ziansu commited on
Commit
9d344a2
·
verified ·
1 Parent(s): 6a5a64e

Training in progress, step 1200, checkpoint

Browse files
Files changed (28) hide show
  1. checkpoint-1200/README.md +202 -0
  2. checkpoint-1200/adapter_config.json +34 -0
  3. checkpoint-1200/adapter_model.safetensors +3 -0
  4. checkpoint-1200/global_step1200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1200/global_step1200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1200/global_step1200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1200/global_step1200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1200/global_step1200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1200/global_step1200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1200/global_step1200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1200/global_step1200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1200/global_step1200/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1200/latest +1 -0
  14. checkpoint-1200/rng_state_0.pth +3 -0
  15. checkpoint-1200/rng_state_1.pth +3 -0
  16. checkpoint-1200/rng_state_2.pth +3 -0
  17. checkpoint-1200/rng_state_3.pth +3 -0
  18. checkpoint-1200/rng_state_4.pth +3 -0
  19. checkpoint-1200/rng_state_5.pth +3 -0
  20. checkpoint-1200/rng_state_6.pth +3 -0
  21. checkpoint-1200/rng_state_7.pth +3 -0
  22. checkpoint-1200/scheduler.pt +3 -0
  23. checkpoint-1200/special_tokens_map.json +30 -0
  24. checkpoint-1200/tokenizer.json +0 -0
  25. checkpoint-1200/tokenizer_config.json +133 -0
  26. checkpoint-1200/trainer_state.json +2217 -0
  27. checkpoint-1200/training_args.bin +3 -0
  28. checkpoint-1200/zero_to_fp32.py +674 -0
checkpoint-1200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1200/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "qkv_proj",
27
+ "gate_up_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13eac32a7e5d4a007ae1f6859a2d7606e91e1f0a1d2056d3faeb17e3f9dbd074
3
+ size 25200088
checkpoint-1200/global_step1200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bddccb77b9758cb4bf1d2d18a966ddd1f99b4a5cd24755bbfd986c37bb7f878b
3
+ size 18881328
checkpoint-1200/global_step1200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16847c5352b3c0f183cb340f5d2966abb3030797dd33d5cb208aa0a6ad228de4
3
+ size 18881328
checkpoint-1200/global_step1200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5ce0ebd68ece191eac4b67d470a64fa8b9a1eed97104cd62df01d8bb1ca2c56
3
+ size 18881328
checkpoint-1200/global_step1200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8957a6a1c81fb4f89857f6977ebaa7f3bb2c84022fd790edfebf482b9ae56318
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e072a5f227102400e2abe45fa10775ca66cb0f274a1da693b4bde04bec97f44
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03454f67fca2fe018ab5a421cf7682c5e06c7e0ad308064e3249db05cfcbb621
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f368bffa5024bd46ab904a6ffebdf1a38ec10cb2986d8955a927f8df741961f
3
+ size 18881392
checkpoint-1200/global_step1200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f8f5402f97e74dd1b797912c12fbe917c7a85ebbb8ebd1b7832b631865754ac
3
+ size 18881392
checkpoint-1200/global_step1200/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01abc7e7914ddf24a79aaa4d97304082a00b58a95f25cf1f5820c3200c7cb42e
3
+ size 25379244
checkpoint-1200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1200
checkpoint-1200/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:479e628a41471621ed71e5888d4bc3eecd148e78c535bc6314d7d47b1c46d139
3
+ size 15984
checkpoint-1200/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:977d4030d8e6485cb5e6f8932d356d077b621fc5e3a3a17c1cd7300e3c3aa378
3
+ size 15984
checkpoint-1200/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6cee236c0b6ea406dfd78dc5d74c5d225be0fa30781914f3736a59b5bf50da8
3
+ size 15984
checkpoint-1200/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:151976a0e4efc5762247214e2e9304a5c082e878962f2b322e00eb30ef03cab3
3
+ size 15984
checkpoint-1200/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea64ac8295f29f6c548b206fafc96dea4fe6bf7d44797d6d0470afa88b072460
3
+ size 15984
checkpoint-1200/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f61787141f0f1134f74a65e87d4d3ea74e81f6b9d697755ee30ef0b88b18ddba
3
+ size 15984
checkpoint-1200/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:787193a355e21da1f4d95b759a157a105a86b3062286f0d9df1eb7fd2c5cd54c
3
+ size 15984
checkpoint-1200/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8b1b9e4e9a20f686ee92a48f0a8089eb687a9e2a7b8be07f71fdf84e2fcf1a4
3
+ size 15984
checkpoint-1200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35b4cc7927ca0f1b9b45cd00f72746408c82d953cb952c75e7569243d9fa3f0c
3
+ size 1064
checkpoint-1200/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1200/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-1200/trainer_state.json ADDED
@@ -0,0 +1,2217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.279317697228145,
5
+ "eval_steps": 50,
6
+ "global_step": 1200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010660980810234541,
13
+ "grad_norm": 0.051327500492334366,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.755006790161133,
16
+ "logits/rejected": 14.735244750976562,
17
+ "logps/chosen": -0.29377540946006775,
18
+ "logps/rejected": -0.30969956517219543,
19
+ "loss": 0.952,
20
+ "rewards/accuracies": 0.4375,
21
+ "rewards/chosen": -0.44066309928894043,
22
+ "rewards/margins": 0.023886267095804214,
23
+ "rewards/rejected": -0.46454939246177673,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.021321961620469083,
28
+ "grad_norm": 0.04346882924437523,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.513801574707031,
31
+ "logits/rejected": 14.946454048156738,
32
+ "logps/chosen": -0.27995699644088745,
33
+ "logps/rejected": -0.30138006806373596,
34
+ "loss": 0.9726,
35
+ "rewards/accuracies": 0.4124999940395355,
36
+ "rewards/chosen": -0.4199354648590088,
37
+ "rewards/margins": 0.03213457390666008,
38
+ "rewards/rejected": -0.45207005739212036,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.031982942430703626,
43
+ "grad_norm": 0.05228634551167488,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 14.266324043273926,
46
+ "logits/rejected": 14.423965454101562,
47
+ "logps/chosen": -0.2919609546661377,
48
+ "logps/rejected": -0.32358455657958984,
49
+ "loss": 0.9622,
50
+ "rewards/accuracies": 0.5,
51
+ "rewards/chosen": -0.43794146180152893,
52
+ "rewards/margins": 0.047435395419597626,
53
+ "rewards/rejected": -0.48537683486938477,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.042643923240938165,
58
+ "grad_norm": 0.05487598106265068,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 14.965211868286133,
61
+ "logits/rejected": 15.058088302612305,
62
+ "logps/chosen": -0.277716726064682,
63
+ "logps/rejected": -0.3055034577846527,
64
+ "loss": 0.9403,
65
+ "rewards/accuracies": 0.4000000059604645,
66
+ "rewards/chosen": -0.4165751039981842,
67
+ "rewards/margins": 0.04168009012937546,
68
+ "rewards/rejected": -0.4582551419734955,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.053304904051172705,
73
+ "grad_norm": 0.057255037128925323,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 14.539288520812988,
76
+ "logits/rejected": 15.174041748046875,
77
+ "logps/chosen": -0.26362231373786926,
78
+ "logps/rejected": -0.3325727581977844,
79
+ "loss": 0.9588,
80
+ "rewards/accuracies": 0.4749999940395355,
81
+ "rewards/chosen": -0.3954334557056427,
82
+ "rewards/margins": 0.10342560708522797,
83
+ "rewards/rejected": -0.49885907769203186,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.053304904051172705,
88
+ "eval_logits/chosen": 14.618952751159668,
89
+ "eval_logits/rejected": 15.176809310913086,
90
+ "eval_logps/chosen": -0.2685677409172058,
91
+ "eval_logps/rejected": -0.3283654451370239,
92
+ "eval_loss": 0.9551004767417908,
93
+ "eval_rewards/accuracies": 0.5131579041481018,
94
+ "eval_rewards/chosen": -0.4028516113758087,
95
+ "eval_rewards/margins": 0.08969658613204956,
96
+ "eval_rewards/rejected": -0.4925481975078583,
97
+ "eval_runtime": 21.4453,
98
+ "eval_samples_per_second": 28.305,
99
+ "eval_steps_per_second": 3.544,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.06396588486140725,
104
+ "grad_norm": 0.05227242782711983,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 14.787714004516602,
107
+ "logits/rejected": 15.379422187805176,
108
+ "logps/chosen": -0.3143109679222107,
109
+ "logps/rejected": -0.3425135612487793,
110
+ "loss": 0.9636,
111
+ "rewards/accuracies": 0.4625000059604645,
112
+ "rewards/chosen": -0.4714665412902832,
113
+ "rewards/margins": 0.042303841561079025,
114
+ "rewards/rejected": -0.513770341873169,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.07462686567164178,
119
+ "grad_norm": 0.0658508762717247,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 15.149365425109863,
122
+ "logits/rejected": 15.115835189819336,
123
+ "logps/chosen": -0.31501108407974243,
124
+ "logps/rejected": -0.2854115962982178,
125
+ "loss": 0.9677,
126
+ "rewards/accuracies": 0.36250001192092896,
127
+ "rewards/chosen": -0.47251659631729126,
128
+ "rewards/margins": -0.04439922422170639,
129
+ "rewards/rejected": -0.4281173646450043,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.08528784648187633,
134
+ "grad_norm": 0.06567618995904922,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 15.393908500671387,
137
+ "logits/rejected": 15.454248428344727,
138
+ "logps/chosen": -0.31166282296180725,
139
+ "logps/rejected": -0.3178747594356537,
140
+ "loss": 0.9609,
141
+ "rewards/accuracies": 0.42500001192092896,
142
+ "rewards/chosen": -0.4674941897392273,
143
+ "rewards/margins": 0.009317949414253235,
144
+ "rewards/rejected": -0.47681212425231934,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.09594882729211088,
149
+ "grad_norm": 0.07566913962364197,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 15.229632377624512,
152
+ "logits/rejected": 15.477168083190918,
153
+ "logps/chosen": -0.3294064998626709,
154
+ "logps/rejected": -0.3528878390789032,
155
+ "loss": 0.9587,
156
+ "rewards/accuracies": 0.4749999940395355,
157
+ "rewards/chosen": -0.49410971999168396,
158
+ "rewards/margins": 0.03522203490138054,
159
+ "rewards/rejected": -0.5293318033218384,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.10660980810234541,
164
+ "grad_norm": 0.09082464128732681,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 14.481330871582031,
167
+ "logits/rejected": 15.092982292175293,
168
+ "logps/chosen": -0.2656436562538147,
169
+ "logps/rejected": -0.33982905745506287,
170
+ "loss": 0.9548,
171
+ "rewards/accuracies": 0.5625,
172
+ "rewards/chosen": -0.39846545457839966,
173
+ "rewards/margins": 0.11127817630767822,
174
+ "rewards/rejected": -0.5097435712814331,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.10660980810234541,
179
+ "eval_logits/chosen": 14.7100830078125,
180
+ "eval_logits/rejected": 15.274725914001465,
181
+ "eval_logps/chosen": -0.26462864875793457,
182
+ "eval_logps/rejected": -0.331702321767807,
183
+ "eval_loss": 0.947841465473175,
184
+ "eval_rewards/accuracies": 0.5394737124443054,
185
+ "eval_rewards/chosen": -0.39694297313690186,
186
+ "eval_rewards/margins": 0.10061051696538925,
187
+ "eval_rewards/rejected": -0.4975534677505493,
188
+ "eval_runtime": 21.4421,
189
+ "eval_samples_per_second": 28.309,
190
+ "eval_steps_per_second": 3.544,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.11727078891257996,
195
+ "grad_norm": 0.20198923349380493,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 14.932653427124023,
198
+ "logits/rejected": 15.476409912109375,
199
+ "logps/chosen": -0.27830976247787476,
200
+ "logps/rejected": -0.34150317311286926,
201
+ "loss": 0.9487,
202
+ "rewards/accuracies": 0.550000011920929,
203
+ "rewards/chosen": -0.41746464371681213,
204
+ "rewards/margins": 0.09479012340307236,
205
+ "rewards/rejected": -0.5122548341751099,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.1279317697228145,
210
+ "grad_norm": 0.31938356161117554,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 15.280967712402344,
213
+ "logits/rejected": 15.5416259765625,
214
+ "logps/chosen": -0.2816022038459778,
215
+ "logps/rejected": -0.3262938857078552,
216
+ "loss": 0.9483,
217
+ "rewards/accuracies": 0.4749999940395355,
218
+ "rewards/chosen": -0.4224032461643219,
219
+ "rewards/margins": 0.06703753769397736,
220
+ "rewards/rejected": -0.48944082856178284,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.13859275053304904,
225
+ "grad_norm": 0.12567812204360962,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 14.967382431030273,
228
+ "logits/rejected": 15.351877212524414,
229
+ "logps/chosen": -0.3148510456085205,
230
+ "logps/rejected": -0.3488944172859192,
231
+ "loss": 0.957,
232
+ "rewards/accuracies": 0.48750001192092896,
233
+ "rewards/chosen": -0.47227659821510315,
234
+ "rewards/margins": 0.05106503888964653,
235
+ "rewards/rejected": -0.5233416557312012,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.14925373134328357,
240
+ "grad_norm": 0.09151162207126617,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 14.900466918945312,
243
+ "logits/rejected": 15.075350761413574,
244
+ "logps/chosen": -0.2766302227973938,
245
+ "logps/rejected": -0.312236487865448,
246
+ "loss": 0.9373,
247
+ "rewards/accuracies": 0.42500001192092896,
248
+ "rewards/chosen": -0.4149452745914459,
249
+ "rewards/margins": 0.05340944975614548,
250
+ "rewards/rejected": -0.4683547616004944,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.15991471215351813,
255
+ "grad_norm": 0.1259378045797348,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 14.528109550476074,
258
+ "logits/rejected": 14.861102104187012,
259
+ "logps/chosen": -0.2683579921722412,
260
+ "logps/rejected": -0.33838269114494324,
261
+ "loss": 0.9388,
262
+ "rewards/accuracies": 0.5375000238418579,
263
+ "rewards/chosen": -0.40253695845603943,
264
+ "rewards/margins": 0.10503707826137543,
265
+ "rewards/rejected": -0.5075740218162537,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.15991471215351813,
270
+ "eval_logits/chosen": 14.12246036529541,
271
+ "eval_logits/rejected": 14.733266830444336,
272
+ "eval_logps/chosen": -0.2611957788467407,
273
+ "eval_logps/rejected": -0.3492279350757599,
274
+ "eval_loss": 0.9302574396133423,
275
+ "eval_rewards/accuracies": 0.5657894611358643,
276
+ "eval_rewards/chosen": -0.3917936384677887,
277
+ "eval_rewards/margins": 0.13204820454120636,
278
+ "eval_rewards/rejected": -0.5238418579101562,
279
+ "eval_runtime": 21.4406,
280
+ "eval_samples_per_second": 28.311,
281
+ "eval_steps_per_second": 3.545,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.17057569296375266,
286
+ "grad_norm": 0.11400051414966583,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 14.4571533203125,
289
+ "logits/rejected": 14.769159317016602,
290
+ "logps/chosen": -0.31032469868659973,
291
+ "logps/rejected": -0.34650668501853943,
292
+ "loss": 0.9396,
293
+ "rewards/accuracies": 0.512499988079071,
294
+ "rewards/chosen": -0.4654870927333832,
295
+ "rewards/margins": 0.05427298694849014,
296
+ "rewards/rejected": -0.519760012626648,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1812366737739872,
301
+ "grad_norm": 0.1102401539683342,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 13.959765434265137,
304
+ "logits/rejected": 14.27458381652832,
305
+ "logps/chosen": -0.2744378447532654,
306
+ "logps/rejected": -0.35702812671661377,
307
+ "loss": 0.9222,
308
+ "rewards/accuracies": 0.5375000238418579,
309
+ "rewards/chosen": -0.41165676712989807,
310
+ "rewards/margins": 0.12388546764850616,
311
+ "rewards/rejected": -0.5355421900749207,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.19189765458422176,
316
+ "grad_norm": 0.14721031486988068,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 13.54602336883545,
319
+ "logits/rejected": 14.076690673828125,
320
+ "logps/chosen": -0.2713850140571594,
321
+ "logps/rejected": -0.40618976950645447,
322
+ "loss": 0.9052,
323
+ "rewards/accuracies": 0.675000011920929,
324
+ "rewards/chosen": -0.40707746148109436,
325
+ "rewards/margins": 0.20220720767974854,
326
+ "rewards/rejected": -0.6092846989631653,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.2025586353944563,
331
+ "grad_norm": 0.1756824553012848,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 12.6314697265625,
334
+ "logits/rejected": 13.246849060058594,
335
+ "logps/chosen": -0.27216213941574097,
336
+ "logps/rejected": -0.4351380467414856,
337
+ "loss": 0.8996,
338
+ "rewards/accuracies": 0.6875,
339
+ "rewards/chosen": -0.40824323892593384,
340
+ "rewards/margins": 0.24446387588977814,
341
+ "rewards/rejected": -0.652707040309906,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.21321961620469082,
346
+ "grad_norm": 0.15476027131080627,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 12.40199089050293,
349
+ "logits/rejected": 12.966108322143555,
350
+ "logps/chosen": -0.303610622882843,
351
+ "logps/rejected": -0.423031747341156,
352
+ "loss": 0.9015,
353
+ "rewards/accuracies": 0.5375000238418579,
354
+ "rewards/chosen": -0.4554159641265869,
355
+ "rewards/margins": 0.17913168668746948,
356
+ "rewards/rejected": -0.6345476508140564,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.21321961620469082,
361
+ "eval_logits/chosen": 11.887229919433594,
362
+ "eval_logits/rejected": 12.5900239944458,
363
+ "eval_logps/chosen": -0.269090861082077,
364
+ "eval_logps/rejected": -0.42408913373947144,
365
+ "eval_loss": 0.8796805143356323,
366
+ "eval_rewards/accuracies": 0.6447368264198303,
367
+ "eval_rewards/chosen": -0.40363630652427673,
368
+ "eval_rewards/margins": 0.23249731957912445,
369
+ "eval_rewards/rejected": -0.6361336708068848,
370
+ "eval_runtime": 21.4455,
371
+ "eval_samples_per_second": 28.304,
372
+ "eval_steps_per_second": 3.544,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.22388059701492538,
377
+ "grad_norm": 0.18212148547172546,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 12.375594139099121,
380
+ "logits/rejected": 12.701678276062012,
381
+ "logps/chosen": -0.3136894702911377,
382
+ "logps/rejected": -0.3944609761238098,
383
+ "loss": 0.8898,
384
+ "rewards/accuracies": 0.4625000059604645,
385
+ "rewards/chosen": -0.47053417563438416,
386
+ "rewards/margins": 0.12115727365016937,
387
+ "rewards/rejected": -0.5916914939880371,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.2345415778251599,
392
+ "grad_norm": 0.5440058708190918,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 11.23914909362793,
395
+ "logits/rejected": 11.926396369934082,
396
+ "logps/chosen": -0.3077571392059326,
397
+ "logps/rejected": -0.43772149085998535,
398
+ "loss": 0.8806,
399
+ "rewards/accuracies": 0.5375000238418579,
400
+ "rewards/chosen": -0.4616357684135437,
401
+ "rewards/margins": 0.19494646787643433,
402
+ "rewards/rejected": -0.656582236289978,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.24520255863539445,
407
+ "grad_norm": 0.5628307461738586,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 11.177714347839355,
410
+ "logits/rejected": 11.534266471862793,
411
+ "logps/chosen": -0.31991320848464966,
412
+ "logps/rejected": -0.4394511282444,
413
+ "loss": 0.8778,
414
+ "rewards/accuracies": 0.550000011920929,
415
+ "rewards/chosen": -0.4798697829246521,
416
+ "rewards/margins": 0.17930689454078674,
417
+ "rewards/rejected": -0.6591767072677612,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.255863539445629,
422
+ "grad_norm": 0.40485626459121704,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 10.132668495178223,
425
+ "logits/rejected": 10.29063606262207,
426
+ "logps/chosen": -0.3195653557777405,
427
+ "logps/rejected": -0.47949132323265076,
428
+ "loss": 0.8551,
429
+ "rewards/accuracies": 0.5874999761581421,
430
+ "rewards/chosen": -0.47934800386428833,
431
+ "rewards/margins": 0.23988890647888184,
432
+ "rewards/rejected": -0.7192369699478149,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.26652452025586354,
437
+ "grad_norm": 0.6199322938919067,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 8.781888008117676,
440
+ "logits/rejected": 9.237382888793945,
441
+ "logps/chosen": -0.3370448052883148,
442
+ "logps/rejected": -0.610824465751648,
443
+ "loss": 0.8416,
444
+ "rewards/accuracies": 0.7250000238418579,
445
+ "rewards/chosen": -0.505567193031311,
446
+ "rewards/margins": 0.4106695055961609,
447
+ "rewards/rejected": -0.9162367582321167,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.26652452025586354,
452
+ "eval_logits/chosen": 8.437722206115723,
453
+ "eval_logits/rejected": 8.843962669372559,
454
+ "eval_logps/chosen": -0.3058585226535797,
455
+ "eval_logps/rejected": -0.582990825176239,
456
+ "eval_loss": 0.8036603331565857,
457
+ "eval_rewards/accuracies": 0.6447368264198303,
458
+ "eval_rewards/chosen": -0.4587877094745636,
459
+ "eval_rewards/margins": 0.4156985878944397,
460
+ "eval_rewards/rejected": -0.8744862079620361,
461
+ "eval_runtime": 21.4423,
462
+ "eval_samples_per_second": 28.308,
463
+ "eval_steps_per_second": 3.544,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.2771855010660981,
468
+ "grad_norm": 0.3213505744934082,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 7.914826393127441,
471
+ "logits/rejected": 8.010818481445312,
472
+ "logps/chosen": -0.3556877374649048,
473
+ "logps/rejected": -0.7540119886398315,
474
+ "loss": 0.7811,
475
+ "rewards/accuracies": 0.6499999761581421,
476
+ "rewards/chosen": -0.5335315465927124,
477
+ "rewards/margins": 0.5974863171577454,
478
+ "rewards/rejected": -1.1310179233551025,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.2878464818763326,
483
+ "grad_norm": 1.0119378566741943,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 7.584845542907715,
486
+ "logits/rejected": 7.812608242034912,
487
+ "logps/chosen": -0.3649575412273407,
488
+ "logps/rejected": -0.8042632937431335,
489
+ "loss": 0.7391,
490
+ "rewards/accuracies": 0.5249999761581421,
491
+ "rewards/chosen": -0.5474363565444946,
492
+ "rewards/margins": 0.6589586734771729,
493
+ "rewards/rejected": -1.206395149230957,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.29850746268656714,
498
+ "grad_norm": 0.5339816808700562,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 6.687758445739746,
501
+ "logits/rejected": 6.233181476593018,
502
+ "logps/chosen": -0.415935218334198,
503
+ "logps/rejected": -1.2987438440322876,
504
+ "loss": 0.7419,
505
+ "rewards/accuracies": 0.6000000238418579,
506
+ "rewards/chosen": -0.6239027976989746,
507
+ "rewards/margins": 1.3242127895355225,
508
+ "rewards/rejected": -1.9481157064437866,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.3091684434968017,
513
+ "grad_norm": 0.3514000475406647,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 6.2503981590271,
516
+ "logits/rejected": 5.798542499542236,
517
+ "logps/chosen": -0.4319223463535309,
518
+ "logps/rejected": -1.2257453203201294,
519
+ "loss": 0.7235,
520
+ "rewards/accuracies": 0.6000000238418579,
521
+ "rewards/chosen": -0.6478835344314575,
522
+ "rewards/margins": 1.1907342672348022,
523
+ "rewards/rejected": -1.8386180400848389,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.31982942430703626,
528
+ "grad_norm": 0.6761008501052856,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 4.4480695724487305,
531
+ "logits/rejected": 4.290585994720459,
532
+ "logps/chosen": -0.42002564668655396,
533
+ "logps/rejected": -1.4215493202209473,
534
+ "loss": 0.7058,
535
+ "rewards/accuracies": 0.637499988079071,
536
+ "rewards/chosen": -0.6300384402275085,
537
+ "rewards/margins": 1.5022855997085571,
538
+ "rewards/rejected": -2.132323980331421,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.31982942430703626,
543
+ "eval_logits/chosen": 4.789332389831543,
544
+ "eval_logits/rejected": 4.481485366821289,
545
+ "eval_logps/chosen": -0.4049508571624756,
546
+ "eval_logps/rejected": -1.395646095275879,
547
+ "eval_loss": 0.6695442199707031,
548
+ "eval_rewards/accuracies": 0.6710526347160339,
549
+ "eval_rewards/chosen": -0.6074262857437134,
550
+ "eval_rewards/margins": 1.4860429763793945,
551
+ "eval_rewards/rejected": -2.0934693813323975,
552
+ "eval_runtime": 21.4397,
553
+ "eval_samples_per_second": 28.312,
554
+ "eval_steps_per_second": 3.545,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.3304904051172708,
559
+ "grad_norm": 0.44682690501213074,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 5.487166404724121,
562
+ "logits/rejected": 4.501384258270264,
563
+ "logps/chosen": -0.5215579867362976,
564
+ "logps/rejected": -1.7223398685455322,
565
+ "loss": 0.6988,
566
+ "rewards/accuracies": 0.612500011920929,
567
+ "rewards/chosen": -0.7823370695114136,
568
+ "rewards/margins": 1.8011726140975952,
569
+ "rewards/rejected": -2.5835094451904297,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.3411513859275053,
574
+ "grad_norm": 0.41085830330848694,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 4.162590026855469,
577
+ "logits/rejected": 2.876271963119507,
578
+ "logps/chosen": -0.5402930974960327,
579
+ "logps/rejected": -1.7925996780395508,
580
+ "loss": 0.6811,
581
+ "rewards/accuracies": 0.625,
582
+ "rewards/chosen": -0.8104397058486938,
583
+ "rewards/margins": 1.8784599304199219,
584
+ "rewards/rejected": -2.688899517059326,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.35181236673773986,
589
+ "grad_norm": 0.5611584186553955,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 4.088540077209473,
592
+ "logits/rejected": 3.081679582595825,
593
+ "logps/chosen": -0.541223406791687,
594
+ "logps/rejected": -1.9464069604873657,
595
+ "loss": 0.6614,
596
+ "rewards/accuracies": 0.699999988079071,
597
+ "rewards/chosen": -0.8118351101875305,
598
+ "rewards/margins": 2.1077752113342285,
599
+ "rewards/rejected": -2.919610023498535,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.3624733475479744,
604
+ "grad_norm": 4.05828857421875,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 3.3937134742736816,
607
+ "logits/rejected": 2.4182538986206055,
608
+ "logps/chosen": -0.6656067967414856,
609
+ "logps/rejected": -1.5255868434906006,
610
+ "loss": 0.6583,
611
+ "rewards/accuracies": 0.574999988079071,
612
+ "rewards/chosen": -0.9984102249145508,
613
+ "rewards/margins": 1.2899701595306396,
614
+ "rewards/rejected": -2.2883803844451904,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.373134328358209,
619
+ "grad_norm": 0.8311880230903625,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 2.503194570541382,
622
+ "logits/rejected": 1.5284960269927979,
623
+ "logps/chosen": -0.6593035459518433,
624
+ "logps/rejected": -2.211193323135376,
625
+ "loss": 0.5911,
626
+ "rewards/accuracies": 0.699999988079071,
627
+ "rewards/chosen": -0.9889553189277649,
628
+ "rewards/margins": 2.3278346061706543,
629
+ "rewards/rejected": -3.3167896270751953,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.373134328358209,
634
+ "eval_logits/chosen": 2.556962728500366,
635
+ "eval_logits/rejected": 1.830418586730957,
636
+ "eval_logps/chosen": -0.6546408534049988,
637
+ "eval_logps/rejected": -1.9014692306518555,
638
+ "eval_loss": 0.5961893200874329,
639
+ "eval_rewards/accuracies": 0.6842105388641357,
640
+ "eval_rewards/chosen": -0.9819613099098206,
641
+ "eval_rewards/margins": 1.8702424764633179,
642
+ "eval_rewards/rejected": -2.852203845977783,
643
+ "eval_runtime": 21.4393,
644
+ "eval_samples_per_second": 28.312,
645
+ "eval_steps_per_second": 3.545,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.3837953091684435,
650
+ "grad_norm": 1.4237236976623535,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 3.0001542568206787,
653
+ "logits/rejected": 1.9715242385864258,
654
+ "logps/chosen": -0.8050466775894165,
655
+ "logps/rejected": -2.2938907146453857,
656
+ "loss": 0.58,
657
+ "rewards/accuracies": 0.737500011920929,
658
+ "rewards/chosen": -1.20756995677948,
659
+ "rewards/margins": 2.2332661151885986,
660
+ "rewards/rejected": -3.440835952758789,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.39445628997867804,
665
+ "grad_norm": 2.2651443481445312,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 2.7526040077209473,
668
+ "logits/rejected": 2.05066180229187,
669
+ "logps/chosen": -1.6301355361938477,
670
+ "logps/rejected": -2.9630703926086426,
671
+ "loss": 0.5823,
672
+ "rewards/accuracies": 0.75,
673
+ "rewards/chosen": -2.4452033042907715,
674
+ "rewards/margins": 1.999402642250061,
675
+ "rewards/rejected": -4.444605827331543,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.4051172707889126,
680
+ "grad_norm": 1.9120367765426636,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 1.9757938385009766,
683
+ "logits/rejected": 1.5915673971176147,
684
+ "logps/chosen": -2.063323497772217,
685
+ "logps/rejected": -2.899749755859375,
686
+ "loss": 0.5675,
687
+ "rewards/accuracies": 0.737500011920929,
688
+ "rewards/chosen": -3.094984769821167,
689
+ "rewards/margins": 1.2546398639678955,
690
+ "rewards/rejected": -4.3496246337890625,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.4157782515991471,
695
+ "grad_norm": 3.0018720626831055,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 2.541440486907959,
698
+ "logits/rejected": 1.7436832189559937,
699
+ "logps/chosen": -2.279510736465454,
700
+ "logps/rejected": -3.3447775840759277,
701
+ "loss": 0.4969,
702
+ "rewards/accuracies": 0.8500000238418579,
703
+ "rewards/chosen": -3.4192657470703125,
704
+ "rewards/margins": 1.5979007482528687,
705
+ "rewards/rejected": -5.017167091369629,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.42643923240938164,
710
+ "grad_norm": 1.9656275510787964,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 1.6748476028442383,
713
+ "logits/rejected": 1.0921740531921387,
714
+ "logps/chosen": -2.147991180419922,
715
+ "logps/rejected": -3.380042314529419,
716
+ "loss": 0.5135,
717
+ "rewards/accuracies": 0.8374999761581421,
718
+ "rewards/chosen": -3.221986770629883,
719
+ "rewards/margins": 1.8480768203735352,
720
+ "rewards/rejected": -5.07006311416626,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.42643923240938164,
725
+ "eval_logits/chosen": 2.210231065750122,
726
+ "eval_logits/rejected": 1.679926872253418,
727
+ "eval_logps/chosen": -2.044506788253784,
728
+ "eval_logps/rejected": -3.713956356048584,
729
+ "eval_loss": 0.47455134987831116,
730
+ "eval_rewards/accuracies": 0.9342105388641357,
731
+ "eval_rewards/chosen": -3.0667598247528076,
732
+ "eval_rewards/margins": 2.5041754245758057,
733
+ "eval_rewards/rejected": -5.570935249328613,
734
+ "eval_runtime": 21.4401,
735
+ "eval_samples_per_second": 28.311,
736
+ "eval_steps_per_second": 3.545,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.43710021321961623,
741
+ "grad_norm": 2.501361131668091,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 1.9820306301116943,
744
+ "logits/rejected": 1.3992068767547607,
745
+ "logps/chosen": -2.300197124481201,
746
+ "logps/rejected": -3.813164472579956,
747
+ "loss": 0.498,
748
+ "rewards/accuracies": 0.8500000238418579,
749
+ "rewards/chosen": -3.4502956867218018,
750
+ "rewards/margins": 2.2694506645202637,
751
+ "rewards/rejected": -5.7197465896606445,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.44776119402985076,
756
+ "grad_norm": 3.828648090362549,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 2.7997095584869385,
759
+ "logits/rejected": 2.4387598037719727,
760
+ "logps/chosen": -2.687736749649048,
761
+ "logps/rejected": -4.425741195678711,
762
+ "loss": 0.4494,
763
+ "rewards/accuracies": 0.862500011920929,
764
+ "rewards/chosen": -4.031605243682861,
765
+ "rewards/margins": 2.607006788253784,
766
+ "rewards/rejected": -6.638613224029541,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.4584221748400853,
771
+ "grad_norm": 2.635803461074829,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 2.942661762237549,
774
+ "logits/rejected": 2.019963026046753,
775
+ "logps/chosen": -2.98117733001709,
776
+ "logps/rejected": -4.717232704162598,
777
+ "loss": 0.4796,
778
+ "rewards/accuracies": 0.8500000238418579,
779
+ "rewards/chosen": -4.471765518188477,
780
+ "rewards/margins": 2.60408353805542,
781
+ "rewards/rejected": -7.075850009918213,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.4690831556503198,
786
+ "grad_norm": 3.140829086303711,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 3.2747459411621094,
789
+ "logits/rejected": 2.2958083152770996,
790
+ "logps/chosen": -3.129321575164795,
791
+ "logps/rejected": -4.921725273132324,
792
+ "loss": 0.4468,
793
+ "rewards/accuracies": 0.862500011920929,
794
+ "rewards/chosen": -4.69398307800293,
795
+ "rewards/margins": 2.688605785369873,
796
+ "rewards/rejected": -7.3825883865356445,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.47974413646055436,
801
+ "grad_norm": 2.7932240962982178,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 2.205420970916748,
804
+ "logits/rejected": 1.4024155139923096,
805
+ "logps/chosen": -2.7564563751220703,
806
+ "logps/rejected": -4.563851356506348,
807
+ "loss": 0.4073,
808
+ "rewards/accuracies": 0.887499988079071,
809
+ "rewards/chosen": -4.1346845626831055,
810
+ "rewards/margins": 2.711092472076416,
811
+ "rewards/rejected": -6.8457770347595215,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.47974413646055436,
816
+ "eval_logits/chosen": 2.0136826038360596,
817
+ "eval_logits/rejected": 1.561701774597168,
818
+ "eval_logps/chosen": -2.7486908435821533,
819
+ "eval_logps/rejected": -4.690793514251709,
820
+ "eval_loss": 0.41499289870262146,
821
+ "eval_rewards/accuracies": 0.9210526347160339,
822
+ "eval_rewards/chosen": -4.123035907745361,
823
+ "eval_rewards/margins": 2.913153648376465,
824
+ "eval_rewards/rejected": -7.036189079284668,
825
+ "eval_runtime": 21.4387,
826
+ "eval_samples_per_second": 28.313,
827
+ "eval_steps_per_second": 3.545,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.4904051172707889,
832
+ "grad_norm": 2.7059199810028076,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 2.257246494293213,
835
+ "logits/rejected": 1.6654322147369385,
836
+ "logps/chosen": -3.389554500579834,
837
+ "logps/rejected": -5.6951165199279785,
838
+ "loss": 0.4004,
839
+ "rewards/accuracies": 0.949999988079071,
840
+ "rewards/chosen": -5.084332466125488,
841
+ "rewards/margins": 3.4583427906036377,
842
+ "rewards/rejected": -8.542675018310547,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.5010660980810234,
847
+ "grad_norm": 2.245579719543457,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 2.3386971950531006,
850
+ "logits/rejected": 2.086036205291748,
851
+ "logps/chosen": -3.2753937244415283,
852
+ "logps/rejected": -5.4362359046936035,
853
+ "loss": 0.3976,
854
+ "rewards/accuracies": 0.875,
855
+ "rewards/chosen": -4.913090705871582,
856
+ "rewards/margins": 3.241262912750244,
857
+ "rewards/rejected": -8.154353141784668,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.511727078891258,
862
+ "grad_norm": 2.8131167888641357,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 1.6951004266738892,
865
+ "logits/rejected": 1.3795586824417114,
866
+ "logps/chosen": -3.2933483123779297,
867
+ "logps/rejected": -5.050060749053955,
868
+ "loss": 0.3982,
869
+ "rewards/accuracies": 0.8999999761581421,
870
+ "rewards/chosen": -4.940022945404053,
871
+ "rewards/margins": 2.635068416595459,
872
+ "rewards/rejected": -7.5750908851623535,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.5223880597014925,
877
+ "grad_norm": 2.6465814113616943,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 3.136894702911377,
880
+ "logits/rejected": 2.6332411766052246,
881
+ "logps/chosen": -4.419378757476807,
882
+ "logps/rejected": -6.467301845550537,
883
+ "loss": 0.3974,
884
+ "rewards/accuracies": 0.9125000238418579,
885
+ "rewards/chosen": -6.629067420959473,
886
+ "rewards/margins": 3.071885585784912,
887
+ "rewards/rejected": -9.700952529907227,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.5330490405117271,
892
+ "grad_norm": 3.6718053817749023,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 1.681780457496643,
895
+ "logits/rejected": 1.0038775205612183,
896
+ "logps/chosen": -3.266970157623291,
897
+ "logps/rejected": -5.594450950622559,
898
+ "loss": 0.367,
899
+ "rewards/accuracies": 0.925000011920929,
900
+ "rewards/chosen": -4.900455474853516,
901
+ "rewards/margins": 3.4912209510803223,
902
+ "rewards/rejected": -8.391676902770996,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.5330490405117271,
907
+ "eval_logits/chosen": 2.110192060470581,
908
+ "eval_logits/rejected": 1.7233155965805054,
909
+ "eval_logps/chosen": -3.0329930782318115,
910
+ "eval_logps/rejected": -5.3280930519104,
911
+ "eval_loss": 0.387028306722641,
912
+ "eval_rewards/accuracies": 0.9210526347160339,
913
+ "eval_rewards/chosen": -4.549489498138428,
914
+ "eval_rewards/margins": 3.4426498413085938,
915
+ "eval_rewards/rejected": -7.9921393394470215,
916
+ "eval_runtime": 21.4417,
917
+ "eval_samples_per_second": 28.309,
918
+ "eval_steps_per_second": 3.545,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.5437100213219617,
923
+ "grad_norm": 3.392418622970581,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 3.0106852054595947,
926
+ "logits/rejected": 2.309483528137207,
927
+ "logps/chosen": -3.4964828491210938,
928
+ "logps/rejected": -5.438345909118652,
929
+ "loss": 0.3776,
930
+ "rewards/accuracies": 0.925000011920929,
931
+ "rewards/chosen": -5.244723796844482,
932
+ "rewards/margins": 2.9127936363220215,
933
+ "rewards/rejected": -8.15751838684082,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.5543710021321961,
938
+ "grad_norm": 3.551785707473755,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 2.8624072074890137,
941
+ "logits/rejected": 2.425307512283325,
942
+ "logps/chosen": -3.780029773712158,
943
+ "logps/rejected": -5.929925918579102,
944
+ "loss": 0.3999,
945
+ "rewards/accuracies": 0.887499988079071,
946
+ "rewards/chosen": -5.670044898986816,
947
+ "rewards/margins": 3.224843978881836,
948
+ "rewards/rejected": -8.894887924194336,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.5650319829424307,
953
+ "grad_norm": 3.0529866218566895,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 2.3145668506622314,
956
+ "logits/rejected": 1.5088326930999756,
957
+ "logps/chosen": -3.1259171962738037,
958
+ "logps/rejected": -5.282050132751465,
959
+ "loss": 0.3346,
960
+ "rewards/accuracies": 0.9125000238418579,
961
+ "rewards/chosen": -4.688876152038574,
962
+ "rewards/margins": 3.234198808670044,
963
+ "rewards/rejected": -7.923074245452881,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.5756929637526652,
968
+ "grad_norm": 1.7146470546722412,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 2.5195610523223877,
971
+ "logits/rejected": 2.286477565765381,
972
+ "logps/chosen": -4.000255107879639,
973
+ "logps/rejected": -6.475634574890137,
974
+ "loss": 0.3675,
975
+ "rewards/accuracies": 0.925000011920929,
976
+ "rewards/chosen": -6.000383377075195,
977
+ "rewards/margins": 3.713069438934326,
978
+ "rewards/rejected": -9.713452339172363,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.5863539445628998,
983
+ "grad_norm": 8.31704330444336,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 1.8846759796142578,
986
+ "logits/rejected": 1.5663390159606934,
987
+ "logps/chosen": -3.9287109375,
988
+ "logps/rejected": -6.041600704193115,
989
+ "loss": 0.3921,
990
+ "rewards/accuracies": 0.862500011920929,
991
+ "rewards/chosen": -5.89306640625,
992
+ "rewards/margins": 3.1693339347839355,
993
+ "rewards/rejected": -9.062400817871094,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.5863539445628998,
998
+ "eval_logits/chosen": 2.0545763969421387,
999
+ "eval_logits/rejected": 1.7521167993545532,
1000
+ "eval_logps/chosen": -3.2991809844970703,
1001
+ "eval_logps/rejected": -5.87559175491333,
1002
+ "eval_loss": 0.35785165429115295,
1003
+ "eval_rewards/accuracies": 0.9342105388641357,
1004
+ "eval_rewards/chosen": -4.948771953582764,
1005
+ "eval_rewards/margins": 3.8646163940429688,
1006
+ "eval_rewards/rejected": -8.813387870788574,
1007
+ "eval_runtime": 21.439,
1008
+ "eval_samples_per_second": 28.313,
1009
+ "eval_steps_per_second": 3.545,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.5970149253731343,
1014
+ "grad_norm": 4.491275787353516,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 2.9886631965637207,
1017
+ "logits/rejected": 2.2341508865356445,
1018
+ "logps/chosen": -4.050547122955322,
1019
+ "logps/rejected": -6.301305294036865,
1020
+ "loss": 0.3701,
1021
+ "rewards/accuracies": 0.887499988079071,
1022
+ "rewards/chosen": -6.0758209228515625,
1023
+ "rewards/margins": 3.3761372566223145,
1024
+ "rewards/rejected": -9.451958656311035,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.6076759061833689,
1029
+ "grad_norm": 2.40407395362854,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 3.0933375358581543,
1032
+ "logits/rejected": 2.4652345180511475,
1033
+ "logps/chosen": -3.9168992042541504,
1034
+ "logps/rejected": -5.933487892150879,
1035
+ "loss": 0.3481,
1036
+ "rewards/accuracies": 0.8999999761581421,
1037
+ "rewards/chosen": -5.875349521636963,
1038
+ "rewards/margins": 3.024883508682251,
1039
+ "rewards/rejected": -8.900232315063477,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.6183368869936035,
1044
+ "grad_norm": 4.073615550994873,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 2.5948500633239746,
1047
+ "logits/rejected": 2.202971935272217,
1048
+ "logps/chosen": -3.6740527153015137,
1049
+ "logps/rejected": -6.205447196960449,
1050
+ "loss": 0.3571,
1051
+ "rewards/accuracies": 0.9125000238418579,
1052
+ "rewards/chosen": -5.511078834533691,
1053
+ "rewards/margins": 3.7970924377441406,
1054
+ "rewards/rejected": -9.308171272277832,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.6289978678038379,
1059
+ "grad_norm": 2.427555799484253,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 1.6076780557632446,
1062
+ "logits/rejected": 1.0556285381317139,
1063
+ "logps/chosen": -3.609313488006592,
1064
+ "logps/rejected": -5.912892818450928,
1065
+ "loss": 0.3666,
1066
+ "rewards/accuracies": 0.875,
1067
+ "rewards/chosen": -5.413969993591309,
1068
+ "rewards/margins": 3.455368757247925,
1069
+ "rewards/rejected": -8.869338989257812,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.6396588486140725,
1074
+ "grad_norm": 3.910998821258545,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 2.5494394302368164,
1077
+ "logits/rejected": 1.9157211780548096,
1078
+ "logps/chosen": -4.038924217224121,
1079
+ "logps/rejected": -6.580315589904785,
1080
+ "loss": 0.3017,
1081
+ "rewards/accuracies": 0.862500011920929,
1082
+ "rewards/chosen": -6.058385372161865,
1083
+ "rewards/margins": 3.812087297439575,
1084
+ "rewards/rejected": -9.87047290802002,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.6396588486140725,
1089
+ "eval_logits/chosen": 2.179999589920044,
1090
+ "eval_logits/rejected": 1.918432593345642,
1091
+ "eval_logps/chosen": -3.3114354610443115,
1092
+ "eval_logps/rejected": -6.157403469085693,
1093
+ "eval_loss": 0.3409230411052704,
1094
+ "eval_rewards/accuracies": 0.9210526347160339,
1095
+ "eval_rewards/chosen": -4.967153549194336,
1096
+ "eval_rewards/margins": 4.268952369689941,
1097
+ "eval_rewards/rejected": -9.236105918884277,
1098
+ "eval_runtime": 21.4405,
1099
+ "eval_samples_per_second": 28.311,
1100
+ "eval_steps_per_second": 3.545,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.650319829424307,
1105
+ "grad_norm": 3.6193580627441406,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 2.680032968521118,
1108
+ "logits/rejected": 1.9571218490600586,
1109
+ "logps/chosen": -3.6821212768554688,
1110
+ "logps/rejected": -6.76863956451416,
1111
+ "loss": 0.3429,
1112
+ "rewards/accuracies": 0.9375,
1113
+ "rewards/chosen": -5.523181915283203,
1114
+ "rewards/margins": 4.629776954650879,
1115
+ "rewards/rejected": -10.152959823608398,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.6609808102345416,
1120
+ "grad_norm": 4.7948808670043945,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 2.570702075958252,
1123
+ "logits/rejected": 2.2683706283569336,
1124
+ "logps/chosen": -4.124785423278809,
1125
+ "logps/rejected": -6.595047950744629,
1126
+ "loss": 0.3355,
1127
+ "rewards/accuracies": 0.925000011920929,
1128
+ "rewards/chosen": -6.187178134918213,
1129
+ "rewards/margins": 3.7053933143615723,
1130
+ "rewards/rejected": -9.892572402954102,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.6716417910447762,
1135
+ "grad_norm": 2.727231025695801,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 2.0630054473876953,
1138
+ "logits/rejected": 1.4909979104995728,
1139
+ "logps/chosen": -3.6443302631378174,
1140
+ "logps/rejected": -6.239049911499023,
1141
+ "loss": 0.3218,
1142
+ "rewards/accuracies": 0.925000011920929,
1143
+ "rewards/chosen": -5.466495513916016,
1144
+ "rewards/margins": 3.8920791149139404,
1145
+ "rewards/rejected": -9.358574867248535,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.6823027718550106,
1150
+ "grad_norm": 4.138846397399902,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 1.6833502054214478,
1153
+ "logits/rejected": 1.2245066165924072,
1154
+ "logps/chosen": -4.318512916564941,
1155
+ "logps/rejected": -7.222353935241699,
1156
+ "loss": 0.2868,
1157
+ "rewards/accuracies": 0.925000011920929,
1158
+ "rewards/chosen": -6.477769374847412,
1159
+ "rewards/margins": 4.35576057434082,
1160
+ "rewards/rejected": -10.833529472351074,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.6929637526652452,
1165
+ "grad_norm": 7.172155380249023,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 2.5162904262542725,
1168
+ "logits/rejected": 2.0894787311553955,
1169
+ "logps/chosen": -4.13573694229126,
1170
+ "logps/rejected": -7.199030876159668,
1171
+ "loss": 0.3491,
1172
+ "rewards/accuracies": 0.9375,
1173
+ "rewards/chosen": -6.2036051750183105,
1174
+ "rewards/margins": 4.594940185546875,
1175
+ "rewards/rejected": -10.798544883728027,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.6929637526652452,
1180
+ "eval_logits/chosen": 2.003471612930298,
1181
+ "eval_logits/rejected": 1.8008451461791992,
1182
+ "eval_logps/chosen": -3.2873525619506836,
1183
+ "eval_logps/rejected": -6.338763236999512,
1184
+ "eval_loss": 0.31618499755859375,
1185
+ "eval_rewards/accuracies": 0.9342105388641357,
1186
+ "eval_rewards/chosen": -4.931028842926025,
1187
+ "eval_rewards/margins": 4.5771164894104,
1188
+ "eval_rewards/rejected": -9.508145332336426,
1189
+ "eval_runtime": 21.415,
1190
+ "eval_samples_per_second": 28.345,
1191
+ "eval_steps_per_second": 3.549,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.7036247334754797,
1196
+ "grad_norm": 3.3068535327911377,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 2.852752208709717,
1199
+ "logits/rejected": 2.3139753341674805,
1200
+ "logps/chosen": -3.9495348930358887,
1201
+ "logps/rejected": -6.509753227233887,
1202
+ "loss": 0.2684,
1203
+ "rewards/accuracies": 0.9125000238418579,
1204
+ "rewards/chosen": -5.924302101135254,
1205
+ "rewards/margins": 3.8403282165527344,
1206
+ "rewards/rejected": -9.764630317687988,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.7142857142857143,
1211
+ "grad_norm": 2.737560987472534,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 3.034759998321533,
1214
+ "logits/rejected": 2.2936713695526123,
1215
+ "logps/chosen": -3.855508327484131,
1216
+ "logps/rejected": -6.571882724761963,
1217
+ "loss": 0.2887,
1218
+ "rewards/accuracies": 0.9375,
1219
+ "rewards/chosen": -5.783262252807617,
1220
+ "rewards/margins": 4.0745625495910645,
1221
+ "rewards/rejected": -9.857824325561523,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.7249466950959488,
1226
+ "grad_norm": 4.387801647186279,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 1.5638288259506226,
1229
+ "logits/rejected": 1.1110167503356934,
1230
+ "logps/chosen": -3.7569847106933594,
1231
+ "logps/rejected": -6.927552223205566,
1232
+ "loss": 0.3319,
1233
+ "rewards/accuracies": 0.9624999761581421,
1234
+ "rewards/chosen": -5.635476589202881,
1235
+ "rewards/margins": 4.755851745605469,
1236
+ "rewards/rejected": -10.391328811645508,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.7356076759061834,
1241
+ "grad_norm": 2.357923746109009,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 2.058987855911255,
1244
+ "logits/rejected": 1.6591012477874756,
1245
+ "logps/chosen": -4.124215126037598,
1246
+ "logps/rejected": -7.349566459655762,
1247
+ "loss": 0.2362,
1248
+ "rewards/accuracies": 0.925000011920929,
1249
+ "rewards/chosen": -6.186322212219238,
1250
+ "rewards/margins": 4.838027000427246,
1251
+ "rewards/rejected": -11.024351119995117,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.746268656716418,
1256
+ "grad_norm": 4.507752895355225,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 2.295815944671631,
1259
+ "logits/rejected": 1.4525251388549805,
1260
+ "logps/chosen": -3.4264607429504395,
1261
+ "logps/rejected": -6.397761344909668,
1262
+ "loss": 0.3257,
1263
+ "rewards/accuracies": 0.925000011920929,
1264
+ "rewards/chosen": -5.139691352844238,
1265
+ "rewards/margins": 4.45695161819458,
1266
+ "rewards/rejected": -9.596643447875977,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.746268656716418,
1271
+ "eval_logits/chosen": 1.9169458150863647,
1272
+ "eval_logits/rejected": 1.761539101600647,
1273
+ "eval_logps/chosen": -3.324993848800659,
1274
+ "eval_logps/rejected": -6.471699237823486,
1275
+ "eval_loss": 0.3062504529953003,
1276
+ "eval_rewards/accuracies": 0.9473684430122375,
1277
+ "eval_rewards/chosen": -4.987491607666016,
1278
+ "eval_rewards/margins": 4.720058441162109,
1279
+ "eval_rewards/rejected": -9.707548141479492,
1280
+ "eval_runtime": 21.4456,
1281
+ "eval_samples_per_second": 28.304,
1282
+ "eval_steps_per_second": 3.544,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.7569296375266524,
1287
+ "grad_norm": 6.864930629730225,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": 1.8696104288101196,
1290
+ "logits/rejected": 1.4743572473526,
1291
+ "logps/chosen": -3.4536032676696777,
1292
+ "logps/rejected": -6.400083065032959,
1293
+ "loss": 0.3255,
1294
+ "rewards/accuracies": 0.8999999761581421,
1295
+ "rewards/chosen": -5.180405616760254,
1296
+ "rewards/margins": 4.4197187423706055,
1297
+ "rewards/rejected": -9.60012435913086,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.767590618336887,
1302
+ "grad_norm": 5.012319087982178,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": 2.861811399459839,
1305
+ "logits/rejected": 2.266331911087036,
1306
+ "logps/chosen": -4.254661560058594,
1307
+ "logps/rejected": -6.501154899597168,
1308
+ "loss": 0.2845,
1309
+ "rewards/accuracies": 0.8999999761581421,
1310
+ "rewards/chosen": -6.381992816925049,
1311
+ "rewards/margins": 3.3697407245635986,
1312
+ "rewards/rejected": -9.751731872558594,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.7782515991471215,
1317
+ "grad_norm": 1.460620403289795,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": 2.917189836502075,
1320
+ "logits/rejected": 2.3850274085998535,
1321
+ "logps/chosen": -3.6072356700897217,
1322
+ "logps/rejected": -6.3972039222717285,
1323
+ "loss": 0.2696,
1324
+ "rewards/accuracies": 0.925000011920929,
1325
+ "rewards/chosen": -5.410854339599609,
1326
+ "rewards/margins": 4.184950828552246,
1327
+ "rewards/rejected": -9.595805168151855,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.7889125799573561,
1332
+ "grad_norm": 5.478528022766113,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": 2.2212367057800293,
1335
+ "logits/rejected": 1.6661183834075928,
1336
+ "logps/chosen": -3.353309154510498,
1337
+ "logps/rejected": -6.527769565582275,
1338
+ "loss": 0.2622,
1339
+ "rewards/accuracies": 0.949999988079071,
1340
+ "rewards/chosen": -5.029964447021484,
1341
+ "rewards/margins": 4.761690616607666,
1342
+ "rewards/rejected": -9.791654586791992,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.7995735607675906,
1347
+ "grad_norm": 2.7094156742095947,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": 2.9158451557159424,
1350
+ "logits/rejected": 2.286925792694092,
1351
+ "logps/chosen": -4.0971856117248535,
1352
+ "logps/rejected": -6.912562370300293,
1353
+ "loss": 0.3243,
1354
+ "rewards/accuracies": 0.887499988079071,
1355
+ "rewards/chosen": -6.145778179168701,
1356
+ "rewards/margins": 4.2230658531188965,
1357
+ "rewards/rejected": -10.368844985961914,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.7995735607675906,
1362
+ "eval_logits/chosen": 2.0261385440826416,
1363
+ "eval_logits/rejected": 1.8928862810134888,
1364
+ "eval_logps/chosen": -3.538414478302002,
1365
+ "eval_logps/rejected": -6.846959114074707,
1366
+ "eval_loss": 0.2867603600025177,
1367
+ "eval_rewards/accuracies": 0.9342105388641357,
1368
+ "eval_rewards/chosen": -5.307621479034424,
1369
+ "eval_rewards/margins": 4.962815761566162,
1370
+ "eval_rewards/rejected": -10.270438194274902,
1371
+ "eval_runtime": 21.4446,
1372
+ "eval_samples_per_second": 28.305,
1373
+ "eval_steps_per_second": 3.544,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.8102345415778252,
1378
+ "grad_norm": 2.477257490158081,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": 1.8020350933074951,
1381
+ "logits/rejected": 1.3997737169265747,
1382
+ "logps/chosen": -3.34975004196167,
1383
+ "logps/rejected": -6.07710075378418,
1384
+ "loss": 0.2394,
1385
+ "rewards/accuracies": 0.9125000238418579,
1386
+ "rewards/chosen": -5.024625301361084,
1387
+ "rewards/margins": 4.091025352478027,
1388
+ "rewards/rejected": -9.11565113067627,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.8208955223880597,
1393
+ "grad_norm": 4.726482391357422,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": 2.757497787475586,
1396
+ "logits/rejected": 2.435739517211914,
1397
+ "logps/chosen": -4.294445991516113,
1398
+ "logps/rejected": -7.038791656494141,
1399
+ "loss": 0.3113,
1400
+ "rewards/accuracies": 0.925000011920929,
1401
+ "rewards/chosen": -6.441669464111328,
1402
+ "rewards/margins": 4.116518497467041,
1403
+ "rewards/rejected": -10.558187484741211,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.8315565031982942,
1408
+ "grad_norm": 2.759181022644043,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": 2.788053274154663,
1411
+ "logits/rejected": 2.1961398124694824,
1412
+ "logps/chosen": -3.792672634124756,
1413
+ "logps/rejected": -7.1101579666137695,
1414
+ "loss": 0.3043,
1415
+ "rewards/accuracies": 0.9125000238418579,
1416
+ "rewards/chosen": -5.689009666442871,
1417
+ "rewards/margins": 4.976227760314941,
1418
+ "rewards/rejected": -10.665237426757812,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.8422174840085288,
1423
+ "grad_norm": 3.382880687713623,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": 2.3644931316375732,
1426
+ "logits/rejected": 1.838971495628357,
1427
+ "logps/chosen": -3.919532060623169,
1428
+ "logps/rejected": -7.125067710876465,
1429
+ "loss": 0.2825,
1430
+ "rewards/accuracies": 0.9375,
1431
+ "rewards/chosen": -5.879298210144043,
1432
+ "rewards/margins": 4.8083038330078125,
1433
+ "rewards/rejected": -10.687601089477539,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.8528784648187633,
1438
+ "grad_norm": 3.331052541732788,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": 2.3921093940734863,
1441
+ "logits/rejected": 1.9997615814208984,
1442
+ "logps/chosen": -3.46040678024292,
1443
+ "logps/rejected": -6.8662567138671875,
1444
+ "loss": 0.3094,
1445
+ "rewards/accuracies": 0.949999988079071,
1446
+ "rewards/chosen": -5.190610885620117,
1447
+ "rewards/margins": 5.108774662017822,
1448
+ "rewards/rejected": -10.299385070800781,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.8528784648187633,
1453
+ "eval_logits/chosen": 2.198673963546753,
1454
+ "eval_logits/rejected": 2.091115713119507,
1455
+ "eval_logps/chosen": -3.606259346008301,
1456
+ "eval_logps/rejected": -7.107792854309082,
1457
+ "eval_loss": 0.27349653840065,
1458
+ "eval_rewards/accuracies": 0.9473684430122375,
1459
+ "eval_rewards/chosen": -5.409388542175293,
1460
+ "eval_rewards/margins": 5.25230073928833,
1461
+ "eval_rewards/rejected": -10.661689758300781,
1462
+ "eval_runtime": 21.4427,
1463
+ "eval_samples_per_second": 28.308,
1464
+ "eval_steps_per_second": 3.544,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 0.8635394456289979,
1469
+ "grad_norm": 1.6861388683319092,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": 3.2604496479034424,
1472
+ "logits/rejected": 2.558086395263672,
1473
+ "logps/chosen": -3.778765916824341,
1474
+ "logps/rejected": -6.954268455505371,
1475
+ "loss": 0.2923,
1476
+ "rewards/accuracies": 0.925000011920929,
1477
+ "rewards/chosen": -5.668148994445801,
1478
+ "rewards/margins": 4.763254165649414,
1479
+ "rewards/rejected": -10.431403160095215,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 0.8742004264392325,
1484
+ "grad_norm": 3.100459575653076,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": 2.6463425159454346,
1487
+ "logits/rejected": 2.2412638664245605,
1488
+ "logps/chosen": -4.3968634605407715,
1489
+ "logps/rejected": -7.397219181060791,
1490
+ "loss": 0.2767,
1491
+ "rewards/accuracies": 0.862500011920929,
1492
+ "rewards/chosen": -6.595294952392578,
1493
+ "rewards/margins": 4.500533103942871,
1494
+ "rewards/rejected": -11.09582805633545,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 0.8848614072494669,
1499
+ "grad_norm": 2.7398672103881836,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": 2.8484559059143066,
1502
+ "logits/rejected": 2.408825635910034,
1503
+ "logps/chosen": -3.5274035930633545,
1504
+ "logps/rejected": -6.786914825439453,
1505
+ "loss": 0.2587,
1506
+ "rewards/accuracies": 0.8999999761581421,
1507
+ "rewards/chosen": -5.291105270385742,
1508
+ "rewards/margins": 4.889266014099121,
1509
+ "rewards/rejected": -10.180373191833496,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 0.8955223880597015,
1514
+ "grad_norm": 4.221662521362305,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": 2.5181362628936768,
1517
+ "logits/rejected": 2.1050801277160645,
1518
+ "logps/chosen": -3.7997944355010986,
1519
+ "logps/rejected": -7.4044928550720215,
1520
+ "loss": 0.2985,
1521
+ "rewards/accuracies": 0.9750000238418579,
1522
+ "rewards/chosen": -5.6996917724609375,
1523
+ "rewards/margins": 5.407048225402832,
1524
+ "rewards/rejected": -11.10673999786377,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 0.906183368869936,
1529
+ "grad_norm": 4.389741897583008,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": 1.7594547271728516,
1532
+ "logits/rejected": 1.5125747919082642,
1533
+ "logps/chosen": -3.7186477184295654,
1534
+ "logps/rejected": -7.241146087646484,
1535
+ "loss": 0.278,
1536
+ "rewards/accuracies": 0.949999988079071,
1537
+ "rewards/chosen": -5.577971935272217,
1538
+ "rewards/margins": 5.28374719619751,
1539
+ "rewards/rejected": -10.861719131469727,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 0.906183368869936,
1544
+ "eval_logits/chosen": 2.196138381958008,
1545
+ "eval_logits/rejected": 2.091784715652466,
1546
+ "eval_logps/chosen": -3.610405683517456,
1547
+ "eval_logps/rejected": -7.241917610168457,
1548
+ "eval_loss": 0.2656216025352478,
1549
+ "eval_rewards/accuracies": 0.9473684430122375,
1550
+ "eval_rewards/chosen": -5.415609359741211,
1551
+ "eval_rewards/margins": 5.447267532348633,
1552
+ "eval_rewards/rejected": -10.862876892089844,
1553
+ "eval_runtime": 21.4468,
1554
+ "eval_samples_per_second": 28.303,
1555
+ "eval_steps_per_second": 3.544,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 0.9168443496801706,
1560
+ "grad_norm": 4.561154365539551,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": 3.5380966663360596,
1563
+ "logits/rejected": 3.1444525718688965,
1564
+ "logps/chosen": -4.1595587730407715,
1565
+ "logps/rejected": -7.205758571624756,
1566
+ "loss": 0.252,
1567
+ "rewards/accuracies": 0.9624999761581421,
1568
+ "rewards/chosen": -6.239338397979736,
1569
+ "rewards/margins": 4.56929874420166,
1570
+ "rewards/rejected": -10.808636665344238,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 0.9275053304904051,
1575
+ "grad_norm": 3.8300223350524902,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": 2.582847833633423,
1578
+ "logits/rejected": 2.341796398162842,
1579
+ "logps/chosen": -3.9722533226013184,
1580
+ "logps/rejected": -7.717828273773193,
1581
+ "loss": 0.3087,
1582
+ "rewards/accuracies": 0.9125000238418579,
1583
+ "rewards/chosen": -5.958379745483398,
1584
+ "rewards/margins": 5.618363380432129,
1585
+ "rewards/rejected": -11.576744079589844,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 0.9381663113006397,
1590
+ "grad_norm": 2.60563063621521,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": 2.616633892059326,
1593
+ "logits/rejected": 2.4994826316833496,
1594
+ "logps/chosen": -3.9796085357666016,
1595
+ "logps/rejected": -7.014098167419434,
1596
+ "loss": 0.2733,
1597
+ "rewards/accuracies": 0.9375,
1598
+ "rewards/chosen": -5.969412803649902,
1599
+ "rewards/margins": 4.551734924316406,
1600
+ "rewards/rejected": -10.521148681640625,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 0.9488272921108742,
1605
+ "grad_norm": 2.454512119293213,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": 2.3873534202575684,
1608
+ "logits/rejected": 1.922217607498169,
1609
+ "logps/chosen": -4.740939617156982,
1610
+ "logps/rejected": -8.011380195617676,
1611
+ "loss": 0.2365,
1612
+ "rewards/accuracies": 0.925000011920929,
1613
+ "rewards/chosen": -7.1114091873168945,
1614
+ "rewards/margins": 4.9056596755981445,
1615
+ "rewards/rejected": -12.017068862915039,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 0.9594882729211087,
1620
+ "grad_norm": 5.833195209503174,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": 2.42203950881958,
1623
+ "logits/rejected": 1.9541574716567993,
1624
+ "logps/chosen": -4.811551094055176,
1625
+ "logps/rejected": -7.7176384925842285,
1626
+ "loss": 0.2397,
1627
+ "rewards/accuracies": 0.8999999761581421,
1628
+ "rewards/chosen": -7.2173261642456055,
1629
+ "rewards/margins": 4.359131813049316,
1630
+ "rewards/rejected": -11.576457977294922,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 0.9594882729211087,
1635
+ "eval_logits/chosen": 2.22493052482605,
1636
+ "eval_logits/rejected": 2.157407760620117,
1637
+ "eval_logps/chosen": -3.8421285152435303,
1638
+ "eval_logps/rejected": -7.569239616394043,
1639
+ "eval_loss": 0.2578875720500946,
1640
+ "eval_rewards/accuracies": 0.9342105388641357,
1641
+ "eval_rewards/chosen": -5.763192653656006,
1642
+ "eval_rewards/margins": 5.590666770935059,
1643
+ "eval_rewards/rejected": -11.353858947753906,
1644
+ "eval_runtime": 21.4496,
1645
+ "eval_samples_per_second": 28.299,
1646
+ "eval_steps_per_second": 3.543,
1647
+ "step": 900
1648
+ },
1649
+ {
1650
+ "epoch": 0.9701492537313433,
1651
+ "grad_norm": 2.5518722534179688,
1652
+ "learning_rate": 1.677833383153542e-06,
1653
+ "logits/chosen": 2.4641318321228027,
1654
+ "logits/rejected": 2.093945264816284,
1655
+ "logps/chosen": -4.148250102996826,
1656
+ "logps/rejected": -7.6053924560546875,
1657
+ "loss": 0.2498,
1658
+ "rewards/accuracies": 0.925000011920929,
1659
+ "rewards/chosen": -6.22237491607666,
1660
+ "rewards/margins": 5.185714244842529,
1661
+ "rewards/rejected": -11.408089637756348,
1662
+ "step": 910
1663
+ },
1664
+ {
1665
+ "epoch": 0.9808102345415778,
1666
+ "grad_norm": 3.0121946334838867,
1667
+ "learning_rate": 1.6285698816954626e-06,
1668
+ "logits/chosen": 2.5797393321990967,
1669
+ "logits/rejected": 2.4002528190612793,
1670
+ "logps/chosen": -4.170048236846924,
1671
+ "logps/rejected": -7.2330145835876465,
1672
+ "loss": 0.243,
1673
+ "rewards/accuracies": 0.875,
1674
+ "rewards/chosen": -6.255072116851807,
1675
+ "rewards/margins": 4.594450950622559,
1676
+ "rewards/rejected": -10.849523544311523,
1677
+ "step": 920
1678
+ },
1679
+ {
1680
+ "epoch": 0.9914712153518124,
1681
+ "grad_norm": 6.5740532875061035,
1682
+ "learning_rate": 1.5796886182883053e-06,
1683
+ "logits/chosen": 2.631937265396118,
1684
+ "logits/rejected": 2.3605117797851562,
1685
+ "logps/chosen": -4.277863502502441,
1686
+ "logps/rejected": -7.579499244689941,
1687
+ "loss": 0.2851,
1688
+ "rewards/accuracies": 0.925000011920929,
1689
+ "rewards/chosen": -6.416795253753662,
1690
+ "rewards/margins": 4.952453136444092,
1691
+ "rewards/rejected": -11.369248390197754,
1692
+ "step": 930
1693
+ },
1694
+ {
1695
+ "epoch": 1.0021321961620469,
1696
+ "grad_norm": 3.664747953414917,
1697
+ "learning_rate": 1.5312110338697427e-06,
1698
+ "logits/chosen": 2.602048635482788,
1699
+ "logits/rejected": 2.3019237518310547,
1700
+ "logps/chosen": -4.545152187347412,
1701
+ "logps/rejected": -8.159948348999023,
1702
+ "loss": 0.2524,
1703
+ "rewards/accuracies": 0.9125000238418579,
1704
+ "rewards/chosen": -6.8177289962768555,
1705
+ "rewards/margins": 5.422194004058838,
1706
+ "rewards/rejected": -12.239922523498535,
1707
+ "step": 940
1708
+ },
1709
+ {
1710
+ "epoch": 1.0127931769722816,
1711
+ "grad_norm": 3.0868308544158936,
1712
+ "learning_rate": 1.4831583923105e-06,
1713
+ "logits/chosen": 2.289614677429199,
1714
+ "logits/rejected": 1.9691753387451172,
1715
+ "logps/chosen": -4.014752388000488,
1716
+ "logps/rejected": -7.477097988128662,
1717
+ "loss": 0.2788,
1718
+ "rewards/accuracies": 0.925000011920929,
1719
+ "rewards/chosen": -6.022129058837891,
1720
+ "rewards/margins": 5.19351863861084,
1721
+ "rewards/rejected": -11.215646743774414,
1722
+ "step": 950
1723
+ },
1724
+ {
1725
+ "epoch": 1.0127931769722816,
1726
+ "eval_logits/chosen": 2.137803316116333,
1727
+ "eval_logits/rejected": 2.122602939605713,
1728
+ "eval_logps/chosen": -3.709460496902466,
1729
+ "eval_logps/rejected": -7.5273919105529785,
1730
+ "eval_loss": 0.2563049793243408,
1731
+ "eval_rewards/accuracies": 0.9473684430122375,
1732
+ "eval_rewards/chosen": -5.56419038772583,
1733
+ "eval_rewards/margins": 5.726898670196533,
1734
+ "eval_rewards/rejected": -11.291089057922363,
1735
+ "eval_runtime": 21.4425,
1736
+ "eval_samples_per_second": 28.308,
1737
+ "eval_steps_per_second": 3.544,
1738
+ "step": 950
1739
+ },
1740
+ {
1741
+ "epoch": 1.023454157782516,
1742
+ "grad_norm": 4.523952960968018,
1743
+ "learning_rate": 1.4355517710873184e-06,
1744
+ "logits/chosen": 3.2274162769317627,
1745
+ "logits/rejected": 2.9835076332092285,
1746
+ "logps/chosen": -4.102515697479248,
1747
+ "logps/rejected": -7.5308661460876465,
1748
+ "loss": 0.2394,
1749
+ "rewards/accuracies": 0.887499988079071,
1750
+ "rewards/chosen": -6.153773307800293,
1751
+ "rewards/margins": 5.142527103424072,
1752
+ "rewards/rejected": -11.296300888061523,
1753
+ "step": 960
1754
+ },
1755
+ {
1756
+ "epoch": 1.0341151385927505,
1757
+ "grad_norm": 5.114956378936768,
1758
+ "learning_rate": 1.388412052037682e-06,
1759
+ "logits/chosen": 2.7468860149383545,
1760
+ "logits/rejected": 2.2672038078308105,
1761
+ "logps/chosen": -3.705359935760498,
1762
+ "logps/rejected": -7.7518720626831055,
1763
+ "loss": 0.2419,
1764
+ "rewards/accuracies": 0.949999988079071,
1765
+ "rewards/chosen": -5.558040142059326,
1766
+ "rewards/margins": 6.069769382476807,
1767
+ "rewards/rejected": -11.627809524536133,
1768
+ "step": 970
1769
+ },
1770
+ {
1771
+ "epoch": 1.044776119402985,
1772
+ "grad_norm": 3.243952512741089,
1773
+ "learning_rate": 1.3417599122003464e-06,
1774
+ "logits/chosen": 3.092737913131714,
1775
+ "logits/rejected": 2.6904711723327637,
1776
+ "logps/chosen": -4.205164909362793,
1777
+ "logps/rejected": -7.69910192489624,
1778
+ "loss": 0.275,
1779
+ "rewards/accuracies": 0.925000011920929,
1780
+ "rewards/chosen": -6.307746887207031,
1781
+ "rewards/margins": 5.240906238555908,
1782
+ "rewards/rejected": -11.548653602600098,
1783
+ "step": 980
1784
+ },
1785
+ {
1786
+ "epoch": 1.0554371002132197,
1787
+ "grad_norm": 4.584798812866211,
1788
+ "learning_rate": 1.2956158147457116e-06,
1789
+ "logits/chosen": 1.9939275979995728,
1790
+ "logits/rejected": 1.555945634841919,
1791
+ "logps/chosen": -3.4762721061706543,
1792
+ "logps/rejected": -7.17560338973999,
1793
+ "loss": 0.2523,
1794
+ "rewards/accuracies": 0.925000011920929,
1795
+ "rewards/chosen": -5.2144083976745605,
1796
+ "rewards/margins": 5.548996448516846,
1797
+ "rewards/rejected": -10.763405799865723,
1798
+ "step": 990
1799
+ },
1800
+ {
1801
+ "epoch": 1.0660980810234542,
1802
+ "grad_norm": 3.283021926879883,
1803
+ "learning_rate": 1.2500000000000007e-06,
1804
+ "logits/chosen": 3.2125916481018066,
1805
+ "logits/rejected": 2.6990933418273926,
1806
+ "logps/chosen": -3.818108320236206,
1807
+ "logps/rejected": -7.657105445861816,
1808
+ "loss": 0.281,
1809
+ "rewards/accuracies": 0.9750000238418579,
1810
+ "rewards/chosen": -5.7271623611450195,
1811
+ "rewards/margins": 5.758495330810547,
1812
+ "rewards/rejected": -11.48565673828125,
1813
+ "step": 1000
1814
+ },
1815
+ {
1816
+ "epoch": 1.0660980810234542,
1817
+ "eval_logits/chosen": 2.120778799057007,
1818
+ "eval_logits/rejected": 2.1084940433502197,
1819
+ "eval_logps/chosen": -3.530414342880249,
1820
+ "eval_logps/rejected": -7.398301124572754,
1821
+ "eval_loss": 0.257539838552475,
1822
+ "eval_rewards/accuracies": 0.9473684430122375,
1823
+ "eval_rewards/chosen": -5.295621395111084,
1824
+ "eval_rewards/margins": 5.801830291748047,
1825
+ "eval_rewards/rejected": -11.097451210021973,
1826
+ "eval_runtime": 21.4442,
1827
+ "eval_samples_per_second": 28.306,
1828
+ "eval_steps_per_second": 3.544,
1829
+ "step": 1000
1830
+ },
1831
+ {
1832
+ "epoch": 1.0767590618336886,
1833
+ "grad_norm": 5.394765377044678,
1834
+ "learning_rate": 1.204932476567175e-06,
1835
+ "logits/chosen": 2.473863363265991,
1836
+ "logits/rejected": 2.0679373741149902,
1837
+ "logps/chosen": -4.0380940437316895,
1838
+ "logps/rejected": -7.006314277648926,
1839
+ "loss": 0.2471,
1840
+ "rewards/accuracies": 0.9125000238418579,
1841
+ "rewards/chosen": -6.057140350341797,
1842
+ "rewards/margins": 4.452331066131592,
1843
+ "rewards/rejected": -10.509471893310547,
1844
+ "step": 1010
1845
+ },
1846
+ {
1847
+ "epoch": 1.0874200426439233,
1848
+ "grad_norm": 4.336904525756836,
1849
+ "learning_rate": 1.160433012552508e-06,
1850
+ "logits/chosen": 2.386993408203125,
1851
+ "logits/rejected": 2.060482978820801,
1852
+ "logps/chosen": -3.8012115955352783,
1853
+ "logps/rejected": -7.717658996582031,
1854
+ "loss": 0.2664,
1855
+ "rewards/accuracies": 0.925000011920929,
1856
+ "rewards/chosen": -5.701817512512207,
1857
+ "rewards/margins": 5.874671936035156,
1858
+ "rewards/rejected": -11.576489448547363,
1859
+ "step": 1020
1860
+ },
1861
+ {
1862
+ "epoch": 1.0980810234541578,
1863
+ "grad_norm": 3.5417964458465576,
1864
+ "learning_rate": 1.11652112689164e-06,
1865
+ "logits/chosen": 3.1271402835845947,
1866
+ "logits/rejected": 2.6316893100738525,
1867
+ "logps/chosen": -4.178269386291504,
1868
+ "logps/rejected": -7.592785835266113,
1869
+ "loss": 0.237,
1870
+ "rewards/accuracies": 0.925000011920929,
1871
+ "rewards/chosen": -6.267404556274414,
1872
+ "rewards/margins": 5.121774196624756,
1873
+ "rewards/rejected": -11.389179229736328,
1874
+ "step": 1030
1875
+ },
1876
+ {
1877
+ "epoch": 1.1087420042643923,
1878
+ "grad_norm": 5.173072338104248,
1879
+ "learning_rate": 1.073216080788921e-06,
1880
+ "logits/chosen": 2.7356886863708496,
1881
+ "logits/rejected": 2.5491487979888916,
1882
+ "logps/chosen": -4.352596282958984,
1883
+ "logps/rejected": -7.594882011413574,
1884
+ "loss": 0.2152,
1885
+ "rewards/accuracies": 0.8999999761581421,
1886
+ "rewards/chosen": -6.528894901275635,
1887
+ "rewards/margins": 4.86342716217041,
1888
+ "rewards/rejected": -11.392321586608887,
1889
+ "step": 1040
1890
+ },
1891
+ {
1892
+ "epoch": 1.1194029850746268,
1893
+ "grad_norm": 5.773068904876709,
1894
+ "learning_rate": 1.0305368692688175e-06,
1895
+ "logits/chosen": 2.8095126152038574,
1896
+ "logits/rejected": 2.6465506553649902,
1897
+ "logps/chosen": -4.555963039398193,
1898
+ "logps/rejected": -8.115939140319824,
1899
+ "loss": 0.2337,
1900
+ "rewards/accuracies": 0.887499988079071,
1901
+ "rewards/chosen": -6.833944797515869,
1902
+ "rewards/margins": 5.339962959289551,
1903
+ "rewards/rejected": -12.173909187316895,
1904
+ "step": 1050
1905
+ },
1906
+ {
1907
+ "epoch": 1.1194029850746268,
1908
+ "eval_logits/chosen": 2.186048746109009,
1909
+ "eval_logits/rejected": 2.195524215698242,
1910
+ "eval_logps/chosen": -3.748455286026001,
1911
+ "eval_logps/rejected": -7.740383625030518,
1912
+ "eval_loss": 0.24803213775157928,
1913
+ "eval_rewards/accuracies": 0.9342105388641357,
1914
+ "eval_rewards/chosen": -5.622683525085449,
1915
+ "eval_rewards/margins": 5.987893104553223,
1916
+ "eval_rewards/rejected": -11.610575675964355,
1917
+ "eval_runtime": 21.445,
1918
+ "eval_samples_per_second": 28.305,
1919
+ "eval_steps_per_second": 3.544,
1920
+ "step": 1050
1921
+ },
1922
+ {
1923
+ "epoch": 1.1300639658848615,
1924
+ "grad_norm": 3.7594547271728516,
1925
+ "learning_rate": 9.88502212844063e-07,
1926
+ "logits/chosen": 2.6019225120544434,
1927
+ "logits/rejected": 2.0351009368896484,
1928
+ "logps/chosen": -3.759199857711792,
1929
+ "logps/rejected": -7.5345635414123535,
1930
+ "loss": 0.226,
1931
+ "rewards/accuracies": 0.9750000238418579,
1932
+ "rewards/chosen": -5.638800621032715,
1933
+ "rewards/margins": 5.6630449295043945,
1934
+ "rewards/rejected": -11.301844596862793,
1935
+ "step": 1060
1936
+ },
1937
+ {
1938
+ "epoch": 1.140724946695096,
1939
+ "grad_norm": 4.682251453399658,
1940
+ "learning_rate": 9.471305493042243e-07,
1941
+ "logits/chosen": 2.9025776386260986,
1942
+ "logits/rejected": 2.5837249755859375,
1943
+ "logps/chosen": -4.261716842651367,
1944
+ "logps/rejected": -8.397085189819336,
1945
+ "loss": 0.2819,
1946
+ "rewards/accuracies": 0.8999999761581421,
1947
+ "rewards/chosen": -6.392575263977051,
1948
+ "rewards/margins": 6.2030534744262695,
1949
+ "rewards/rejected": -12.59562873840332,
1950
+ "step": 1070
1951
+ },
1952
+ {
1953
+ "epoch": 1.1513859275053304,
1954
+ "grad_norm": 4.629392147064209,
1955
+ "learning_rate": 9.064400256282757e-07,
1956
+ "logits/chosen": 2.7138123512268066,
1957
+ "logits/rejected": 2.5913774967193604,
1958
+ "logps/chosen": -4.063493251800537,
1959
+ "logps/rejected": -7.581247806549072,
1960
+ "loss": 0.2449,
1961
+ "rewards/accuracies": 0.9624999761581421,
1962
+ "rewards/chosen": -6.095240116119385,
1963
+ "rewards/margins": 5.2766313552856445,
1964
+ "rewards/rejected": -11.371870994567871,
1965
+ "step": 1080
1966
+ },
1967
+ {
1968
+ "epoch": 1.1620469083155651,
1969
+ "grad_norm": 3.096658706665039,
1970
+ "learning_rate": 8.664484900247363e-07,
1971
+ "logits/chosen": 2.294330596923828,
1972
+ "logits/rejected": 1.9075424671173096,
1973
+ "logps/chosen": -4.294546604156494,
1974
+ "logps/rejected": -8.126740455627441,
1975
+ "loss": 0.2137,
1976
+ "rewards/accuracies": 0.9125000238418579,
1977
+ "rewards/chosen": -6.441819667816162,
1978
+ "rewards/margins": 5.748291492462158,
1979
+ "rewards/rejected": -12.19011116027832,
1980
+ "step": 1090
1981
+ },
1982
+ {
1983
+ "epoch": 1.1727078891257996,
1984
+ "grad_norm": 7.750303268432617,
1985
+ "learning_rate": 8.271734841028553e-07,
1986
+ "logits/chosen": 2.7251312732696533,
1987
+ "logits/rejected": 1.9645192623138428,
1988
+ "logps/chosen": -4.135927677154541,
1989
+ "logps/rejected": -7.487878322601318,
1990
+ "loss": 0.2413,
1991
+ "rewards/accuracies": 0.9375,
1992
+ "rewards/chosen": -6.203891277313232,
1993
+ "rewards/margins": 5.027926445007324,
1994
+ "rewards/rejected": -11.231817245483398,
1995
+ "step": 1100
1996
+ },
1997
+ {
1998
+ "epoch": 1.1727078891257996,
1999
+ "eval_logits/chosen": 2.114663600921631,
2000
+ "eval_logits/rejected": 2.1521003246307373,
2001
+ "eval_logps/chosen": -3.7643239498138428,
2002
+ "eval_logps/rejected": -7.814781665802002,
2003
+ "eval_loss": 0.24271255731582642,
2004
+ "eval_rewards/accuracies": 0.9342105388641357,
2005
+ "eval_rewards/chosen": -5.646485805511475,
2006
+ "eval_rewards/margins": 6.075687408447266,
2007
+ "eval_rewards/rejected": -11.722171783447266,
2008
+ "eval_runtime": 21.4461,
2009
+ "eval_samples_per_second": 28.304,
2010
+ "eval_steps_per_second": 3.544,
2011
+ "step": 1100
2012
+ },
2013
+ {
2014
+ "epoch": 1.183368869936034,
2015
+ "grad_norm": 3.1332218647003174,
2016
+ "learning_rate": 7.886322351782782e-07,
2017
+ "logits/chosen": 2.4613986015319824,
2018
+ "logits/rejected": 2.4474260807037354,
2019
+ "logps/chosen": -4.631771564483643,
2020
+ "logps/rejected": -8.386178970336914,
2021
+ "loss": 0.2099,
2022
+ "rewards/accuracies": 0.9375,
2023
+ "rewards/chosen": -6.947657108306885,
2024
+ "rewards/margins": 5.631610870361328,
2025
+ "rewards/rejected": -12.579267501831055,
2026
+ "step": 1110
2027
+ },
2028
+ {
2029
+ "epoch": 1.1940298507462686,
2030
+ "grad_norm": 3.8220393657684326,
2031
+ "learning_rate": 7.508416487165862e-07,
2032
+ "logits/chosen": 1.7835853099822998,
2033
+ "logits/rejected": 1.3680188655853271,
2034
+ "logps/chosen": -3.990460157394409,
2035
+ "logps/rejected": -7.8566789627075195,
2036
+ "loss": 0.2527,
2037
+ "rewards/accuracies": 0.9125000238418579,
2038
+ "rewards/chosen": -5.985690116882324,
2039
+ "rewards/margins": 5.799327850341797,
2040
+ "rewards/rejected": -11.785018920898438,
2041
+ "step": 1120
2042
+ },
2043
+ {
2044
+ "epoch": 1.2046908315565032,
2045
+ "grad_norm": 4.16413688659668,
2046
+ "learning_rate": 7.138183009179922e-07,
2047
+ "logits/chosen": 2.3430938720703125,
2048
+ "logits/rejected": 1.9356731176376343,
2049
+ "logps/chosen": -3.891129970550537,
2050
+ "logps/rejected": -7.389913082122803,
2051
+ "loss": 0.2229,
2052
+ "rewards/accuracies": 0.9125000238418579,
2053
+ "rewards/chosen": -5.836695194244385,
2054
+ "rewards/margins": 5.248173713684082,
2055
+ "rewards/rejected": -11.084868431091309,
2056
+ "step": 1130
2057
+ },
2058
+ {
2059
+ "epoch": 1.2153518123667377,
2060
+ "grad_norm": 5.904109954833984,
2061
+ "learning_rate": 6.775784314464717e-07,
2062
+ "logits/chosen": 2.3378713130950928,
2063
+ "logits/rejected": 2.5543103218078613,
2064
+ "logps/chosen": -4.343329906463623,
2065
+ "logps/rejected": -7.562542915344238,
2066
+ "loss": 0.2684,
2067
+ "rewards/accuracies": 0.887499988079071,
2068
+ "rewards/chosen": -6.5149946212768555,
2069
+ "rewards/margins": 4.828819751739502,
2070
+ "rewards/rejected": -11.3438138961792,
2071
+ "step": 1140
2072
+ },
2073
+ {
2074
+ "epoch": 1.2260127931769722,
2075
+ "grad_norm": 3.845862865447998,
2076
+ "learning_rate": 6.421379363065142e-07,
2077
+ "logits/chosen": 3.033965587615967,
2078
+ "logits/rejected": 2.835658550262451,
2079
+ "logps/chosen": -4.35538911819458,
2080
+ "logps/rejected": -8.115766525268555,
2081
+ "loss": 0.2625,
2082
+ "rewards/accuracies": 0.949999988079071,
2083
+ "rewards/chosen": -6.533083438873291,
2084
+ "rewards/margins": 5.640565395355225,
2085
+ "rewards/rejected": -12.173648834228516,
2086
+ "step": 1150
2087
+ },
2088
+ {
2089
+ "epoch": 1.2260127931769722,
2090
+ "eval_logits/chosen": 2.2132980823516846,
2091
+ "eval_logits/rejected": 2.2383644580841064,
2092
+ "eval_logps/chosen": -3.8321533203125,
2093
+ "eval_logps/rejected": -7.898870944976807,
2094
+ "eval_loss": 0.23817622661590576,
2095
+ "eval_rewards/accuracies": 0.9342105388641357,
2096
+ "eval_rewards/chosen": -5.74822998046875,
2097
+ "eval_rewards/margins": 6.100078105926514,
2098
+ "eval_rewards/rejected": -11.848306655883789,
2099
+ "eval_runtime": 21.4432,
2100
+ "eval_samples_per_second": 28.307,
2101
+ "eval_steps_per_second": 3.544,
2102
+ "step": 1150
2103
+ },
2104
+ {
2105
+ "epoch": 1.236673773987207,
2106
+ "grad_norm": 3.4539601802825928,
2107
+ "learning_rate": 6.075123608706093e-07,
2108
+ "logits/chosen": 2.93648099899292,
2109
+ "logits/rejected": 2.8411507606506348,
2110
+ "logps/chosen": -4.176449775695801,
2111
+ "logps/rejected": -7.605371952056885,
2112
+ "loss": 0.2479,
2113
+ "rewards/accuracies": 0.9125000238418579,
2114
+ "rewards/chosen": -6.264674186706543,
2115
+ "rewards/margins": 5.143383979797363,
2116
+ "rewards/rejected": -11.408058166503906,
2117
+ "step": 1160
2118
+ },
2119
+ {
2120
+ "epoch": 1.2473347547974414,
2121
+ "grad_norm": 3.6077513694763184,
2122
+ "learning_rate": 5.737168930605272e-07,
2123
+ "logits/chosen": 3.048224925994873,
2124
+ "logits/rejected": 3.061757802963257,
2125
+ "logps/chosen": -4.667507171630859,
2126
+ "logps/rejected": -8.997530937194824,
2127
+ "loss": 0.2096,
2128
+ "rewards/accuracies": 0.9125000238418579,
2129
+ "rewards/chosen": -7.001260280609131,
2130
+ "rewards/margins": 6.4950361251831055,
2131
+ "rewards/rejected": -13.496296882629395,
2132
+ "step": 1170
2133
+ },
2134
+ {
2135
+ "epoch": 1.2579957356076759,
2136
+ "grad_norm": 3.400186061859131,
2137
+ "learning_rate": 5.407663566854008e-07,
2138
+ "logits/chosen": 2.4676003456115723,
2139
+ "logits/rejected": 2.2479636669158936,
2140
+ "logps/chosen": -3.8468101024627686,
2141
+ "logps/rejected": -8.152502059936523,
2142
+ "loss": 0.2542,
2143
+ "rewards/accuracies": 0.925000011920929,
2144
+ "rewards/chosen": -5.7702155113220215,
2145
+ "rewards/margins": 6.458538055419922,
2146
+ "rewards/rejected": -12.228754043579102,
2147
+ "step": 1180
2148
+ },
2149
+ {
2150
+ "epoch": 1.2686567164179103,
2151
+ "grad_norm": 4.976436614990234,
2152
+ "learning_rate": 5.086752049395094e-07,
2153
+ "logits/chosen": 2.905099868774414,
2154
+ "logits/rejected": 2.561856746673584,
2155
+ "logps/chosen": -4.313426971435547,
2156
+ "logps/rejected": -8.205011367797852,
2157
+ "loss": 0.26,
2158
+ "rewards/accuracies": 0.9624999761581421,
2159
+ "rewards/chosen": -6.4701409339904785,
2160
+ "rewards/margins": 5.837375640869141,
2161
+ "rewards/rejected": -12.307516098022461,
2162
+ "step": 1190
2163
+ },
2164
+ {
2165
+ "epoch": 1.279317697228145,
2166
+ "grad_norm": 3.4499430656433105,
2167
+ "learning_rate": 4.774575140626317e-07,
2168
+ "logits/chosen": 2.9027159214019775,
2169
+ "logits/rejected": 2.7010762691497803,
2170
+ "logps/chosen": -4.515786170959473,
2171
+ "logps/rejected": -7.926545143127441,
2172
+ "loss": 0.2364,
2173
+ "rewards/accuracies": 0.9125000238418579,
2174
+ "rewards/chosen": -6.773678779602051,
2175
+ "rewards/margins": 5.116138935089111,
2176
+ "rewards/rejected": -11.88981819152832,
2177
+ "step": 1200
2178
+ },
2179
+ {
2180
+ "epoch": 1.279317697228145,
2181
+ "eval_logits/chosen": 2.23946213722229,
2182
+ "eval_logits/rejected": 2.2642405033111572,
2183
+ "eval_logps/chosen": -3.853114128112793,
2184
+ "eval_logps/rejected": -7.962078094482422,
2185
+ "eval_loss": 0.23450209200382233,
2186
+ "eval_rewards/accuracies": 0.9342105388641357,
2187
+ "eval_rewards/chosen": -5.7796711921691895,
2188
+ "eval_rewards/margins": 6.163444519042969,
2189
+ "eval_rewards/rejected": -11.943115234375,
2190
+ "eval_runtime": 21.4408,
2191
+ "eval_samples_per_second": 28.311,
2192
+ "eval_steps_per_second": 3.545,
2193
+ "step": 1200
2194
+ }
2195
+ ],
2196
+ "logging_steps": 10,
2197
+ "max_steps": 1500,
2198
+ "num_input_tokens_seen": 0,
2199
+ "num_train_epochs": 2,
2200
+ "save_steps": 50,
2201
+ "stateful_callbacks": {
2202
+ "TrainerControl": {
2203
+ "args": {
2204
+ "should_epoch_stop": false,
2205
+ "should_evaluate": false,
2206
+ "should_log": false,
2207
+ "should_save": true,
2208
+ "should_training_stop": false
2209
+ },
2210
+ "attributes": {}
2211
+ }
2212
+ },
2213
+ "total_flos": 2.8773976633245696e+18,
2214
+ "train_batch_size": 1,
2215
+ "trial_name": null,
2216
+ "trial_params": null
2217
+ }
checkpoint-1200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29030fd2c9579a53d4cbb5166f67721176cc7b02c89ae9a2d5722caa76c57c96
3
+ size 7224
checkpoint-1200/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)