ziansu commited on
Commit
99448f2
·
verified ·
1 Parent(s): 4af40bb

Training in progress, step 1200, checkpoint

Browse files
Files changed (28) hide show
  1. checkpoint-1200/README.md +202 -0
  2. checkpoint-1200/adapter_config.json +34 -0
  3. checkpoint-1200/adapter_model.safetensors +3 -0
  4. checkpoint-1200/global_step1200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1200/global_step1200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1200/global_step1200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1200/global_step1200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1200/global_step1200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1200/global_step1200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1200/global_step1200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1200/global_step1200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1200/global_step1200/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1200/latest +1 -0
  14. checkpoint-1200/rng_state_0.pth +3 -0
  15. checkpoint-1200/rng_state_1.pth +3 -0
  16. checkpoint-1200/rng_state_2.pth +3 -0
  17. checkpoint-1200/rng_state_3.pth +3 -0
  18. checkpoint-1200/rng_state_4.pth +3 -0
  19. checkpoint-1200/rng_state_5.pth +3 -0
  20. checkpoint-1200/rng_state_6.pth +3 -0
  21. checkpoint-1200/rng_state_7.pth +3 -0
  22. checkpoint-1200/scheduler.pt +3 -0
  23. checkpoint-1200/special_tokens_map.json +30 -0
  24. checkpoint-1200/tokenizer.json +0 -0
  25. checkpoint-1200/tokenizer_config.json +133 -0
  26. checkpoint-1200/trainer_state.json +2217 -0
  27. checkpoint-1200/training_args.bin +3 -0
  28. checkpoint-1200/zero_to_fp32.py +674 -0
checkpoint-1200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1200/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "gate_up_proj",
27
+ "o_proj",
28
+ "down_proj",
29
+ "qkv_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d938374b178488517a82c746688512fcb110abae712a4823316beac5d5b77af1
3
+ size 25200088
checkpoint-1200/global_step1200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93bbc426b26bd869db2c8c3e606764ef487a8581cb85356db63bb691ce089d42
3
+ size 18881328
checkpoint-1200/global_step1200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4967c785ffdeaef21f357b78589119b0d2f0a93a8f518afb713cd15578a3464
3
+ size 18881328
checkpoint-1200/global_step1200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c83fbaf192e2e93079e719f6d0d10bc11825cb140b7d03ccf6ee37d1c9048701
3
+ size 18881328
checkpoint-1200/global_step1200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d94dbd77d96ec9cf09c30b8eb4cfc726427aeca4d871440cd7c74ec1bb8cdb4a
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d597054201aa09b4bdfc79a8959d24efda101575451b8c153bd039d9e45271e9
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b2dc35a179967893c0d063beefcc2cd37ffd379796c94c1002791da3c88cebe
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1355cd56606d9518501f32a182a84494fba1249e0adaac7b1f342f9a361d204e
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aff360ce6c5d6cccdaf4edf06c4d280e1e8db160844e2bf0d060c68096d0b547
3
+ size 18881392
checkpoint-1200/global_step1200/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a80dbead0b4c3ad1821dbc111afe8fae86bb2e9f26c16f807f2ee5cafaf7a8b4
3
+ size 25379244
checkpoint-1200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1200
checkpoint-1200/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5504b8d722b425f58bab6aedf9a43fc8129b02036307d31c7a21e224d2412ace
3
+ size 15984
checkpoint-1200/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e555860fd7a2cfb8945f188f7232baf938ce622886881cc422b3eb0e7444eda4
3
+ size 15984
checkpoint-1200/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea0c272cf77c9504efaa077bfa8f9229d461c16d6641be0e57a7f20f9b761399
3
+ size 15984
checkpoint-1200/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:921e0812b510be6ea788fc2c6aa7541f3ff4eb1bb3dd7c230340a35d8e1e764b
3
+ size 15984
checkpoint-1200/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3603a5403f0489f4be4d27720a0fa7e0fe0d08dbde5d58c1060cef37b9084d2
3
+ size 15984
checkpoint-1200/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b9f685b83b5545cc2db9c29e88184590e89acb7836b4bb92a6a1df01b4bf43f
3
+ size 15984
checkpoint-1200/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5843202dd0ab5bc42fd0b6fa35e7cc2dca365d38fb379a2faf93bf274ef023e6
3
+ size 15984
checkpoint-1200/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f72ffc2afb7672fc32ddd050c69181c2c0c16f8eac79a352eecb064fb5a9c7
3
+ size 15984
checkpoint-1200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35b4cc7927ca0f1b9b45cd00f72746408c82d953cb952c75e7569243d9fa3f0c
3
+ size 1064
checkpoint-1200/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1200/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-1200/trainer_state.json ADDED
@@ -0,0 +1,2217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9687184661957619,
5
+ "eval_steps": 50,
6
+ "global_step": 1200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008072653884964682,
13
+ "grad_norm": 0.04926518723368645,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.542106628417969,
16
+ "logits/rejected": 14.864250183105469,
17
+ "logps/chosen": -0.2809702754020691,
18
+ "logps/rejected": -0.3013763725757599,
19
+ "loss": 0.9221,
20
+ "rewards/accuracies": 0.42500001192092896,
21
+ "rewards/chosen": -0.421455442905426,
22
+ "rewards/margins": 0.03060910664498806,
23
+ "rewards/rejected": -0.452064573764801,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.016145307769929364,
28
+ "grad_norm": 0.056249432265758514,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.614748001098633,
31
+ "logits/rejected": 15.259109497070312,
32
+ "logps/chosen": -0.2828002870082855,
33
+ "logps/rejected": -0.3477819561958313,
34
+ "loss": 0.916,
35
+ "rewards/accuracies": 0.550000011920929,
36
+ "rewards/chosen": -0.4242004454135895,
37
+ "rewards/margins": 0.09747247397899628,
38
+ "rewards/rejected": -0.5216729044914246,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.024217961654894045,
43
+ "grad_norm": 0.0664869099855423,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.391204833984375,
46
+ "logits/rejected": 14.82734203338623,
47
+ "logps/chosen": -0.287629634141922,
48
+ "logps/rejected": -0.3329126834869385,
49
+ "loss": 0.914,
50
+ "rewards/accuracies": 0.48750001192092896,
51
+ "rewards/chosen": -0.4314444661140442,
52
+ "rewards/margins": 0.06792456656694412,
53
+ "rewards/rejected": -0.4993689954280853,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.03229061553985873,
58
+ "grad_norm": 0.055584829300642014,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 13.93278980255127,
61
+ "logits/rejected": 14.886846542358398,
62
+ "logps/chosen": -0.28155946731567383,
63
+ "logps/rejected": -0.3678051829338074,
64
+ "loss": 0.9273,
65
+ "rewards/accuracies": 0.6000000238418579,
66
+ "rewards/chosen": -0.42233920097351074,
67
+ "rewards/margins": 0.12936851382255554,
68
+ "rewards/rejected": -0.5517078042030334,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04036326942482341,
73
+ "grad_norm": 0.07997103035449982,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.172693252563477,
76
+ "logits/rejected": 14.742494583129883,
77
+ "logps/chosen": -0.28225988149642944,
78
+ "logps/rejected": -0.34329456090927124,
79
+ "loss": 0.9081,
80
+ "rewards/accuracies": 0.48750001192092896,
81
+ "rewards/chosen": -0.42338982224464417,
82
+ "rewards/margins": 0.0915520042181015,
83
+ "rewards/rejected": -0.5149418115615845,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04036326942482341,
88
+ "eval_logits/chosen": 14.200166702270508,
89
+ "eval_logits/rejected": 14.817726135253906,
90
+ "eval_logps/chosen": -0.2625390887260437,
91
+ "eval_logps/rejected": -0.3458769917488098,
92
+ "eval_loss": 0.9080610275268555,
93
+ "eval_rewards/accuracies": 0.5544554591178894,
94
+ "eval_rewards/chosen": -0.39380866289138794,
95
+ "eval_rewards/margins": 0.1250067949295044,
96
+ "eval_rewards/rejected": -0.5188154578208923,
97
+ "eval_runtime": 29.8098,
98
+ "eval_samples_per_second": 26.87,
99
+ "eval_steps_per_second": 3.388,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.04843592330978809,
104
+ "grad_norm": 0.06322095543146133,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.008010864257812,
107
+ "logits/rejected": 14.975939750671387,
108
+ "logps/chosen": -0.2697351574897766,
109
+ "logps/rejected": -0.3445274233818054,
110
+ "loss": 0.9195,
111
+ "rewards/accuracies": 0.5,
112
+ "rewards/chosen": -0.40460270643234253,
113
+ "rewards/margins": 0.1121884360909462,
114
+ "rewards/rejected": -0.5167912244796753,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.056508577194752774,
119
+ "grad_norm": 0.12975476682186127,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.213134765625,
122
+ "logits/rejected": 14.889978408813477,
123
+ "logps/chosen": -0.2839818596839905,
124
+ "logps/rejected": -0.3382417559623718,
125
+ "loss": 0.9241,
126
+ "rewards/accuracies": 0.5375000238418579,
127
+ "rewards/chosen": -0.4259727895259857,
128
+ "rewards/margins": 0.08138985931873322,
129
+ "rewards/rejected": -0.5073626637458801,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.06458123107971746,
134
+ "grad_norm": 0.08352109789848328,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 14.395146369934082,
137
+ "logits/rejected": 14.900177001953125,
138
+ "logps/chosen": -0.27067264914512634,
139
+ "logps/rejected": -0.3516673743724823,
140
+ "loss": 0.9251,
141
+ "rewards/accuracies": 0.637499988079071,
142
+ "rewards/chosen": -0.4060089588165283,
143
+ "rewards/margins": 0.12149210274219513,
144
+ "rewards/rejected": -0.5275009870529175,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07265388496468214,
149
+ "grad_norm": 0.0793827548623085,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 13.905145645141602,
152
+ "logits/rejected": 14.897878646850586,
153
+ "logps/chosen": -0.26814645528793335,
154
+ "logps/rejected": -0.38061466813087463,
155
+ "loss": 0.9055,
156
+ "rewards/accuracies": 0.6000000238418579,
157
+ "rewards/chosen": -0.4022197127342224,
158
+ "rewards/margins": 0.16870227456092834,
159
+ "rewards/rejected": -0.5709219574928284,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08072653884964683,
164
+ "grad_norm": 0.09212008118629456,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.11627197265625,
167
+ "logits/rejected": 14.571977615356445,
168
+ "logps/chosen": -0.3130624294281006,
169
+ "logps/rejected": -0.35073375701904297,
170
+ "loss": 0.911,
171
+ "rewards/accuracies": 0.48750001192092896,
172
+ "rewards/chosen": -0.46959367394447327,
173
+ "rewards/margins": 0.05650699883699417,
174
+ "rewards/rejected": -0.5261006951332092,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08072653884964683,
179
+ "eval_logits/chosen": 13.845876693725586,
180
+ "eval_logits/rejected": 14.490789413452148,
181
+ "eval_logps/chosen": -0.2531408667564392,
182
+ "eval_logps/rejected": -0.3464036285877228,
183
+ "eval_loss": 0.8986235857009888,
184
+ "eval_rewards/accuracies": 0.5544554591178894,
185
+ "eval_rewards/chosen": -0.3797112703323364,
186
+ "eval_rewards/margins": 0.13989417254924774,
187
+ "eval_rewards/rejected": -0.5196054577827454,
188
+ "eval_runtime": 29.0914,
189
+ "eval_samples_per_second": 27.534,
190
+ "eval_steps_per_second": 3.472,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.08879919273461151,
195
+ "grad_norm": 0.08554862439632416,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 13.416229248046875,
198
+ "logits/rejected": 14.582674026489258,
199
+ "logps/chosen": -0.2523443102836609,
200
+ "logps/rejected": -0.38751405477523804,
201
+ "loss": 0.8993,
202
+ "rewards/accuracies": 0.6875,
203
+ "rewards/chosen": -0.3785164952278137,
204
+ "rewards/margins": 0.20275457203388214,
205
+ "rewards/rejected": -0.5812710523605347,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.09687184661957618,
210
+ "grad_norm": 0.29209578037261963,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 13.874654769897461,
213
+ "logits/rejected": 14.423624992370605,
214
+ "logps/chosen": -0.27300480008125305,
215
+ "logps/rejected": -0.3526575267314911,
216
+ "loss": 0.8942,
217
+ "rewards/accuracies": 0.6000000238418579,
218
+ "rewards/chosen": -0.40950721502304077,
219
+ "rewards/margins": 0.11947910487651825,
220
+ "rewards/rejected": -0.5289863348007202,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.10494450050454086,
225
+ "grad_norm": 0.1028478816151619,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 14.030723571777344,
228
+ "logits/rejected": 14.711235046386719,
229
+ "logps/chosen": -0.27410784363746643,
230
+ "logps/rejected": -0.3665519058704376,
231
+ "loss": 0.8922,
232
+ "rewards/accuracies": 0.550000011920929,
233
+ "rewards/chosen": -0.41116175055503845,
234
+ "rewards/margins": 0.1386660784482956,
235
+ "rewards/rejected": -0.5498278737068176,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.11301715438950555,
240
+ "grad_norm": 0.08459590375423431,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 13.477182388305664,
243
+ "logits/rejected": 13.919464111328125,
244
+ "logps/chosen": -0.2495063841342926,
245
+ "logps/rejected": -0.3594816029071808,
246
+ "loss": 0.8957,
247
+ "rewards/accuracies": 0.612500011920929,
248
+ "rewards/chosen": -0.3742595613002777,
249
+ "rewards/margins": 0.16496284306049347,
250
+ "rewards/rejected": -0.5392224192619324,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.12108980827447023,
255
+ "grad_norm": 0.12467797845602036,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 12.801656723022461,
258
+ "logits/rejected": 13.564155578613281,
259
+ "logps/chosen": -0.2779986262321472,
260
+ "logps/rejected": -0.33566445112228394,
261
+ "loss": 0.892,
262
+ "rewards/accuracies": 0.4375,
263
+ "rewards/chosen": -0.4169979691505432,
264
+ "rewards/margins": 0.08649872243404388,
265
+ "rewards/rejected": -0.5034967064857483,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.12108980827447023,
270
+ "eval_logits/chosen": 12.169118881225586,
271
+ "eval_logits/rejected": 13.019683837890625,
272
+ "eval_logps/chosen": -0.25547870993614197,
273
+ "eval_logps/rejected": -0.37277930974960327,
274
+ "eval_loss": 0.8789658546447754,
275
+ "eval_rewards/accuracies": 0.5742574334144592,
276
+ "eval_rewards/chosen": -0.38321802020072937,
277
+ "eval_rewards/margins": 0.17595094442367554,
278
+ "eval_rewards/rejected": -0.5591689944267273,
279
+ "eval_runtime": 29.0961,
280
+ "eval_samples_per_second": 27.529,
281
+ "eval_steps_per_second": 3.471,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.12916246215943492,
286
+ "grad_norm": 0.1712370663881302,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 11.972528457641602,
289
+ "logits/rejected": 12.684088706970215,
290
+ "logps/chosen": -0.28340521454811096,
291
+ "logps/rejected": -0.3864063024520874,
292
+ "loss": 0.8789,
293
+ "rewards/accuracies": 0.574999988079071,
294
+ "rewards/chosen": -0.42510780692100525,
295
+ "rewards/margins": 0.15450166165828705,
296
+ "rewards/rejected": -0.5796095132827759,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.13723511604439959,
301
+ "grad_norm": 0.21750673651695251,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 11.93881607055664,
304
+ "logits/rejected": 12.458230972290039,
305
+ "logps/chosen": -0.274599552154541,
306
+ "logps/rejected": -0.3882916271686554,
307
+ "loss": 0.8857,
308
+ "rewards/accuracies": 0.675000011920929,
309
+ "rewards/chosen": -0.4118993282318115,
310
+ "rewards/margins": 0.1705380380153656,
311
+ "rewards/rejected": -0.5824374556541443,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.14530776992936428,
316
+ "grad_norm": 0.16000741720199585,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 9.631464958190918,
319
+ "logits/rejected": 10.772969245910645,
320
+ "logps/chosen": -0.287865549325943,
321
+ "logps/rejected": -0.4817379415035248,
322
+ "loss": 0.8699,
323
+ "rewards/accuracies": 0.6625000238418579,
324
+ "rewards/chosen": -0.4317983090877533,
325
+ "rewards/margins": 0.29080861806869507,
326
+ "rewards/rejected": -0.722606897354126,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.15338042381432895,
331
+ "grad_norm": 0.46293890476226807,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 9.081937789916992,
334
+ "logits/rejected": 10.024572372436523,
335
+ "logps/chosen": -0.2941994071006775,
336
+ "logps/rejected": -0.4772109389305115,
337
+ "loss": 0.8565,
338
+ "rewards/accuracies": 0.675000011920929,
339
+ "rewards/chosen": -0.44129911065101624,
340
+ "rewards/margins": 0.2745172679424286,
341
+ "rewards/rejected": -0.7158163785934448,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.16145307769929365,
346
+ "grad_norm": 0.24658434092998505,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 7.767125606536865,
349
+ "logits/rejected": 8.009145736694336,
350
+ "logps/chosen": -0.32877305150032043,
351
+ "logps/rejected": -0.47733697295188904,
352
+ "loss": 0.8482,
353
+ "rewards/accuracies": 0.5874999761581421,
354
+ "rewards/chosen": -0.49315959215164185,
355
+ "rewards/margins": 0.2228458821773529,
356
+ "rewards/rejected": -0.7160054445266724,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.16145307769929365,
361
+ "eval_logits/chosen": 6.716187953948975,
362
+ "eval_logits/rejected": 7.248146057128906,
363
+ "eval_logps/chosen": -0.30652713775634766,
364
+ "eval_logps/rejected": -0.5056277513504028,
365
+ "eval_loss": 0.8243693113327026,
366
+ "eval_rewards/accuracies": 0.603960394859314,
367
+ "eval_rewards/chosen": -0.4597907066345215,
368
+ "eval_rewards/margins": 0.2986510097980499,
369
+ "eval_rewards/rejected": -0.7584417462348938,
370
+ "eval_runtime": 29.0989,
371
+ "eval_samples_per_second": 27.527,
372
+ "eval_steps_per_second": 3.471,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.16952573158425832,
377
+ "grad_norm": 0.40796443819999695,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 5.932644844055176,
380
+ "logits/rejected": 6.521953582763672,
381
+ "logps/chosen": -0.32976508140563965,
382
+ "logps/rejected": -0.5628186464309692,
383
+ "loss": 0.7988,
384
+ "rewards/accuracies": 0.612500011920929,
385
+ "rewards/chosen": -0.4946475923061371,
386
+ "rewards/margins": 0.3495803475379944,
387
+ "rewards/rejected": -0.8442279696464539,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.17759838546922302,
392
+ "grad_norm": 0.42468318343162537,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 6.069305896759033,
395
+ "logits/rejected": 5.8950395584106445,
396
+ "logps/chosen": -0.37205421924591064,
397
+ "logps/rejected": -0.6190425753593445,
398
+ "loss": 0.796,
399
+ "rewards/accuracies": 0.6000000238418579,
400
+ "rewards/chosen": -0.5580812692642212,
401
+ "rewards/margins": 0.3704826235771179,
402
+ "rewards/rejected": -0.9285639524459839,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.1856710393541877,
407
+ "grad_norm": 0.4138280153274536,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 3.5271706581115723,
410
+ "logits/rejected": 3.363534927368164,
411
+ "logps/chosen": -0.41677650809288025,
412
+ "logps/rejected": -0.7121980786323547,
413
+ "loss": 0.7457,
414
+ "rewards/accuracies": 0.637499988079071,
415
+ "rewards/chosen": -0.6251648664474487,
416
+ "rewards/margins": 0.4431324005126953,
417
+ "rewards/rejected": -1.0682971477508545,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.19374369323915236,
422
+ "grad_norm": 1.4327284097671509,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 2.296924114227295,
425
+ "logits/rejected": 1.6135867834091187,
426
+ "logps/chosen": -0.506227970123291,
427
+ "logps/rejected": -0.8080593943595886,
428
+ "loss": 0.7453,
429
+ "rewards/accuracies": 0.550000011920929,
430
+ "rewards/chosen": -0.7593418955802917,
431
+ "rewards/margins": 0.4527471661567688,
432
+ "rewards/rejected": -1.21208918094635,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.20181634712411706,
437
+ "grad_norm": 0.4413074553012848,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 1.4450469017028809,
440
+ "logits/rejected": 0.40727120637893677,
441
+ "logps/chosen": -0.4749869406223297,
442
+ "logps/rejected": -0.9967275857925415,
443
+ "loss": 0.704,
444
+ "rewards/accuracies": 0.6625000238418579,
445
+ "rewards/chosen": -0.712480366230011,
446
+ "rewards/margins": 0.7826108932495117,
447
+ "rewards/rejected": -1.4950913190841675,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.20181634712411706,
452
+ "eval_logits/chosen": 1.4614256620407104,
453
+ "eval_logits/rejected": 0.6895493865013123,
454
+ "eval_logps/chosen": -0.5038881301879883,
455
+ "eval_logps/rejected": -0.973581850528717,
456
+ "eval_loss": 0.6982013583183289,
457
+ "eval_rewards/accuracies": 0.6138613820075989,
458
+ "eval_rewards/chosen": -0.7558321952819824,
459
+ "eval_rewards/margins": 0.7045406699180603,
460
+ "eval_rewards/rejected": -1.460372805595398,
461
+ "eval_runtime": 29.0993,
462
+ "eval_samples_per_second": 27.526,
463
+ "eval_steps_per_second": 3.471,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.20988900100908173,
468
+ "grad_norm": 0.734251856803894,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 2.4274039268493652,
471
+ "logits/rejected": 1.498230218887329,
472
+ "logps/chosen": -0.5549699068069458,
473
+ "logps/rejected": -0.9348627328872681,
474
+ "loss": 0.7149,
475
+ "rewards/accuracies": 0.5249999761581421,
476
+ "rewards/chosen": -0.8324548602104187,
477
+ "rewards/margins": 0.5698392987251282,
478
+ "rewards/rejected": -1.4022941589355469,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.21796165489404642,
483
+ "grad_norm": 0.4445085823535919,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 2.042858600616455,
486
+ "logits/rejected": 1.1695036888122559,
487
+ "logps/chosen": -0.5573975443840027,
488
+ "logps/rejected": -1.15065598487854,
489
+ "loss": 0.6811,
490
+ "rewards/accuracies": 0.625,
491
+ "rewards/chosen": -0.8360962867736816,
492
+ "rewards/margins": 0.889887809753418,
493
+ "rewards/rejected": -1.72598397731781,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.2260343087790111,
498
+ "grad_norm": 0.5875476598739624,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 1.3029518127441406,
501
+ "logits/rejected": 0.3808741271495819,
502
+ "logps/chosen": -0.6656169891357422,
503
+ "logps/rejected": -1.5305824279785156,
504
+ "loss": 0.637,
505
+ "rewards/accuracies": 0.625,
506
+ "rewards/chosen": -0.9984253644943237,
507
+ "rewards/margins": 1.2974482774734497,
508
+ "rewards/rejected": -2.2958736419677734,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.2341069626639758,
513
+ "grad_norm": 0.3814420998096466,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 2.0200212001800537,
516
+ "logits/rejected": 1.2681838274002075,
517
+ "logps/chosen": -0.6776013970375061,
518
+ "logps/rejected": -1.3369777202606201,
519
+ "loss": 0.63,
520
+ "rewards/accuracies": 0.5874999761581421,
521
+ "rewards/chosen": -1.016402006149292,
522
+ "rewards/margins": 0.9890643358230591,
523
+ "rewards/rejected": -2.0054664611816406,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.24217961654894046,
528
+ "grad_norm": 0.6442322731018066,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 1.6268196105957031,
531
+ "logits/rejected": 0.4954712390899658,
532
+ "logps/chosen": -0.8117648363113403,
533
+ "logps/rejected": -1.7705228328704834,
534
+ "loss": 0.6104,
535
+ "rewards/accuracies": 0.7749999761581421,
536
+ "rewards/chosen": -1.2176473140716553,
537
+ "rewards/margins": 1.4381370544433594,
538
+ "rewards/rejected": -2.6557843685150146,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.24217961654894046,
543
+ "eval_logits/chosen": 1.4003607034683228,
544
+ "eval_logits/rejected": 0.46628010272979736,
545
+ "eval_logps/chosen": -0.7612115740776062,
546
+ "eval_logps/rejected": -1.6895866394042969,
547
+ "eval_loss": 0.5781419277191162,
548
+ "eval_rewards/accuracies": 0.6534653306007385,
549
+ "eval_rewards/chosen": -1.141817331314087,
550
+ "eval_rewards/margins": 1.392562747001648,
551
+ "eval_rewards/rejected": -2.5343799591064453,
552
+ "eval_runtime": 29.102,
553
+ "eval_samples_per_second": 27.524,
554
+ "eval_steps_per_second": 3.471,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.25025227043390513,
559
+ "grad_norm": 0.7889758944511414,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 1.1702089309692383,
562
+ "logits/rejected": 0.354276180267334,
563
+ "logps/chosen": -0.8091352581977844,
564
+ "logps/rejected": -1.944819450378418,
565
+ "loss": 0.5807,
566
+ "rewards/accuracies": 0.6875,
567
+ "rewards/chosen": -1.2137027978897095,
568
+ "rewards/margins": 1.7035261392593384,
569
+ "rewards/rejected": -2.9172286987304688,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.25832492431886983,
574
+ "grad_norm": 1.410145878791809,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 2.0981459617614746,
577
+ "logits/rejected": 1.2289329767227173,
578
+ "logps/chosen": -0.8151634931564331,
579
+ "logps/rejected": -1.977259874343872,
580
+ "loss": 0.5007,
581
+ "rewards/accuracies": 0.6625000238418579,
582
+ "rewards/chosen": -1.222745418548584,
583
+ "rewards/margins": 1.7431443929672241,
584
+ "rewards/rejected": -2.9658896923065186,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.26639757820383453,
589
+ "grad_norm": 0.5564689040184021,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 1.7921768426895142,
592
+ "logits/rejected": 0.7705962061882019,
593
+ "logps/chosen": -0.9244564771652222,
594
+ "logps/rejected": -2.5274672508239746,
595
+ "loss": 0.4757,
596
+ "rewards/accuracies": 0.75,
597
+ "rewards/chosen": -1.3866846561431885,
598
+ "rewards/margins": 2.4045166969299316,
599
+ "rewards/rejected": -3.791201114654541,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.27447023208879917,
604
+ "grad_norm": 0.7554243803024292,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 1.947997808456421,
607
+ "logits/rejected": 0.9661592245101929,
608
+ "logps/chosen": -0.9154227375984192,
609
+ "logps/rejected": -3.0766491889953613,
610
+ "loss": 0.4581,
611
+ "rewards/accuracies": 0.7749999761581421,
612
+ "rewards/chosen": -1.3731342554092407,
613
+ "rewards/margins": 3.24183988571167,
614
+ "rewards/rejected": -4.614974021911621,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.28254288597376387,
619
+ "grad_norm": 2.936426877975464,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 1.2846364974975586,
622
+ "logits/rejected": 0.9968118667602539,
623
+ "logps/chosen": -1.0272481441497803,
624
+ "logps/rejected": -2.6980624198913574,
625
+ "loss": 0.4989,
626
+ "rewards/accuracies": 0.7124999761581421,
627
+ "rewards/chosen": -1.54087233543396,
628
+ "rewards/margins": 2.506221294403076,
629
+ "rewards/rejected": -4.047093868255615,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.28254288597376387,
634
+ "eval_logits/chosen": 1.841333031654358,
635
+ "eval_logits/rejected": 1.1651691198349,
636
+ "eval_logps/chosen": -0.9644113183021545,
637
+ "eval_logps/rejected": -2.631535053253174,
638
+ "eval_loss": 0.44154587388038635,
639
+ "eval_rewards/accuracies": 0.6732673048973083,
640
+ "eval_rewards/chosen": -1.4466170072555542,
641
+ "eval_rewards/margins": 2.500684976577759,
642
+ "eval_rewards/rejected": -3.9473025798797607,
643
+ "eval_runtime": 29.1062,
644
+ "eval_samples_per_second": 27.52,
645
+ "eval_steps_per_second": 3.47,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.29061553985872857,
650
+ "grad_norm": 0.49919044971466064,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 1.9874728918075562,
653
+ "logits/rejected": 1.464611291885376,
654
+ "logps/chosen": -0.9963932037353516,
655
+ "logps/rejected": -2.8804218769073486,
656
+ "loss": 0.4373,
657
+ "rewards/accuracies": 0.7124999761581421,
658
+ "rewards/chosen": -1.4945898056030273,
659
+ "rewards/margins": 2.8260433673858643,
660
+ "rewards/rejected": -4.320633411407471,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.29868819374369326,
665
+ "grad_norm": 1.4991668462753296,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 2.5421957969665527,
668
+ "logits/rejected": 1.941922903060913,
669
+ "logps/chosen": -1.0214306116104126,
670
+ "logps/rejected": -3.2893283367156982,
671
+ "loss": 0.438,
672
+ "rewards/accuracies": 0.7250000238418579,
673
+ "rewards/chosen": -1.5321458578109741,
674
+ "rewards/margins": 3.4018466472625732,
675
+ "rewards/rejected": -4.933992862701416,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.3067608476286579,
680
+ "grad_norm": 1.933100938796997,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 1.80439031124115,
683
+ "logits/rejected": 1.4421275854110718,
684
+ "logps/chosen": -1.1270357370376587,
685
+ "logps/rejected": -3.17500901222229,
686
+ "loss": 0.4542,
687
+ "rewards/accuracies": 0.7124999761581421,
688
+ "rewards/chosen": -1.6905533075332642,
689
+ "rewards/margins": 3.071959972381592,
690
+ "rewards/rejected": -4.762513160705566,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.3148335015136226,
695
+ "grad_norm": 3.017254590988159,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 3.4090209007263184,
698
+ "logits/rejected": 2.784639835357666,
699
+ "logps/chosen": -1.1713608503341675,
700
+ "logps/rejected": -3.326244831085205,
701
+ "loss": 0.4816,
702
+ "rewards/accuracies": 0.675000011920929,
703
+ "rewards/chosen": -1.757041335105896,
704
+ "rewards/margins": 3.232325792312622,
705
+ "rewards/rejected": -4.9893670082092285,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3229061553985873,
710
+ "grad_norm": 0.5897337198257446,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 3.6071503162384033,
713
+ "logits/rejected": 2.738395929336548,
714
+ "logps/chosen": -1.133429765701294,
715
+ "logps/rejected": -3.509474277496338,
716
+ "loss": 0.4431,
717
+ "rewards/accuracies": 0.7250000238418579,
718
+ "rewards/chosen": -1.7001447677612305,
719
+ "rewards/margins": 3.5640671253204346,
720
+ "rewards/rejected": -5.264212131500244,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3229061553985873,
725
+ "eval_logits/chosen": 2.893691062927246,
726
+ "eval_logits/rejected": 2.259718656539917,
727
+ "eval_logps/chosen": -1.0705492496490479,
728
+ "eval_logps/rejected": -2.935904026031494,
729
+ "eval_loss": 0.4156961143016815,
730
+ "eval_rewards/accuracies": 0.6732673048973083,
731
+ "eval_rewards/chosen": -1.6058237552642822,
732
+ "eval_rewards/margins": 2.798032283782959,
733
+ "eval_rewards/rejected": -4.403855800628662,
734
+ "eval_runtime": 29.186,
735
+ "eval_samples_per_second": 27.445,
736
+ "eval_steps_per_second": 3.461,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.33097880928355194,
741
+ "grad_norm": 2.219709634780884,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 2.8940415382385254,
744
+ "logits/rejected": 2.545257091522217,
745
+ "logps/chosen": -1.1774877309799194,
746
+ "logps/rejected": -3.4022269248962402,
747
+ "loss": 0.427,
748
+ "rewards/accuracies": 0.699999988079071,
749
+ "rewards/chosen": -1.7662317752838135,
750
+ "rewards/margins": 3.3371081352233887,
751
+ "rewards/rejected": -5.1033406257629395,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.33905146316851664,
756
+ "grad_norm": 0.9891649484634399,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 3.180427074432373,
759
+ "logits/rejected": 2.8354597091674805,
760
+ "logps/chosen": -1.2984545230865479,
761
+ "logps/rejected": -3.4927687644958496,
762
+ "loss": 0.4384,
763
+ "rewards/accuracies": 0.75,
764
+ "rewards/chosen": -1.9476817846298218,
765
+ "rewards/margins": 3.291471481323242,
766
+ "rewards/rejected": -5.2391533851623535,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.34712411705348134,
771
+ "grad_norm": 0.4516288936138153,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 4.026360511779785,
774
+ "logits/rejected": 3.3932456970214844,
775
+ "logps/chosen": -1.1195746660232544,
776
+ "logps/rejected": -3.4704582691192627,
777
+ "loss": 0.3934,
778
+ "rewards/accuracies": 0.6625000238418579,
779
+ "rewards/chosen": -1.6793619394302368,
780
+ "rewards/margins": 3.5263259410858154,
781
+ "rewards/rejected": -5.205687522888184,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.35519677093844604,
786
+ "grad_norm": 0.5276560187339783,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 3.410902500152588,
789
+ "logits/rejected": 2.906996965408325,
790
+ "logps/chosen": -1.205904245376587,
791
+ "logps/rejected": -3.7434115409851074,
792
+ "loss": 0.4147,
793
+ "rewards/accuracies": 0.737500011920929,
794
+ "rewards/chosen": -1.8088566064834595,
795
+ "rewards/margins": 3.806260585784912,
796
+ "rewards/rejected": -5.615117073059082,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3632694248234107,
801
+ "grad_norm": 0.4435446560382843,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 3.7616615295410156,
804
+ "logits/rejected": 3.4183363914489746,
805
+ "logps/chosen": -1.2180852890014648,
806
+ "logps/rejected": -3.865541934967041,
807
+ "loss": 0.4354,
808
+ "rewards/accuracies": 0.675000011920929,
809
+ "rewards/chosen": -1.8271278142929077,
810
+ "rewards/margins": 3.9711856842041016,
811
+ "rewards/rejected": -5.798312664031982,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3632694248234107,
816
+ "eval_logits/chosen": 3.55381178855896,
817
+ "eval_logits/rejected": 3.01943039894104,
818
+ "eval_logps/chosen": -1.3239827156066895,
819
+ "eval_logps/rejected": -3.6477084159851074,
820
+ "eval_loss": 0.3905698359012604,
821
+ "eval_rewards/accuracies": 0.7029703259468079,
822
+ "eval_rewards/chosen": -1.9859741926193237,
823
+ "eval_rewards/margins": 3.485589027404785,
824
+ "eval_rewards/rejected": -5.471563816070557,
825
+ "eval_runtime": 29.0958,
826
+ "eval_samples_per_second": 27.53,
827
+ "eval_steps_per_second": 3.471,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.3713420787083754,
832
+ "grad_norm": 0.8419796824455261,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 3.3496861457824707,
835
+ "logits/rejected": 3.235544204711914,
836
+ "logps/chosen": -1.4899990558624268,
837
+ "logps/rejected": -4.507351398468018,
838
+ "loss": 0.4023,
839
+ "rewards/accuracies": 0.762499988079071,
840
+ "rewards/chosen": -2.2349984645843506,
841
+ "rewards/margins": 4.526029109954834,
842
+ "rewards/rejected": -6.7610273361206055,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.3794147325933401,
847
+ "grad_norm": 1.2379052639007568,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 3.5375685691833496,
850
+ "logits/rejected": 3.34586763381958,
851
+ "logps/chosen": -1.5865886211395264,
852
+ "logps/rejected": -4.887473106384277,
853
+ "loss": 0.3979,
854
+ "rewards/accuracies": 0.7875000238418579,
855
+ "rewards/chosen": -2.379883289337158,
856
+ "rewards/margins": 4.9513258934021,
857
+ "rewards/rejected": -7.331210136413574,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.3874873864783047,
862
+ "grad_norm": 1.9969083070755005,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 3.3116583824157715,
865
+ "logits/rejected": 2.9652373790740967,
866
+ "logps/chosen": -2.0900139808654785,
867
+ "logps/rejected": -4.921124458312988,
868
+ "loss": 0.3356,
869
+ "rewards/accuracies": 0.824999988079071,
870
+ "rewards/chosen": -3.135021209716797,
871
+ "rewards/margins": 4.246665000915527,
872
+ "rewards/rejected": -7.381686210632324,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.3955600403632694,
877
+ "grad_norm": 2.3405466079711914,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 2.542064666748047,
880
+ "logits/rejected": 2.503020763397217,
881
+ "logps/chosen": -2.4674277305603027,
882
+ "logps/rejected": -5.703408718109131,
883
+ "loss": 0.3193,
884
+ "rewards/accuracies": 0.875,
885
+ "rewards/chosen": -3.701141834259033,
886
+ "rewards/margins": 4.853971004486084,
887
+ "rewards/rejected": -8.555112838745117,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.4036326942482341,
892
+ "grad_norm": 1.4798164367675781,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 3.79949688911438,
895
+ "logits/rejected": 3.7085328102111816,
896
+ "logps/chosen": -2.6355605125427246,
897
+ "logps/rejected": -5.005209922790527,
898
+ "loss": 0.3103,
899
+ "rewards/accuracies": 0.8125,
900
+ "rewards/chosen": -3.953340530395508,
901
+ "rewards/margins": 3.554474353790283,
902
+ "rewards/rejected": -7.507814884185791,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.4036326942482341,
907
+ "eval_logits/chosen": 3.31948184967041,
908
+ "eval_logits/rejected": 2.9104762077331543,
909
+ "eval_logps/chosen": -2.606774091720581,
910
+ "eval_logps/rejected": -5.2280120849609375,
911
+ "eval_loss": 0.3228474259376526,
912
+ "eval_rewards/accuracies": 0.9306930899620056,
913
+ "eval_rewards/chosen": -3.9101614952087402,
914
+ "eval_rewards/margins": 3.931856870651245,
915
+ "eval_rewards/rejected": -7.8420186042785645,
916
+ "eval_runtime": 29.0975,
917
+ "eval_samples_per_second": 27.528,
918
+ "eval_steps_per_second": 3.471,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.4117053481331988,
923
+ "grad_norm": 1.4098985195159912,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 2.69830584526062,
926
+ "logits/rejected": 2.7101688385009766,
927
+ "logps/chosen": -2.7831828594207764,
928
+ "logps/rejected": -5.963825225830078,
929
+ "loss": 0.2884,
930
+ "rewards/accuracies": 0.887499988079071,
931
+ "rewards/chosen": -4.174774169921875,
932
+ "rewards/margins": 4.7709641456604,
933
+ "rewards/rejected": -8.945737838745117,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.41977800201816345,
938
+ "grad_norm": 3.457231283187866,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 3.335204601287842,
941
+ "logits/rejected": 3.1935055255889893,
942
+ "logps/chosen": -2.66495943069458,
943
+ "logps/rejected": -5.2761640548706055,
944
+ "loss": 0.3093,
945
+ "rewards/accuracies": 0.875,
946
+ "rewards/chosen": -3.997438907623291,
947
+ "rewards/margins": 3.916806697845459,
948
+ "rewards/rejected": -7.91424560546875,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.42785065590312815,
953
+ "grad_norm": 1.7744654417037964,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 2.725924015045166,
956
+ "logits/rejected": 2.605053186416626,
957
+ "logps/chosen": -2.5286645889282227,
958
+ "logps/rejected": -5.774144172668457,
959
+ "loss": 0.2972,
960
+ "rewards/accuracies": 0.887499988079071,
961
+ "rewards/chosen": -3.792996883392334,
962
+ "rewards/margins": 4.868220329284668,
963
+ "rewards/rejected": -8.661216735839844,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.43592330978809285,
968
+ "grad_norm": 2.863692283630371,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 2.304443120956421,
971
+ "logits/rejected": 2.4836020469665527,
972
+ "logps/chosen": -2.699148654937744,
973
+ "logps/rejected": -6.340291500091553,
974
+ "loss": 0.3136,
975
+ "rewards/accuracies": 0.887499988079071,
976
+ "rewards/chosen": -4.048723220825195,
977
+ "rewards/margins": 5.461714267730713,
978
+ "rewards/rejected": -9.510437965393066,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.4439959636730575,
983
+ "grad_norm": 4.6681623458862305,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 3.1207594871520996,
986
+ "logits/rejected": 2.947653293609619,
987
+ "logps/chosen": -3.0062317848205566,
988
+ "logps/rejected": -6.26816463470459,
989
+ "loss": 0.2822,
990
+ "rewards/accuracies": 0.8999999761581421,
991
+ "rewards/chosen": -4.509347438812256,
992
+ "rewards/margins": 4.892899513244629,
993
+ "rewards/rejected": -9.402246475219727,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.4439959636730575,
998
+ "eval_logits/chosen": 2.879721164703369,
999
+ "eval_logits/rejected": 2.52551007270813,
1000
+ "eval_logps/chosen": -2.6468751430511475,
1001
+ "eval_logps/rejected": -5.636789321899414,
1002
+ "eval_loss": 0.2939932942390442,
1003
+ "eval_rewards/accuracies": 0.9306930899620056,
1004
+ "eval_rewards/chosen": -3.9703128337860107,
1005
+ "eval_rewards/margins": 4.4848713874816895,
1006
+ "eval_rewards/rejected": -8.455184936523438,
1007
+ "eval_runtime": 29.4025,
1008
+ "eval_samples_per_second": 27.243,
1009
+ "eval_steps_per_second": 3.435,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.4520686175580222,
1014
+ "grad_norm": 1.9975569248199463,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 2.5885415077209473,
1017
+ "logits/rejected": 2.5374302864074707,
1018
+ "logps/chosen": -2.886643171310425,
1019
+ "logps/rejected": -6.636415004730225,
1020
+ "loss": 0.2736,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -4.329964637756348,
1023
+ "rewards/margins": 5.624656677246094,
1024
+ "rewards/rejected": -9.954621315002441,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.4601412714429869,
1029
+ "grad_norm": 3.3965606689453125,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 2.0093374252319336,
1032
+ "logits/rejected": 2.1064200401306152,
1033
+ "logps/chosen": -3.251981735229492,
1034
+ "logps/rejected": -6.749331474304199,
1035
+ "loss": 0.2776,
1036
+ "rewards/accuracies": 0.875,
1037
+ "rewards/chosen": -4.877972602844238,
1038
+ "rewards/margins": 5.246025085449219,
1039
+ "rewards/rejected": -10.12399673461914,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.4682139253279516,
1044
+ "grad_norm": 2.7079927921295166,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 3.916841506958008,
1047
+ "logits/rejected": 3.524440288543701,
1048
+ "logps/chosen": -3.304469347000122,
1049
+ "logps/rejected": -7.1993279457092285,
1050
+ "loss": 0.2547,
1051
+ "rewards/accuracies": 0.9375,
1052
+ "rewards/chosen": -4.956704139709473,
1053
+ "rewards/margins": 5.842287540435791,
1054
+ "rewards/rejected": -10.798992156982422,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.47628657921291623,
1059
+ "grad_norm": 7.504203796386719,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 2.7350666522979736,
1062
+ "logits/rejected": 2.2590534687042236,
1063
+ "logps/chosen": -3.0954322814941406,
1064
+ "logps/rejected": -6.782465934753418,
1065
+ "loss": 0.2839,
1066
+ "rewards/accuracies": 0.887499988079071,
1067
+ "rewards/chosen": -4.643147945404053,
1068
+ "rewards/margins": 5.530551433563232,
1069
+ "rewards/rejected": -10.173700332641602,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.4843592330978809,
1074
+ "grad_norm": 2.8209569454193115,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 3.7743606567382812,
1077
+ "logits/rejected": 3.2480530738830566,
1078
+ "logps/chosen": -3.196892261505127,
1079
+ "logps/rejected": -6.42517614364624,
1080
+ "loss": 0.3237,
1081
+ "rewards/accuracies": 0.875,
1082
+ "rewards/chosen": -4.7953386306762695,
1083
+ "rewards/margins": 4.8424248695373535,
1084
+ "rewards/rejected": -9.637763977050781,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.4843592330978809,
1089
+ "eval_logits/chosen": 2.6344597339630127,
1090
+ "eval_logits/rejected": 2.46531081199646,
1091
+ "eval_logps/chosen": -2.9877941608428955,
1092
+ "eval_logps/rejected": -6.266376972198486,
1093
+ "eval_loss": 0.2827170193195343,
1094
+ "eval_rewards/accuracies": 0.9603960514068604,
1095
+ "eval_rewards/chosen": -4.481690406799316,
1096
+ "eval_rewards/margins": 4.917874336242676,
1097
+ "eval_rewards/rejected": -9.399564743041992,
1098
+ "eval_runtime": 29.0997,
1099
+ "eval_samples_per_second": 27.526,
1100
+ "eval_steps_per_second": 3.471,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.4924318869828456,
1105
+ "grad_norm": 7.072656631469727,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 3.2776103019714355,
1108
+ "logits/rejected": 3.166206121444702,
1109
+ "logps/chosen": -3.193716049194336,
1110
+ "logps/rejected": -6.185642242431641,
1111
+ "loss": 0.2986,
1112
+ "rewards/accuracies": 0.8500000238418579,
1113
+ "rewards/chosen": -4.790574073791504,
1114
+ "rewards/margins": 4.487889289855957,
1115
+ "rewards/rejected": -9.278463363647461,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.5005045408678103,
1120
+ "grad_norm": 2.7188704013824463,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 3.189532518386841,
1123
+ "logits/rejected": 2.9885735511779785,
1124
+ "logps/chosen": -3.3461785316467285,
1125
+ "logps/rejected": -6.720322608947754,
1126
+ "loss": 0.2776,
1127
+ "rewards/accuracies": 0.925000011920929,
1128
+ "rewards/chosen": -5.019268035888672,
1129
+ "rewards/margins": 5.061214447021484,
1130
+ "rewards/rejected": -10.080483436584473,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.508577194752775,
1135
+ "grad_norm": 2.6990387439727783,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 3.7751071453094482,
1138
+ "logits/rejected": 3.406925916671753,
1139
+ "logps/chosen": -3.3688464164733887,
1140
+ "logps/rejected": -6.132623672485352,
1141
+ "loss": 0.2688,
1142
+ "rewards/accuracies": 0.8374999761581421,
1143
+ "rewards/chosen": -5.053269386291504,
1144
+ "rewards/margins": 4.145665168762207,
1145
+ "rewards/rejected": -9.198934555053711,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5166498486377397,
1150
+ "grad_norm": 1.964301347732544,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 2.6602158546447754,
1153
+ "logits/rejected": 2.162348508834839,
1154
+ "logps/chosen": -2.884718894958496,
1155
+ "logps/rejected": -6.869751930236816,
1156
+ "loss": 0.2435,
1157
+ "rewards/accuracies": 0.9125000238418579,
1158
+ "rewards/chosen": -4.327078342437744,
1159
+ "rewards/margins": 5.9775495529174805,
1160
+ "rewards/rejected": -10.304628372192383,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5247225025227044,
1165
+ "grad_norm": 3.201704740524292,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 3.83849835395813,
1168
+ "logits/rejected": 3.5917961597442627,
1169
+ "logps/chosen": -3.2030792236328125,
1170
+ "logps/rejected": -6.711284637451172,
1171
+ "loss": 0.2865,
1172
+ "rewards/accuracies": 0.8999999761581421,
1173
+ "rewards/chosen": -4.804618835449219,
1174
+ "rewards/margins": 5.262308120727539,
1175
+ "rewards/rejected": -10.066926956176758,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5247225025227044,
1180
+ "eval_logits/chosen": 2.6539251804351807,
1181
+ "eval_logits/rejected": 2.3508856296539307,
1182
+ "eval_logps/chosen": -3.0629732608795166,
1183
+ "eval_logps/rejected": -6.429784297943115,
1184
+ "eval_loss": 0.25649499893188477,
1185
+ "eval_rewards/accuracies": 0.9702970385551453,
1186
+ "eval_rewards/chosen": -4.594459533691406,
1187
+ "eval_rewards/margins": 5.0502166748046875,
1188
+ "eval_rewards/rejected": -9.644676208496094,
1189
+ "eval_runtime": 29.1031,
1190
+ "eval_samples_per_second": 27.523,
1191
+ "eval_steps_per_second": 3.47,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.5327951564076691,
1196
+ "grad_norm": 3.517667055130005,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 2.804810047149658,
1199
+ "logits/rejected": 2.8151614665985107,
1200
+ "logps/chosen": -3.4792568683624268,
1201
+ "logps/rejected": -7.08618688583374,
1202
+ "loss": 0.243,
1203
+ "rewards/accuracies": 0.949999988079071,
1204
+ "rewards/chosen": -5.2188849449157715,
1205
+ "rewards/margins": 5.41039514541626,
1206
+ "rewards/rejected": -10.629280090332031,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5408678102926338,
1211
+ "grad_norm": 8.366011619567871,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 2.1079938411712646,
1214
+ "logits/rejected": 2.2689383029937744,
1215
+ "logps/chosen": -3.3151912689208984,
1216
+ "logps/rejected": -7.454249382019043,
1217
+ "loss": 0.266,
1218
+ "rewards/accuracies": 0.949999988079071,
1219
+ "rewards/chosen": -4.972787380218506,
1220
+ "rewards/margins": 6.208587169647217,
1221
+ "rewards/rejected": -11.181374549865723,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.5489404641775983,
1226
+ "grad_norm": 4.161479473114014,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 2.1858832836151123,
1229
+ "logits/rejected": 2.1688101291656494,
1230
+ "logps/chosen": -3.3753318786621094,
1231
+ "logps/rejected": -6.9990692138671875,
1232
+ "loss": 0.2356,
1233
+ "rewards/accuracies": 0.925000011920929,
1234
+ "rewards/chosen": -5.0629987716674805,
1235
+ "rewards/margins": 5.435605525970459,
1236
+ "rewards/rejected": -10.498603820800781,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.557013118062563,
1241
+ "grad_norm": 2.156621217727661,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 2.5004096031188965,
1244
+ "logits/rejected": 2.289215087890625,
1245
+ "logps/chosen": -3.711970567703247,
1246
+ "logps/rejected": -7.685518741607666,
1247
+ "loss": 0.2286,
1248
+ "rewards/accuracies": 0.9375,
1249
+ "rewards/chosen": -5.56795597076416,
1250
+ "rewards/margins": 5.960321426391602,
1251
+ "rewards/rejected": -11.528276443481445,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.5650857719475277,
1256
+ "grad_norm": 4.547532081604004,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 3.112332820892334,
1259
+ "logits/rejected": 2.685454845428467,
1260
+ "logps/chosen": -3.510646343231201,
1261
+ "logps/rejected": -7.8125505447387695,
1262
+ "loss": 0.2222,
1263
+ "rewards/accuracies": 0.9125000238418579,
1264
+ "rewards/chosen": -5.265969276428223,
1265
+ "rewards/margins": 6.452856540679932,
1266
+ "rewards/rejected": -11.718826293945312,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.5650857719475277,
1271
+ "eval_logits/chosen": 2.7667236328125,
1272
+ "eval_logits/rejected": 2.4983408451080322,
1273
+ "eval_logps/chosen": -3.292154550552368,
1274
+ "eval_logps/rejected": -6.814427375793457,
1275
+ "eval_loss": 0.24892139434814453,
1276
+ "eval_rewards/accuracies": 0.9702970385551453,
1277
+ "eval_rewards/chosen": -4.938231468200684,
1278
+ "eval_rewards/margins": 5.2834086418151855,
1279
+ "eval_rewards/rejected": -10.221639633178711,
1280
+ "eval_runtime": 29.0862,
1281
+ "eval_samples_per_second": 27.539,
1282
+ "eval_steps_per_second": 3.472,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.5731584258324924,
1287
+ "grad_norm": 3.3842532634735107,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 2.6863622665405273,
1290
+ "logits/rejected": 2.7381534576416016,
1291
+ "logps/chosen": -3.1926321983337402,
1292
+ "logps/rejected": -7.823538780212402,
1293
+ "loss": 0.2153,
1294
+ "rewards/accuracies": 0.9375,
1295
+ "rewards/chosen": -4.788949012756348,
1296
+ "rewards/margins": 6.946360111236572,
1297
+ "rewards/rejected": -11.735308647155762,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.5812310797174571,
1302
+ "grad_norm": 2.0056378841400146,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 2.938141345977783,
1305
+ "logits/rejected": 2.8052525520324707,
1306
+ "logps/chosen": -3.4339518547058105,
1307
+ "logps/rejected": -7.353487968444824,
1308
+ "loss": 0.2422,
1309
+ "rewards/accuracies": 0.875,
1310
+ "rewards/chosen": -5.150927543640137,
1311
+ "rewards/margins": 5.879303932189941,
1312
+ "rewards/rejected": -11.030232429504395,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.5893037336024218,
1317
+ "grad_norm": 2.9281482696533203,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 3.5540454387664795,
1320
+ "logits/rejected": 3.6734695434570312,
1321
+ "logps/chosen": -3.0852925777435303,
1322
+ "logps/rejected": -6.869669437408447,
1323
+ "loss": 0.2694,
1324
+ "rewards/accuracies": 0.8500000238418579,
1325
+ "rewards/chosen": -4.627939224243164,
1326
+ "rewards/margins": 5.676565647125244,
1327
+ "rewards/rejected": -10.304505348205566,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.5973763874873865,
1332
+ "grad_norm": 3.3841099739074707,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 2.7171874046325684,
1335
+ "logits/rejected": 2.4911468029022217,
1336
+ "logps/chosen": -3.4943466186523438,
1337
+ "logps/rejected": -7.486982822418213,
1338
+ "loss": 0.2184,
1339
+ "rewards/accuracies": 0.9375,
1340
+ "rewards/chosen": -5.241519927978516,
1341
+ "rewards/margins": 5.988953113555908,
1342
+ "rewards/rejected": -11.230472564697266,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.6054490413723511,
1347
+ "grad_norm": 2.6915197372436523,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 2.866816759109497,
1350
+ "logits/rejected": 2.84656023979187,
1351
+ "logps/chosen": -3.155074119567871,
1352
+ "logps/rejected": -8.019740104675293,
1353
+ "loss": 0.2364,
1354
+ "rewards/accuracies": 0.949999988079071,
1355
+ "rewards/chosen": -4.732610702514648,
1356
+ "rewards/margins": 7.297000885009766,
1357
+ "rewards/rejected": -12.029611587524414,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.6054490413723511,
1362
+ "eval_logits/chosen": 2.7122883796691895,
1363
+ "eval_logits/rejected": 2.4663355350494385,
1364
+ "eval_logps/chosen": -3.362666606903076,
1365
+ "eval_logps/rejected": -7.107527732849121,
1366
+ "eval_loss": 0.2374112904071808,
1367
+ "eval_rewards/accuracies": 0.9801980257034302,
1368
+ "eval_rewards/chosen": -5.043999671936035,
1369
+ "eval_rewards/margins": 5.617292881011963,
1370
+ "eval_rewards/rejected": -10.661293983459473,
1371
+ "eval_runtime": 29.0963,
1372
+ "eval_samples_per_second": 27.529,
1373
+ "eval_steps_per_second": 3.471,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.6135216952573158,
1378
+ "grad_norm": 5.086276531219482,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 3.0712199211120605,
1381
+ "logits/rejected": 2.7986550331115723,
1382
+ "logps/chosen": -3.759767532348633,
1383
+ "logps/rejected": -8.20389175415039,
1384
+ "loss": 0.2467,
1385
+ "rewards/accuracies": 0.925000011920929,
1386
+ "rewards/chosen": -5.639651298522949,
1387
+ "rewards/margins": 6.666187286376953,
1388
+ "rewards/rejected": -12.305837631225586,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.6215943491422805,
1393
+ "grad_norm": 4.272627830505371,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 2.4291179180145264,
1396
+ "logits/rejected": 2.247910737991333,
1397
+ "logps/chosen": -3.4369187355041504,
1398
+ "logps/rejected": -8.507123947143555,
1399
+ "loss": 0.2287,
1400
+ "rewards/accuracies": 0.9750000238418579,
1401
+ "rewards/chosen": -5.155378341674805,
1402
+ "rewards/margins": 7.605309963226318,
1403
+ "rewards/rejected": -12.760688781738281,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.6296670030272452,
1408
+ "grad_norm": 4.545230388641357,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 3.324824810028076,
1411
+ "logits/rejected": 3.0623250007629395,
1412
+ "logps/chosen": -3.5336334705352783,
1413
+ "logps/rejected": -7.56264591217041,
1414
+ "loss": 0.259,
1415
+ "rewards/accuracies": 0.925000011920929,
1416
+ "rewards/chosen": -5.300450325012207,
1417
+ "rewards/margins": 6.043517589569092,
1418
+ "rewards/rejected": -11.34396743774414,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.6377396569122099,
1423
+ "grad_norm": 3.5774872303009033,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 2.70954966545105,
1426
+ "logits/rejected": 2.559739589691162,
1427
+ "logps/chosen": -3.2724106311798096,
1428
+ "logps/rejected": -7.964414119720459,
1429
+ "loss": 0.243,
1430
+ "rewards/accuracies": 0.9375,
1431
+ "rewards/chosen": -4.908616065979004,
1432
+ "rewards/margins": 7.0380048751831055,
1433
+ "rewards/rejected": -11.94662094116211,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.6458123107971746,
1438
+ "grad_norm": 3.9293906688690186,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 2.2065200805664062,
1441
+ "logits/rejected": 2.5098512172698975,
1442
+ "logps/chosen": -3.324014186859131,
1443
+ "logps/rejected": -8.072491645812988,
1444
+ "loss": 0.2752,
1445
+ "rewards/accuracies": 0.9125000238418579,
1446
+ "rewards/chosen": -4.986021518707275,
1447
+ "rewards/margins": 7.122715950012207,
1448
+ "rewards/rejected": -12.108736038208008,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.6458123107971746,
1453
+ "eval_logits/chosen": 2.7405736446380615,
1454
+ "eval_logits/rejected": 2.500715732574463,
1455
+ "eval_logps/chosen": -3.4503068923950195,
1456
+ "eval_logps/rejected": -7.3543477058410645,
1457
+ "eval_loss": 0.22608846426010132,
1458
+ "eval_rewards/accuracies": 0.9801980257034302,
1459
+ "eval_rewards/chosen": -5.175460338592529,
1460
+ "eval_rewards/margins": 5.856060981750488,
1461
+ "eval_rewards/rejected": -11.031521797180176,
1462
+ "eval_runtime": 29.0926,
1463
+ "eval_samples_per_second": 27.533,
1464
+ "eval_steps_per_second": 3.472,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 0.6538849646821393,
1469
+ "grad_norm": 3.1484081745147705,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 2.620433807373047,
1472
+ "logits/rejected": 2.554230213165283,
1473
+ "logps/chosen": -3.826986312866211,
1474
+ "logps/rejected": -8.595190048217773,
1475
+ "loss": 0.2267,
1476
+ "rewards/accuracies": 0.9375,
1477
+ "rewards/chosen": -5.740479469299316,
1478
+ "rewards/margins": 7.152307033538818,
1479
+ "rewards/rejected": -12.892786026000977,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 0.6619576185671039,
1484
+ "grad_norm": 3.712259531021118,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 3.1829707622528076,
1487
+ "logits/rejected": 3.0434184074401855,
1488
+ "logps/chosen": -3.3385536670684814,
1489
+ "logps/rejected": -7.571812629699707,
1490
+ "loss": 0.2079,
1491
+ "rewards/accuracies": 0.925000011920929,
1492
+ "rewards/chosen": -5.0078301429748535,
1493
+ "rewards/margins": 6.349888801574707,
1494
+ "rewards/rejected": -11.357718467712402,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 0.6700302724520686,
1499
+ "grad_norm": 5.120253086090088,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 3.631582736968994,
1502
+ "logits/rejected": 3.769865036010742,
1503
+ "logps/chosen": -3.2808995246887207,
1504
+ "logps/rejected": -7.530601501464844,
1505
+ "loss": 0.2213,
1506
+ "rewards/accuracies": 0.925000011920929,
1507
+ "rewards/chosen": -4.92134952545166,
1508
+ "rewards/margins": 6.3745527267456055,
1509
+ "rewards/rejected": -11.29590129852295,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 0.6781029263370333,
1514
+ "grad_norm": 3.723133087158203,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 2.7661056518554688,
1517
+ "logits/rejected": 2.7924928665161133,
1518
+ "logps/chosen": -3.5595524311065674,
1519
+ "logps/rejected": -7.967140197753906,
1520
+ "loss": 0.2381,
1521
+ "rewards/accuracies": 0.925000011920929,
1522
+ "rewards/chosen": -5.339327812194824,
1523
+ "rewards/margins": 6.611382961273193,
1524
+ "rewards/rejected": -11.950711250305176,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 0.686175580221998,
1529
+ "grad_norm": 3.4145116806030273,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 2.4502460956573486,
1532
+ "logits/rejected": 2.364321708679199,
1533
+ "logps/chosen": -3.2101433277130127,
1534
+ "logps/rejected": -8.211054801940918,
1535
+ "loss": 0.2112,
1536
+ "rewards/accuracies": 0.9624999761581421,
1537
+ "rewards/chosen": -4.81521463394165,
1538
+ "rewards/margins": 7.501368522644043,
1539
+ "rewards/rejected": -12.316584587097168,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 0.686175580221998,
1544
+ "eval_logits/chosen": 2.7086803913116455,
1545
+ "eval_logits/rejected": 2.437659978866577,
1546
+ "eval_logps/chosen": -3.123488664627075,
1547
+ "eval_logps/rejected": -7.074939727783203,
1548
+ "eval_loss": 0.22627003490924835,
1549
+ "eval_rewards/accuracies": 0.9702970385551453,
1550
+ "eval_rewards/chosen": -4.685232639312744,
1551
+ "eval_rewards/margins": 5.927176475524902,
1552
+ "eval_rewards/rejected": -10.612408638000488,
1553
+ "eval_runtime": 29.0746,
1554
+ "eval_samples_per_second": 27.55,
1555
+ "eval_steps_per_second": 3.474,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 0.6942482341069627,
1560
+ "grad_norm": 3.628746509552002,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 2.9090940952301025,
1563
+ "logits/rejected": 2.9559710025787354,
1564
+ "logps/chosen": -3.447845458984375,
1565
+ "logps/rejected": -7.511412620544434,
1566
+ "loss": 0.2154,
1567
+ "rewards/accuracies": 0.9375,
1568
+ "rewards/chosen": -5.171767711639404,
1569
+ "rewards/margins": 6.09535026550293,
1570
+ "rewards/rejected": -11.267118453979492,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 0.7023208879919274,
1575
+ "grad_norm": 3.231868267059326,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 2.6312456130981445,
1578
+ "logits/rejected": 2.458289861679077,
1579
+ "logps/chosen": -3.6256003379821777,
1580
+ "logps/rejected": -8.079771041870117,
1581
+ "loss": 0.2386,
1582
+ "rewards/accuracies": 0.887499988079071,
1583
+ "rewards/chosen": -5.438401699066162,
1584
+ "rewards/margins": 6.681253910064697,
1585
+ "rewards/rejected": -12.11965560913086,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 0.7103935418768921,
1590
+ "grad_norm": 5.360827445983887,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 2.383152961730957,
1593
+ "logits/rejected": 2.461998701095581,
1594
+ "logps/chosen": -3.555072069168091,
1595
+ "logps/rejected": -8.438495635986328,
1596
+ "loss": 0.2126,
1597
+ "rewards/accuracies": 0.925000011920929,
1598
+ "rewards/chosen": -5.332608222961426,
1599
+ "rewards/margins": 7.32513427734375,
1600
+ "rewards/rejected": -12.657742500305176,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 0.7184661957618567,
1605
+ "grad_norm": 5.990912914276123,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 3.3776676654815674,
1608
+ "logits/rejected": 2.913318157196045,
1609
+ "logps/chosen": -3.9117507934570312,
1610
+ "logps/rejected": -8.53381633758545,
1611
+ "loss": 0.185,
1612
+ "rewards/accuracies": 0.949999988079071,
1613
+ "rewards/chosen": -5.8676252365112305,
1614
+ "rewards/margins": 6.933099269866943,
1615
+ "rewards/rejected": -12.800724983215332,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 0.7265388496468214,
1620
+ "grad_norm": 6.092798233032227,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 1.917933702468872,
1623
+ "logits/rejected": 1.6799787282943726,
1624
+ "logps/chosen": -3.4144363403320312,
1625
+ "logps/rejected": -8.597683906555176,
1626
+ "loss": 0.2383,
1627
+ "rewards/accuracies": 0.9750000238418579,
1628
+ "rewards/chosen": -5.121654987335205,
1629
+ "rewards/margins": 7.7748703956604,
1630
+ "rewards/rejected": -12.896525382995605,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 0.7265388496468214,
1635
+ "eval_logits/chosen": 2.6657638549804688,
1636
+ "eval_logits/rejected": 2.4586844444274902,
1637
+ "eval_logps/chosen": -3.4474172592163086,
1638
+ "eval_logps/rejected": -7.506450176239014,
1639
+ "eval_loss": 0.21870465576648712,
1640
+ "eval_rewards/accuracies": 0.9801980257034302,
1641
+ "eval_rewards/chosen": -5.171125888824463,
1642
+ "eval_rewards/margins": 6.088548183441162,
1643
+ "eval_rewards/rejected": -11.259674072265625,
1644
+ "eval_runtime": 29.1008,
1645
+ "eval_samples_per_second": 27.525,
1646
+ "eval_steps_per_second": 3.471,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 0.7346115035317861,
1651
+ "grad_norm": 3.623443841934204,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 2.915825605392456,
1654
+ "logits/rejected": 2.7418575286865234,
1655
+ "logps/chosen": -3.517927646636963,
1656
+ "logps/rejected": -8.27934455871582,
1657
+ "loss": 0.2311,
1658
+ "rewards/accuracies": 0.949999988079071,
1659
+ "rewards/chosen": -5.276891708374023,
1660
+ "rewards/margins": 7.142125129699707,
1661
+ "rewards/rejected": -12.419015884399414,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 0.7426841574167508,
1666
+ "grad_norm": 4.020949363708496,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 2.4125845432281494,
1669
+ "logits/rejected": 2.6929471492767334,
1670
+ "logps/chosen": -3.646517276763916,
1671
+ "logps/rejected": -7.9424262046813965,
1672
+ "loss": 0.2034,
1673
+ "rewards/accuracies": 0.8999999761581421,
1674
+ "rewards/chosen": -5.469775199890137,
1675
+ "rewards/margins": 6.443863868713379,
1676
+ "rewards/rejected": -11.913639068603516,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 0.7507568113017155,
1681
+ "grad_norm": 4.215940475463867,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 2.525031566619873,
1684
+ "logits/rejected": 2.478022336959839,
1685
+ "logps/chosen": -3.580151319503784,
1686
+ "logps/rejected": -8.356379508972168,
1687
+ "loss": 0.2301,
1688
+ "rewards/accuracies": 0.9375,
1689
+ "rewards/chosen": -5.370226860046387,
1690
+ "rewards/margins": 7.164343357086182,
1691
+ "rewards/rejected": -12.534570693969727,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 0.7588294651866802,
1696
+ "grad_norm": 3.3429832458496094,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 2.68546462059021,
1699
+ "logits/rejected": 2.4535439014434814,
1700
+ "logps/chosen": -3.716118574142456,
1701
+ "logps/rejected": -8.706206321716309,
1702
+ "loss": 0.1898,
1703
+ "rewards/accuracies": 0.9375,
1704
+ "rewards/chosen": -5.5741777420043945,
1705
+ "rewards/margins": 7.485130310058594,
1706
+ "rewards/rejected": -13.059308052062988,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 0.7669021190716448,
1711
+ "grad_norm": 3.5254878997802734,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 2.924198627471924,
1714
+ "logits/rejected": 2.7865915298461914,
1715
+ "logps/chosen": -3.7330048084259033,
1716
+ "logps/rejected": -8.79862117767334,
1717
+ "loss": 0.1947,
1718
+ "rewards/accuracies": 0.9375,
1719
+ "rewards/chosen": -5.5995073318481445,
1720
+ "rewards/margins": 7.598424434661865,
1721
+ "rewards/rejected": -13.197932243347168,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 0.7669021190716448,
1726
+ "eval_logits/chosen": 2.5911405086517334,
1727
+ "eval_logits/rejected": 2.4414517879486084,
1728
+ "eval_logps/chosen": -3.396683692932129,
1729
+ "eval_logps/rejected": -7.610343933105469,
1730
+ "eval_loss": 0.2162380963563919,
1731
+ "eval_rewards/accuracies": 0.9900990128517151,
1732
+ "eval_rewards/chosen": -5.09502649307251,
1733
+ "eval_rewards/margins": 6.32049036026001,
1734
+ "eval_rewards/rejected": -11.415514945983887,
1735
+ "eval_runtime": 29.0842,
1736
+ "eval_samples_per_second": 27.541,
1737
+ "eval_steps_per_second": 3.473,
1738
+ "step": 950
1739
+ },
1740
+ {
1741
+ "epoch": 0.7749747729566094,
1742
+ "grad_norm": 2.4495151042938232,
1743
+ "learning_rate": 1.4355517710873184e-06,
1744
+ "logits/chosen": 3.756882429122925,
1745
+ "logits/rejected": 3.461829423904419,
1746
+ "logps/chosen": -3.4112212657928467,
1747
+ "logps/rejected": -7.716673374176025,
1748
+ "loss": 0.1954,
1749
+ "rewards/accuracies": 0.949999988079071,
1750
+ "rewards/chosen": -5.1168317794799805,
1751
+ "rewards/margins": 6.458177089691162,
1752
+ "rewards/rejected": -11.575010299682617,
1753
+ "step": 960
1754
+ },
1755
+ {
1756
+ "epoch": 0.7830474268415741,
1757
+ "grad_norm": 3.6960482597351074,
1758
+ "learning_rate": 1.388412052037682e-06,
1759
+ "logits/chosen": 2.683379888534546,
1760
+ "logits/rejected": 2.5084214210510254,
1761
+ "logps/chosen": -3.2802653312683105,
1762
+ "logps/rejected": -8.223787307739258,
1763
+ "loss": 0.1962,
1764
+ "rewards/accuracies": 0.9624999761581421,
1765
+ "rewards/chosen": -4.920398712158203,
1766
+ "rewards/margins": 7.415283203125,
1767
+ "rewards/rejected": -12.33568000793457,
1768
+ "step": 970
1769
+ },
1770
+ {
1771
+ "epoch": 0.7911200807265388,
1772
+ "grad_norm": 1.6209157705307007,
1773
+ "learning_rate": 1.3417599122003464e-06,
1774
+ "logits/chosen": 2.2775497436523438,
1775
+ "logits/rejected": 2.4255974292755127,
1776
+ "logps/chosen": -3.296114444732666,
1777
+ "logps/rejected": -7.983359336853027,
1778
+ "loss": 0.1651,
1779
+ "rewards/accuracies": 0.9750000238418579,
1780
+ "rewards/chosen": -4.944170951843262,
1781
+ "rewards/margins": 7.030867576599121,
1782
+ "rewards/rejected": -11.975038528442383,
1783
+ "step": 980
1784
+ },
1785
+ {
1786
+ "epoch": 0.7991927346115035,
1787
+ "grad_norm": 4.007768154144287,
1788
+ "learning_rate": 1.2956158147457116e-06,
1789
+ "logits/chosen": 3.2154605388641357,
1790
+ "logits/rejected": 2.895961046218872,
1791
+ "logps/chosen": -3.3481571674346924,
1792
+ "logps/rejected": -8.350494384765625,
1793
+ "loss": 0.1702,
1794
+ "rewards/accuracies": 0.9750000238418579,
1795
+ "rewards/chosen": -5.022235870361328,
1796
+ "rewards/margins": 7.503505706787109,
1797
+ "rewards/rejected": -12.525741577148438,
1798
+ "step": 990
1799
+ },
1800
+ {
1801
+ "epoch": 0.8072653884964682,
1802
+ "grad_norm": 3.026970386505127,
1803
+ "learning_rate": 1.2500000000000007e-06,
1804
+ "logits/chosen": 3.6043121814727783,
1805
+ "logits/rejected": 3.541698932647705,
1806
+ "logps/chosen": -3.722698926925659,
1807
+ "logps/rejected": -8.218320846557617,
1808
+ "loss": 0.1934,
1809
+ "rewards/accuracies": 0.987500011920929,
1810
+ "rewards/chosen": -5.584048271179199,
1811
+ "rewards/margins": 6.743433475494385,
1812
+ "rewards/rejected": -12.327482223510742,
1813
+ "step": 1000
1814
+ },
1815
+ {
1816
+ "epoch": 0.8072653884964682,
1817
+ "eval_logits/chosen": 2.707226514816284,
1818
+ "eval_logits/rejected": 2.5214099884033203,
1819
+ "eval_logps/chosen": -3.502831220626831,
1820
+ "eval_logps/rejected": -7.705867767333984,
1821
+ "eval_loss": 0.20982278883457184,
1822
+ "eval_rewards/accuracies": 0.9900990128517151,
1823
+ "eval_rewards/chosen": -5.254247188568115,
1824
+ "eval_rewards/margins": 6.304553985595703,
1825
+ "eval_rewards/rejected": -11.558801651000977,
1826
+ "eval_runtime": 29.0974,
1827
+ "eval_samples_per_second": 27.528,
1828
+ "eval_steps_per_second": 3.471,
1829
+ "step": 1000
1830
+ },
1831
+ {
1832
+ "epoch": 0.8153380423814329,
1833
+ "grad_norm": 2.1142029762268066,
1834
+ "learning_rate": 1.204932476567175e-06,
1835
+ "logits/chosen": 3.21277117729187,
1836
+ "logits/rejected": 2.902198314666748,
1837
+ "logps/chosen": -3.9205710887908936,
1838
+ "logps/rejected": -8.282219886779785,
1839
+ "loss": 0.1911,
1840
+ "rewards/accuracies": 0.9375,
1841
+ "rewards/chosen": -5.880856513977051,
1842
+ "rewards/margins": 6.542473793029785,
1843
+ "rewards/rejected": -12.423330307006836,
1844
+ "step": 1010
1845
+ },
1846
+ {
1847
+ "epoch": 0.8234106962663976,
1848
+ "grad_norm": 4.392597198486328,
1849
+ "learning_rate": 1.160433012552508e-06,
1850
+ "logits/chosen": 2.785994052886963,
1851
+ "logits/rejected": 2.8172032833099365,
1852
+ "logps/chosen": -3.6294891834259033,
1853
+ "logps/rejected": -8.542880058288574,
1854
+ "loss": 0.2222,
1855
+ "rewards/accuracies": 0.925000011920929,
1856
+ "rewards/chosen": -5.4442338943481445,
1857
+ "rewards/margins": 7.370086669921875,
1858
+ "rewards/rejected": -12.81432056427002,
1859
+ "step": 1020
1860
+ },
1861
+ {
1862
+ "epoch": 0.8314833501513622,
1863
+ "grad_norm": 2.633239269256592,
1864
+ "learning_rate": 1.11652112689164e-06,
1865
+ "logits/chosen": 2.663726329803467,
1866
+ "logits/rejected": 2.4244682788848877,
1867
+ "logps/chosen": -3.625394821166992,
1868
+ "logps/rejected": -8.94005298614502,
1869
+ "loss": 0.1768,
1870
+ "rewards/accuracies": 0.9750000238418579,
1871
+ "rewards/chosen": -5.438092231750488,
1872
+ "rewards/margins": 7.971987247467041,
1873
+ "rewards/rejected": -13.410079956054688,
1874
+ "step": 1030
1875
+ },
1876
+ {
1877
+ "epoch": 0.8395560040363269,
1878
+ "grad_norm": 2.5595297813415527,
1879
+ "learning_rate": 1.073216080788921e-06,
1880
+ "logits/chosen": 3.432141065597534,
1881
+ "logits/rejected": 3.068664789199829,
1882
+ "logps/chosen": -3.4811911582946777,
1883
+ "logps/rejected": -8.416011810302734,
1884
+ "loss": 0.1923,
1885
+ "rewards/accuracies": 0.949999988079071,
1886
+ "rewards/chosen": -5.221786975860596,
1887
+ "rewards/margins": 7.402231693267822,
1888
+ "rewards/rejected": -12.624017715454102,
1889
+ "step": 1040
1890
+ },
1891
+ {
1892
+ "epoch": 0.8476286579212916,
1893
+ "grad_norm": 5.044093132019043,
1894
+ "learning_rate": 1.0305368692688175e-06,
1895
+ "logits/chosen": 2.554561138153076,
1896
+ "logits/rejected": 2.273308753967285,
1897
+ "logps/chosen": -3.726578950881958,
1898
+ "logps/rejected": -8.446795463562012,
1899
+ "loss": 0.1525,
1900
+ "rewards/accuracies": 0.987500011920929,
1901
+ "rewards/chosen": -5.589868545532227,
1902
+ "rewards/margins": 7.080326080322266,
1903
+ "rewards/rejected": -12.670194625854492,
1904
+ "step": 1050
1905
+ },
1906
+ {
1907
+ "epoch": 0.8476286579212916,
1908
+ "eval_logits/chosen": 2.738980770111084,
1909
+ "eval_logits/rejected": 2.524784564971924,
1910
+ "eval_logps/chosen": -3.4412803649902344,
1911
+ "eval_logps/rejected": -7.715125560760498,
1912
+ "eval_loss": 0.20868732035160065,
1913
+ "eval_rewards/accuracies": 0.9801980257034302,
1914
+ "eval_rewards/chosen": -5.161920070648193,
1915
+ "eval_rewards/margins": 6.410768032073975,
1916
+ "eval_rewards/rejected": -11.572687149047852,
1917
+ "eval_runtime": 29.0996,
1918
+ "eval_samples_per_second": 27.526,
1919
+ "eval_steps_per_second": 3.471,
1920
+ "step": 1050
1921
+ },
1922
+ {
1923
+ "epoch": 0.8557013118062563,
1924
+ "grad_norm": 4.388390064239502,
1925
+ "learning_rate": 9.88502212844063e-07,
1926
+ "logits/chosen": 3.056361198425293,
1927
+ "logits/rejected": 2.8604633808135986,
1928
+ "logps/chosen": -3.4161269664764404,
1929
+ "logps/rejected": -8.637321472167969,
1930
+ "loss": 0.1962,
1931
+ "rewards/accuracies": 0.9750000238418579,
1932
+ "rewards/chosen": -5.124190807342529,
1933
+ "rewards/margins": 7.831790924072266,
1934
+ "rewards/rejected": -12.955981254577637,
1935
+ "step": 1060
1936
+ },
1937
+ {
1938
+ "epoch": 0.863773965691221,
1939
+ "grad_norm": 5.200846195220947,
1940
+ "learning_rate": 9.471305493042243e-07,
1941
+ "logits/chosen": 2.426769971847534,
1942
+ "logits/rejected": 2.714139461517334,
1943
+ "logps/chosen": -3.3948585987091064,
1944
+ "logps/rejected": -8.400737762451172,
1945
+ "loss": 0.1953,
1946
+ "rewards/accuracies": 0.9750000238418579,
1947
+ "rewards/chosen": -5.092287540435791,
1948
+ "rewards/margins": 7.508819580078125,
1949
+ "rewards/rejected": -12.601107597351074,
1950
+ "step": 1070
1951
+ },
1952
+ {
1953
+ "epoch": 0.8718466195761857,
1954
+ "grad_norm": 4.115231513977051,
1955
+ "learning_rate": 9.064400256282757e-07,
1956
+ "logits/chosen": 2.680354356765747,
1957
+ "logits/rejected": 2.4186928272247314,
1958
+ "logps/chosen": -3.406576633453369,
1959
+ "logps/rejected": -8.102071762084961,
1960
+ "loss": 0.1961,
1961
+ "rewards/accuracies": 0.925000011920929,
1962
+ "rewards/chosen": -5.109864711761475,
1963
+ "rewards/margins": 7.04324197769165,
1964
+ "rewards/rejected": -12.153106689453125,
1965
+ "step": 1080
1966
+ },
1967
+ {
1968
+ "epoch": 0.8799192734611504,
1969
+ "grad_norm": 2.0617411136627197,
1970
+ "learning_rate": 8.664484900247363e-07,
1971
+ "logits/chosen": 2.8944904804229736,
1972
+ "logits/rejected": 2.763841152191162,
1973
+ "logps/chosen": -3.420555591583252,
1974
+ "logps/rejected": -8.535276412963867,
1975
+ "loss": 0.2107,
1976
+ "rewards/accuracies": 0.9624999761581421,
1977
+ "rewards/chosen": -5.130833625793457,
1978
+ "rewards/margins": 7.672080993652344,
1979
+ "rewards/rejected": -12.802912712097168,
1980
+ "step": 1090
1981
+ },
1982
+ {
1983
+ "epoch": 0.887991927346115,
1984
+ "grad_norm": 4.412430763244629,
1985
+ "learning_rate": 8.271734841028553e-07,
1986
+ "logits/chosen": 2.8057053089141846,
1987
+ "logits/rejected": 2.880598545074463,
1988
+ "logps/chosen": -3.727388381958008,
1989
+ "logps/rejected": -8.665179252624512,
1990
+ "loss": 0.2103,
1991
+ "rewards/accuracies": 0.9125000238418579,
1992
+ "rewards/chosen": -5.59108304977417,
1993
+ "rewards/margins": 7.406687259674072,
1994
+ "rewards/rejected": -12.997769355773926,
1995
+ "step": 1100
1996
+ },
1997
+ {
1998
+ "epoch": 0.887991927346115,
1999
+ "eval_logits/chosen": 2.784738063812256,
2000
+ "eval_logits/rejected": 2.529378890991211,
2001
+ "eval_logps/chosen": -3.4977424144744873,
2002
+ "eval_logps/rejected": -7.756742477416992,
2003
+ "eval_loss": 0.2044122815132141,
2004
+ "eval_rewards/accuracies": 0.9801980257034302,
2005
+ "eval_rewards/chosen": -5.2466139793396,
2006
+ "eval_rewards/margins": 6.388499736785889,
2007
+ "eval_rewards/rejected": -11.635113716125488,
2008
+ "eval_runtime": 29.0833,
2009
+ "eval_samples_per_second": 27.542,
2010
+ "eval_steps_per_second": 3.473,
2011
+ "step": 1100
2012
+ },
2013
+ {
2014
+ "epoch": 0.8960645812310797,
2015
+ "grad_norm": 3.327115058898926,
2016
+ "learning_rate": 7.886322351782782e-07,
2017
+ "logits/chosen": 1.8973369598388672,
2018
+ "logits/rejected": 1.9729961156845093,
2019
+ "logps/chosen": -3.3052139282226562,
2020
+ "logps/rejected": -8.953332901000977,
2021
+ "loss": 0.2092,
2022
+ "rewards/accuracies": 0.925000011920929,
2023
+ "rewards/chosen": -4.957820892333984,
2024
+ "rewards/margins": 8.472179412841797,
2025
+ "rewards/rejected": -13.430000305175781,
2026
+ "step": 1110
2027
+ },
2028
+ {
2029
+ "epoch": 0.9041372351160444,
2030
+ "grad_norm": 5.0973358154296875,
2031
+ "learning_rate": 7.508416487165862e-07,
2032
+ "logits/chosen": 2.4597842693328857,
2033
+ "logits/rejected": 2.5812220573425293,
2034
+ "logps/chosen": -3.381796360015869,
2035
+ "logps/rejected": -8.363035202026367,
2036
+ "loss": 0.2077,
2037
+ "rewards/accuracies": 0.8999999761581421,
2038
+ "rewards/chosen": -5.072694301605225,
2039
+ "rewards/margins": 7.471858978271484,
2040
+ "rewards/rejected": -12.544553756713867,
2041
+ "step": 1120
2042
+ },
2043
+ {
2044
+ "epoch": 0.9122098890010091,
2045
+ "grad_norm": 5.166894912719727,
2046
+ "learning_rate": 7.138183009179922e-07,
2047
+ "logits/chosen": 3.5492165088653564,
2048
+ "logits/rejected": 3.2513375282287598,
2049
+ "logps/chosen": -3.6195359230041504,
2050
+ "logps/rejected": -8.38493824005127,
2051
+ "loss": 0.1904,
2052
+ "rewards/accuracies": 0.8999999761581421,
2053
+ "rewards/chosen": -5.4293036460876465,
2054
+ "rewards/margins": 7.1481032371521,
2055
+ "rewards/rejected": -12.577406883239746,
2056
+ "step": 1130
2057
+ },
2058
+ {
2059
+ "epoch": 0.9202825428859738,
2060
+ "grad_norm": 3.683342695236206,
2061
+ "learning_rate": 6.775784314464717e-07,
2062
+ "logits/chosen": 2.7155990600585938,
2063
+ "logits/rejected": 2.7459475994110107,
2064
+ "logps/chosen": -4.0417985916137695,
2065
+ "logps/rejected": -9.647562026977539,
2066
+ "loss": 0.2156,
2067
+ "rewards/accuracies": 0.987500011920929,
2068
+ "rewards/chosen": -6.062697410583496,
2069
+ "rewards/margins": 8.40864372253418,
2070
+ "rewards/rejected": -14.471341133117676,
2071
+ "step": 1140
2072
+ },
2073
+ {
2074
+ "epoch": 0.9283551967709385,
2075
+ "grad_norm": 4.6415815353393555,
2076
+ "learning_rate": 6.421379363065142e-07,
2077
+ "logits/chosen": 2.0692670345306396,
2078
+ "logits/rejected": 2.390552043914795,
2079
+ "logps/chosen": -3.8512816429138184,
2080
+ "logps/rejected": -8.84770393371582,
2081
+ "loss": 0.2165,
2082
+ "rewards/accuracies": 0.9624999761581421,
2083
+ "rewards/chosen": -5.776922702789307,
2084
+ "rewards/margins": 7.494633674621582,
2085
+ "rewards/rejected": -13.271554946899414,
2086
+ "step": 1150
2087
+ },
2088
+ {
2089
+ "epoch": 0.9283551967709385,
2090
+ "eval_logits/chosen": 2.716364860534668,
2091
+ "eval_logits/rejected": 2.517240047454834,
2092
+ "eval_logps/chosen": -3.552220344543457,
2093
+ "eval_logps/rejected": -7.850137710571289,
2094
+ "eval_loss": 0.19964782893657684,
2095
+ "eval_rewards/accuracies": 0.9801980257034302,
2096
+ "eval_rewards/chosen": -5.328330993652344,
2097
+ "eval_rewards/margins": 6.446875095367432,
2098
+ "eval_rewards/rejected": -11.775205612182617,
2099
+ "eval_runtime": 29.0905,
2100
+ "eval_samples_per_second": 27.535,
2101
+ "eval_steps_per_second": 3.472,
2102
+ "step": 1150
2103
+ },
2104
+ {
2105
+ "epoch": 0.9364278506559032,
2106
+ "grad_norm": 3.169071912765503,
2107
+ "learning_rate": 6.075123608706093e-07,
2108
+ "logits/chosen": 3.026804208755493,
2109
+ "logits/rejected": 2.92323637008667,
2110
+ "logps/chosen": -3.5037333965301514,
2111
+ "logps/rejected": -8.634604454040527,
2112
+ "loss": 0.1896,
2113
+ "rewards/accuracies": 0.9624999761581421,
2114
+ "rewards/chosen": -5.255600929260254,
2115
+ "rewards/margins": 7.696307182312012,
2116
+ "rewards/rejected": -12.95190715789795,
2117
+ "step": 1160
2118
+ },
2119
+ {
2120
+ "epoch": 0.9445005045408678,
2121
+ "grad_norm": 3.537233352661133,
2122
+ "learning_rate": 5.737168930605272e-07,
2123
+ "logits/chosen": 1.8126366138458252,
2124
+ "logits/rejected": 2.0001204013824463,
2125
+ "logps/chosen": -3.8311641216278076,
2126
+ "logps/rejected": -8.98426342010498,
2127
+ "loss": 0.195,
2128
+ "rewards/accuracies": 0.9375,
2129
+ "rewards/chosen": -5.74674654006958,
2130
+ "rewards/margins": 7.729648590087891,
2131
+ "rewards/rejected": -13.476394653320312,
2132
+ "step": 1170
2133
+ },
2134
+ {
2135
+ "epoch": 0.9525731584258325,
2136
+ "grad_norm": 4.516322612762451,
2137
+ "learning_rate": 5.407663566854008e-07,
2138
+ "logits/chosen": 2.7332987785339355,
2139
+ "logits/rejected": 2.6524689197540283,
2140
+ "logps/chosen": -3.8542847633361816,
2141
+ "logps/rejected": -8.629236221313477,
2142
+ "loss": 0.171,
2143
+ "rewards/accuracies": 0.9125000238418579,
2144
+ "rewards/chosen": -5.781428337097168,
2145
+ "rewards/margins": 7.162425994873047,
2146
+ "rewards/rejected": -12.943852424621582,
2147
+ "step": 1180
2148
+ },
2149
+ {
2150
+ "epoch": 0.9606458123107972,
2151
+ "grad_norm": 3.578998327255249,
2152
+ "learning_rate": 5.086752049395094e-07,
2153
+ "logits/chosen": 3.0999205112457275,
2154
+ "logits/rejected": 3.115819215774536,
2155
+ "logps/chosen": -3.870943784713745,
2156
+ "logps/rejected": -8.126202583312988,
2157
+ "loss": 0.2047,
2158
+ "rewards/accuracies": 0.9375,
2159
+ "rewards/chosen": -5.8064165115356445,
2160
+ "rewards/margins": 6.382887363433838,
2161
+ "rewards/rejected": -12.189303398132324,
2162
+ "step": 1190
2163
+ },
2164
+ {
2165
+ "epoch": 0.9687184661957619,
2166
+ "grad_norm": 4.2472405433654785,
2167
+ "learning_rate": 4.774575140626317e-07,
2168
+ "logits/chosen": 2.8590927124023438,
2169
+ "logits/rejected": 2.744704484939575,
2170
+ "logps/chosen": -4.1155290603637695,
2171
+ "logps/rejected": -8.967794418334961,
2172
+ "loss": 0.2222,
2173
+ "rewards/accuracies": 0.925000011920929,
2174
+ "rewards/chosen": -6.173293590545654,
2175
+ "rewards/margins": 7.2783966064453125,
2176
+ "rewards/rejected": -13.451690673828125,
2177
+ "step": 1200
2178
+ },
2179
+ {
2180
+ "epoch": 0.9687184661957619,
2181
+ "eval_logits/chosen": 2.7425291538238525,
2182
+ "eval_logits/rejected": 2.552403211593628,
2183
+ "eval_logps/chosen": -3.515270948410034,
2184
+ "eval_logps/rejected": -7.858344554901123,
2185
+ "eval_loss": 0.2018371820449829,
2186
+ "eval_rewards/accuracies": 0.9900990128517151,
2187
+ "eval_rewards/chosen": -5.27290678024292,
2188
+ "eval_rewards/margins": 6.514610290527344,
2189
+ "eval_rewards/rejected": -11.787515640258789,
2190
+ "eval_runtime": 29.1438,
2191
+ "eval_samples_per_second": 27.484,
2192
+ "eval_steps_per_second": 3.466,
2193
+ "step": 1200
2194
+ }
2195
+ ],
2196
+ "logging_steps": 10,
2197
+ "max_steps": 1500,
2198
+ "num_input_tokens_seen": 0,
2199
+ "num_train_epochs": 2,
2200
+ "save_steps": 50,
2201
+ "stateful_callbacks": {
2202
+ "TrainerControl": {
2203
+ "args": {
2204
+ "should_epoch_stop": false,
2205
+ "should_evaluate": false,
2206
+ "should_log": false,
2207
+ "should_save": true,
2208
+ "should_training_stop": false
2209
+ },
2210
+ "attributes": {}
2211
+ }
2212
+ },
2213
+ "total_flos": 2.7938144021412577e+18,
2214
+ "train_batch_size": 1,
2215
+ "trial_name": null,
2216
+ "trial_params": null
2217
+ }
checkpoint-1200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:448b13b23e63cb2ff5ca633312a3af2a8ddf68feacd12942d98b8afe864faf6a
3
+ size 7224
checkpoint-1200/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)