": -12.34330940246582,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.547945205479452,
1302
+ "grad_norm": 1.5941667556762695,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 3.3259758949279785,
1305
+ "logits/rejected": 3.3186354637145996,
1306
+ "logps/chosen": -3.7198212146759033,
1307
+ "logps/rejected": -7.6400909423828125,
1308
+ "loss": 0.2339,
1309
+ "rewards/accuracies": 0.925000011920929,
1310
+ "rewards/chosen": -5.5797319412231445,
1311
+ "rewards/margins": 5.8804030418396,
1312
+ "rewards/rejected": -11.460134506225586,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.5555555555555556,
1317
+ "grad_norm": 5.972750186920166,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 2.455244302749634,
1320
+ "logits/rejected": 2.5398240089416504,
1321
+ "logps/chosen": -3.892965316772461,
1322
+ "logps/rejected": -8.59666633605957,
1323
+ "loss": 0.2041,
1324
+ "rewards/accuracies": 0.925000011920929,
1325
+ "rewards/chosen": -5.83944845199585,
1326
+ "rewards/margins": 7.055548667907715,
1327
+ "rewards/rejected": -12.894998550415039,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.563165905631659,
1332
+ "grad_norm": 3.1441280841827393,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 2.3029608726501465,
1335
+ "logits/rejected": 2.3662524223327637,
1336
+ "logps/chosen": -3.682513475418091,
1337
+ "logps/rejected": -8.340951919555664,
1338
+ "loss": 0.2723,
1339
+ "rewards/accuracies": 0.887499988079071,
1340
+ "rewards/chosen": -5.523770332336426,
1341
+ "rewards/margins": 6.9876580238342285,
1342
+ "rewards/rejected": -12.511428833007812,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.5707762557077626,
1347
+ "grad_norm": 2.30711030960083,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 1.8446356058120728,
1350
+ "logits/rejected": 1.9468234777450562,
1351
+ "logps/chosen": -3.808454990386963,
1352
+ "logps/rejected": -8.047523498535156,
1353
+ "loss": 0.1936,
1354
+ "rewards/accuracies": 0.925000011920929,
1355
+ "rewards/chosen": -5.712681770324707,
1356
+ "rewards/margins": 6.3586015701293945,
1357
+ "rewards/rejected": -12.071284294128418,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.5707762557077626,
1362
+ "eval_logits/chosen": 2.7250914573669434,
1363
+ "eval_logits/rejected": 2.7465131282806396,
1364
+ "eval_logps/chosen": -3.5594334602355957,
1365
+ "eval_logps/rejected": -7.899675369262695,
1366
+ "eval_loss": 0.2329329252243042,
1367
+ "eval_rewards/accuracies": 0.9345794320106506,
1368
+ "eval_rewards/chosen": -5.339150905609131,
1369
+ "eval_rewards/margins": 6.510361671447754,
1370
+ "eval_rewards/rejected": -11.84951114654541,
1371
+ "eval_runtime": 30.7783,
1372
+ "eval_samples_per_second": 27.617,
1373
+ "eval_steps_per_second": 3.476,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.578386605783866,
1378
+ "grad_norm": 3.0719997882843018,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 2.3534064292907715,
1381
+ "logits/rejected": 2.401563882827759,
1382
+ "logps/chosen": -3.610807418823242,
1383
+ "logps/rejected": -7.985041618347168,
1384
+ "loss": 0.1847,
1385
+ "rewards/accuracies": 0.949999988079071,
1386
+ "rewards/chosen": -5.416211128234863,
1387
+ "rewards/margins": 6.561351776123047,
1388
+ "rewards/rejected": -11.97756290435791,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.5859969558599696,
1393
+ "grad_norm": 3.6076536178588867,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 1.969351053237915,
1396
+ "logits/rejected": 2.2207655906677246,
1397
+ "logps/chosen": -2.9666709899902344,
1398
+ "logps/rejected": -8.2462797164917,
1399
+ "loss": 0.2211,
1400
+ "rewards/accuracies": 0.9375,
1401
+ "rewards/chosen": -4.450006484985352,
1402
+ "rewards/margins": 7.919413089752197,
1403
+ "rewards/rejected": -12.369420051574707,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.593607305936073,
1408
+ "grad_norm": 3.9795055389404297,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 2.6336114406585693,
1411
+ "logits/rejected": 2.438262462615967,
1412
+ "logps/chosen": -3.4108245372772217,
1413
+ "logps/rejected": -8.591341018676758,
1414
+ "loss": 0.2306,
1415
+ "rewards/accuracies": 0.9624999761581421,
1416
+ "rewards/chosen": -5.116236209869385,
1417
+ "rewards/margins": 7.770774841308594,
1418
+ "rewards/rejected": -12.887011528015137,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.6012176560121766,
1423
+ "grad_norm": 3.288729667663574,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 1.6185804605484009,
1426
+ "logits/rejected": 1.6822645664215088,
1427
+ "logps/chosen": -3.2728798389434814,
1428
+ "logps/rejected": -7.791805267333984,
1429
+ "loss": 0.2329,
1430
+ "rewards/accuracies": 0.9375,
1431
+ "rewards/chosen": -4.909319877624512,
1432
+ "rewards/margins": 6.778387546539307,
1433
+ "rewards/rejected": -11.687707901000977,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.60882800608828,
1438
+ "grad_norm": 2.315206289291382,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 2.018578052520752,
1441
+ "logits/rejected": 1.8465204238891602,
1442
+ "logps/chosen": -3.2794997692108154,
1443
+ "logps/rejected": -8.164708137512207,
1444
+ "loss": 0.2082,
1445
+ "rewards/accuracies": 0.9375,
1446
+ "rewards/chosen": -4.919250011444092,
1447
+ "rewards/margins": 7.327812194824219,
1448
+ "rewards/rejected": -12.247061729431152,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.60882800608828,
1453
+ "eval_logits/chosen": 3.08111572265625,
1454
+ "eval_logits/rejected": 3.0503101348876953,
1455
+ "eval_logps/chosen": -3.4727284908294678,
1456
+ "eval_logps/rejected": -7.895880699157715,
1457
+ "eval_loss": 0.22325536608695984,
1458
+ "eval_rewards/accuracies": 0.9252336621284485,
1459
+ "eval_rewards/chosen": -5.209092617034912,
1460
+ "eval_rewards/margins": 6.634730339050293,
1461
+ "eval_rewards/rejected": -11.84382152557373,
1462
+ "eval_runtime": 30.7753,
1463
+ "eval_samples_per_second": 27.62,
1464
+ "eval_steps_per_second": 3.477,
1465
+ "step": 800
1466
+ }
1467
+ ],
1468
+ "logging_steps": 10,
1469
+ "max_steps": 1500,
1470
+ "num_input_tokens_seen": 0,
1471
+ "num_train_epochs": 2,
1472
+ "save_steps": 50,
1473
+ "stateful_callbacks": {
1474
+ "TrainerControl": {
1475
+ "args": {
1476
+ "should_epoch_stop": false,
1477
+ "should_evaluate": false,
1478
+ "should_log": false,
1479
+ "should_save": true,
1480
+ "should_training_stop": false
1481
+ },
1482
+ "attributes": {}
1483
+ }
1484
+ },
1485
+ "total_flos": 1.862174564721623e+18,
1486
+ "train_batch_size": 1,
1487
+ "trial_name": null,
1488
+ "trial_params": null
1489
+ }
checkpoint-800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f4cd2f804ea1e74c05047097e9244ba2f0dfdda24bfccd07e006f56a3fae84
3
+ size 7224
checkpoint-800/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)