Training in progress, step 850, checkpoint
Browse files- checkpoint-850/README.md +202 -0
- checkpoint-850/adapter_config.json +34 -0
- checkpoint-850/adapter_model.safetensors +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-850/global_step850/mp_rank_00_model_states.pt +3 -0
- checkpoint-850/latest +1 -0
- checkpoint-850/rng_state_0.pth +3 -0
- checkpoint-850/rng_state_1.pth +3 -0
- checkpoint-850/rng_state_2.pth +3 -0
- checkpoint-850/rng_state_3.pth +3 -0
- checkpoint-850/rng_state_4.pth +3 -0
- checkpoint-850/rng_state_5.pth +3 -0
- checkpoint-850/rng_state_6.pth +3 -0
- checkpoint-850/rng_state_7.pth +3 -0
- checkpoint-850/scheduler.pt +3 -0
- checkpoint-850/special_tokens_map.json +30 -0
- checkpoint-850/tokenizer.json +0 -0
- checkpoint-850/tokenizer_config.json +133 -0
- checkpoint-850/trainer_state.json +1580 -0
- checkpoint-850/training_args.bin +3 -0
- checkpoint-850/zero_to_fp32.py +674 -0
checkpoint-850/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-850/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 8,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"qkv_proj",
|
27 |
+
"gate_up_proj",
|
28 |
+
"down_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-850/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fd2fa1763366d477eb951962b2fdba14f6ba0ea026792ae67ce26ac8b2f916b
|
3 |
+
size 25200088
|
checkpoint-850/global_step850/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b69aa2a0c31f9bb784767511591137482bb98bd2ec19f852bcc4305478f2a4b7
|
3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8916d054bd36a3389788d05885a44fc84da08043a1e62bb7db1f8ef9b1165c28
|
3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b797f524de2affa5c66530d5a8ffebb5b92ddbe02504ed958dfd93edc6ee1cbe
|
3 |
+
size 18881328
|
checkpoint-850/global_step850/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a43b72a250729ef74e0080eb956f243f4464cac3c0bd4a6a69f377b2d890a576
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a31c8a7cb888fdc152aac3b9e55cf947a6e9e223c60e2e649b1885609df0d790
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65dfa6ce99383f2bb08a7495f1323685aa81f108bd4f54af0db9e29486849ad3
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64b7b797c3b6b7be231487b80f4b234e8f3cc3cd4bc2f13d8f58f0cafcc07956
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f324e9cd30ce7df7dc84d397ea3a16ff5533faebb7d2945adc03c7ea7f899910
|
3 |
+
size 18881392
|
checkpoint-850/global_step850/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71ef7b64999e3c8fe2ef2bb7c33ec24ee914b6748bd90c8de0a078af8bb8baa2
|
3 |
+
size 25379244
|
checkpoint-850/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step850
|
checkpoint-850/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1754ce1fea08e0a1abf50b88b05ad2235accf247d46d7ee2f8c08c6670f73f31
|
3 |
+
size 15984
|
checkpoint-850/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae26017d4550577988f9e10089ab5b71db8da5c695439c0a0fea91d6a1fd0704
|
3 |
+
size 15984
|
checkpoint-850/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d1f128b23b661bf875e117cc47a5648d99e77550cfacf4588ce64a1dd7dbde3
|
3 |
+
size 15984
|
checkpoint-850/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaf41da8bd40bcccaff03238fa84745187c3a9d568a9b5f691e9996625af1de6
|
3 |
+
size 15984
|
checkpoint-850/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a50ddb223b7bd2b99f1b2554cda38ae044aac0f187628b6ded5c4d407979e294
|
3 |
+
size 15984
|
checkpoint-850/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6bf0de30b7a6e43c74608e8f1fa3b7d38bb356d58e402c397bc6ad56aa95795
|
3 |
+
size 15984
|
checkpoint-850/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd016a3c3e3ba2a5ae38a6d0f24920c1961e6c3882d668aaebde5a2d6e1459fb
|
3 |
+
size 15984
|
checkpoint-850/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4e5c265f62dd45b87e17d9c102ed3afb1ecc9d2d1466b032139f4181be9bfb9
|
3 |
+
size 15984
|
checkpoint-850/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e018ec51f51e576ee0ab0d945ed5b24487041ac34863e79688b43f75d30d7673
|
3 |
+
size 1064
|
checkpoint-850/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
checkpoint-850/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-850/tokenizer_config.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<|endoftext|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "<|assistant|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<|placeholder1|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<|placeholder2|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<|placeholder3|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"32005": {
|
71 |
+
"content": "<|placeholder4|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"32006": {
|
79 |
+
"content": "<|system|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"32007": {
|
87 |
+
"content": "<|end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"32008": {
|
95 |
+
"content": "<|placeholder5|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"32009": {
|
103 |
+
"content": "<|placeholder6|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": true,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"32010": {
|
111 |
+
"content": "<|user|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": true,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
|
121 |
+
"clean_up_tokenization_spaces": false,
|
122 |
+
"eos_token": "<|end|>",
|
123 |
+
"extra_special_tokens": {},
|
124 |
+
"legacy": false,
|
125 |
+
"model_max_length": 4096,
|
126 |
+
"pad_token": "<|endoftext|>",
|
127 |
+
"padding_side": "right",
|
128 |
+
"sp_model_kwargs": {},
|
129 |
+
"split_special_tokens": false,
|
130 |
+
"tokenizer_class": "LlamaTokenizer",
|
131 |
+
"unk_token": "<unk>",
|
132 |
+
"use_default_system_prompt": false
|
133 |
+
}
|
checkpoint-850/trainer_state.json
ADDED
@@ -0,0 +1,1580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.906183368869936,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 850,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.010660980810234541,
|
13 |
+
"grad_norm": 0.051327500492334366,
|
14 |
+
"learning_rate": 4.999451708687114e-06,
|
15 |
+
"logits/chosen": 14.755006790161133,
|
16 |
+
"logits/rejected": 14.735244750976562,
|
17 |
+
"logps/chosen": -0.29377540946006775,
|
18 |
+
"logps/rejected": -0.30969956517219543,
|
19 |
+
"loss": 0.952,
|
20 |
+
"rewards/accuracies": 0.4375,
|
21 |
+
"rewards/chosen": -0.44066309928894043,
|
22 |
+
"rewards/margins": 0.023886267095804214,
|
23 |
+
"rewards/rejected": -0.46454939246177673,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.021321961620469083,
|
28 |
+
"grad_norm": 0.04346882924437523,
|
29 |
+
"learning_rate": 4.997807075247147e-06,
|
30 |
+
"logits/chosen": 14.513801574707031,
|
31 |
+
"logits/rejected": 14.946454048156738,
|
32 |
+
"logps/chosen": -0.27995699644088745,
|
33 |
+
"logps/rejected": -0.30138006806373596,
|
34 |
+
"loss": 0.9726,
|
35 |
+
"rewards/accuracies": 0.4124999940395355,
|
36 |
+
"rewards/chosen": -0.4199354648590088,
|
37 |
+
"rewards/margins": 0.03213457390666008,
|
38 |
+
"rewards/rejected": -0.45207005739212036,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.031982942430703626,
|
43 |
+
"grad_norm": 0.05228634551167488,
|
44 |
+
"learning_rate": 4.9950668210706795e-06,
|
45 |
+
"logits/chosen": 14.266324043273926,
|
46 |
+
"logits/rejected": 14.423965454101562,
|
47 |
+
"logps/chosen": -0.2919609546661377,
|
48 |
+
"logps/rejected": -0.32358455657958984,
|
49 |
+
"loss": 0.9622,
|
50 |
+
"rewards/accuracies": 0.5,
|
51 |
+
"rewards/chosen": -0.43794146180152893,
|
52 |
+
"rewards/margins": 0.047435395419597626,
|
53 |
+
"rewards/rejected": -0.48537683486938477,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.042643923240938165,
|
58 |
+
"grad_norm": 0.05487598106265068,
|
59 |
+
"learning_rate": 4.9912321481237616e-06,
|
60 |
+
"logits/chosen": 14.965211868286133,
|
61 |
+
"logits/rejected": 15.058088302612305,
|
62 |
+
"logps/chosen": -0.277716726064682,
|
63 |
+
"logps/rejected": -0.3055034577846527,
|
64 |
+
"loss": 0.9403,
|
65 |
+
"rewards/accuracies": 0.4000000059604645,
|
66 |
+
"rewards/chosen": -0.4165751039981842,
|
67 |
+
"rewards/margins": 0.04168009012937546,
|
68 |
+
"rewards/rejected": -0.4582551419734955,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.053304904051172705,
|
73 |
+
"grad_norm": 0.057255037128925323,
|
74 |
+
"learning_rate": 4.986304738420684e-06,
|
75 |
+
"logits/chosen": 14.539288520812988,
|
76 |
+
"logits/rejected": 15.174041748046875,
|
77 |
+
"logps/chosen": -0.26362231373786926,
|
78 |
+
"logps/rejected": -0.3325727581977844,
|
79 |
+
"loss": 0.9588,
|
80 |
+
"rewards/accuracies": 0.4749999940395355,
|
81 |
+
"rewards/chosen": -0.3954334557056427,
|
82 |
+
"rewards/margins": 0.10342560708522797,
|
83 |
+
"rewards/rejected": -0.49885907769203186,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.053304904051172705,
|
88 |
+
"eval_logits/chosen": 14.618952751159668,
|
89 |
+
"eval_logits/rejected": 15.176809310913086,
|
90 |
+
"eval_logps/chosen": -0.2685677409172058,
|
91 |
+
"eval_logps/rejected": -0.3283654451370239,
|
92 |
+
"eval_loss": 0.9551004767417908,
|
93 |
+
"eval_rewards/accuracies": 0.5131579041481018,
|
94 |
+
"eval_rewards/chosen": -0.4028516113758087,
|
95 |
+
"eval_rewards/margins": 0.08969658613204956,
|
96 |
+
"eval_rewards/rejected": -0.4925481975078583,
|
97 |
+
"eval_runtime": 21.4453,
|
98 |
+
"eval_samples_per_second": 28.305,
|
99 |
+
"eval_steps_per_second": 3.544,
|
100 |
+
"step": 50
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.06396588486140725,
|
104 |
+
"grad_norm": 0.05227242782711983,
|
105 |
+
"learning_rate": 4.980286753286196e-06,
|
106 |
+
"logits/chosen": 14.787714004516602,
|
107 |
+
"logits/rejected": 15.379422187805176,
|
108 |
+
"logps/chosen": -0.3143109679222107,
|
109 |
+
"logps/rejected": -0.3425135612487793,
|
110 |
+
"loss": 0.9636,
|
111 |
+
"rewards/accuracies": 0.4625000059604645,
|
112 |
+
"rewards/chosen": -0.4714665412902832,
|
113 |
+
"rewards/margins": 0.042303841561079025,
|
114 |
+
"rewards/rejected": -0.513770341873169,
|
115 |
+
"step": 60
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.07462686567164178,
|
119 |
+
"grad_norm": 0.0658508762717247,
|
120 |
+
"learning_rate": 4.973180832407471e-06,
|
121 |
+
"logits/chosen": 15.149365425109863,
|
122 |
+
"logits/rejected": 15.115835189819336,
|
123 |
+
"logps/chosen": -0.31501108407974243,
|
124 |
+
"logps/rejected": -0.2854115962982178,
|
125 |
+
"loss": 0.9677,
|
126 |
+
"rewards/accuracies": 0.36250001192092896,
|
127 |
+
"rewards/chosen": -0.47251659631729126,
|
128 |
+
"rewards/margins": -0.04439922422170639,
|
129 |
+
"rewards/rejected": -0.4281173646450043,
|
130 |
+
"step": 70
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.08528784648187633,
|
134 |
+
"grad_norm": 0.06567618995904922,
|
135 |
+
"learning_rate": 4.964990092676263e-06,
|
136 |
+
"logits/chosen": 15.393908500671387,
|
137 |
+
"logits/rejected": 15.454248428344727,
|
138 |
+
"logps/chosen": -0.31166282296180725,
|
139 |
+
"logps/rejected": -0.3178747594356537,
|
140 |
+
"loss": 0.9609,
|
141 |
+
"rewards/accuracies": 0.42500001192092896,
|
142 |
+
"rewards/chosen": -0.4674941897392273,
|
143 |
+
"rewards/margins": 0.009317949414253235,
|
144 |
+
"rewards/rejected": -0.47681212425231934,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.09594882729211088,
|
149 |
+
"grad_norm": 0.07566913962364197,
|
150 |
+
"learning_rate": 4.9557181268217225e-06,
|
151 |
+
"logits/chosen": 15.229632377624512,
|
152 |
+
"logits/rejected": 15.477168083190918,
|
153 |
+
"logps/chosen": -0.3294064998626709,
|
154 |
+
"logps/rejected": -0.3528878390789032,
|
155 |
+
"loss": 0.9587,
|
156 |
+
"rewards/accuracies": 0.4749999940395355,
|
157 |
+
"rewards/chosen": -0.49410971999168396,
|
158 |
+
"rewards/margins": 0.03522203490138054,
|
159 |
+
"rewards/rejected": -0.5293318033218384,
|
160 |
+
"step": 90
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.10660980810234541,
|
164 |
+
"grad_norm": 0.09082464128732681,
|
165 |
+
"learning_rate": 4.9453690018345144e-06,
|
166 |
+
"logits/chosen": 14.481330871582031,
|
167 |
+
"logits/rejected": 15.092982292175293,
|
168 |
+
"logps/chosen": -0.2656436562538147,
|
169 |
+
"logps/rejected": -0.33982905745506287,
|
170 |
+
"loss": 0.9548,
|
171 |
+
"rewards/accuracies": 0.5625,
|
172 |
+
"rewards/chosen": -0.39846545457839966,
|
173 |
+
"rewards/margins": 0.11127817630767822,
|
174 |
+
"rewards/rejected": -0.5097435712814331,
|
175 |
+
"step": 100
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.10660980810234541,
|
179 |
+
"eval_logits/chosen": 14.7100830078125,
|
180 |
+
"eval_logits/rejected": 15.274725914001465,
|
181 |
+
"eval_logps/chosen": -0.26462864875793457,
|
182 |
+
"eval_logps/rejected": -0.331702321767807,
|
183 |
+
"eval_loss": 0.947841465473175,
|
184 |
+
"eval_rewards/accuracies": 0.5394737124443054,
|
185 |
+
"eval_rewards/chosen": -0.39694297313690186,
|
186 |
+
"eval_rewards/margins": 0.10061051696538925,
|
187 |
+
"eval_rewards/rejected": -0.4975534677505493,
|
188 |
+
"eval_runtime": 21.4421,
|
189 |
+
"eval_samples_per_second": 28.309,
|
190 |
+
"eval_steps_per_second": 3.544,
|
191 |
+
"step": 100
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.11727078891257996,
|
195 |
+
"grad_norm": 0.20198923349380493,
|
196 |
+
"learning_rate": 4.933947257182901e-06,
|
197 |
+
"logits/chosen": 14.932653427124023,
|
198 |
+
"logits/rejected": 15.476409912109375,
|
199 |
+
"logps/chosen": -0.27830976247787476,
|
200 |
+
"logps/rejected": -0.34150317311286926,
|
201 |
+
"loss": 0.9487,
|
202 |
+
"rewards/accuracies": 0.550000011920929,
|
203 |
+
"rewards/chosen": -0.41746464371681213,
|
204 |
+
"rewards/margins": 0.09479012340307236,
|
205 |
+
"rewards/rejected": -0.5122548341751099,
|
206 |
+
"step": 110
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.1279317697228145,
|
210 |
+
"grad_norm": 0.31938356161117554,
|
211 |
+
"learning_rate": 4.921457902821578e-06,
|
212 |
+
"logits/chosen": 15.280967712402344,
|
213 |
+
"logits/rejected": 15.5416259765625,
|
214 |
+
"logps/chosen": -0.2816022038459778,
|
215 |
+
"logps/rejected": -0.3262938857078552,
|
216 |
+
"loss": 0.9483,
|
217 |
+
"rewards/accuracies": 0.4749999940395355,
|
218 |
+
"rewards/chosen": -0.4224032461643219,
|
219 |
+
"rewards/margins": 0.06703753769397736,
|
220 |
+
"rewards/rejected": -0.48944082856178284,
|
221 |
+
"step": 120
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.13859275053304904,
|
225 |
+
"grad_norm": 0.12567812204360962,
|
226 |
+
"learning_rate": 4.907906416994146e-06,
|
227 |
+
"logits/chosen": 14.967382431030273,
|
228 |
+
"logits/rejected": 15.351877212524414,
|
229 |
+
"logps/chosen": -0.3148510456085205,
|
230 |
+
"logps/rejected": -0.3488944172859192,
|
231 |
+
"loss": 0.957,
|
232 |
+
"rewards/accuracies": 0.48750001192092896,
|
233 |
+
"rewards/chosen": -0.47227659821510315,
|
234 |
+
"rewards/margins": 0.05106503888964653,
|
235 |
+
"rewards/rejected": -0.5233416557312012,
|
236 |
+
"step": 130
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.14925373134328357,
|
240 |
+
"grad_norm": 0.09151162207126617,
|
241 |
+
"learning_rate": 4.893298743830168e-06,
|
242 |
+
"logits/chosen": 14.900466918945312,
|
243 |
+
"logits/rejected": 15.075350761413574,
|
244 |
+
"logps/chosen": -0.2766302227973938,
|
245 |
+
"logps/rejected": -0.312236487865448,
|
246 |
+
"loss": 0.9373,
|
247 |
+
"rewards/accuracies": 0.42500001192092896,
|
248 |
+
"rewards/chosen": -0.4149452745914459,
|
249 |
+
"rewards/margins": 0.05340944975614548,
|
250 |
+
"rewards/rejected": -0.4683547616004944,
|
251 |
+
"step": 140
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.15991471215351813,
|
255 |
+
"grad_norm": 0.1259378045797348,
|
256 |
+
"learning_rate": 4.8776412907378845e-06,
|
257 |
+
"logits/chosen": 14.528109550476074,
|
258 |
+
"logits/rejected": 14.861102104187012,
|
259 |
+
"logps/chosen": -0.2683579921722412,
|
260 |
+
"logps/rejected": -0.33838269114494324,
|
261 |
+
"loss": 0.9388,
|
262 |
+
"rewards/accuracies": 0.5375000238418579,
|
263 |
+
"rewards/chosen": -0.40253695845603943,
|
264 |
+
"rewards/margins": 0.10503707826137543,
|
265 |
+
"rewards/rejected": -0.5075740218162537,
|
266 |
+
"step": 150
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.15991471215351813,
|
270 |
+
"eval_logits/chosen": 14.12246036529541,
|
271 |
+
"eval_logits/rejected": 14.733266830444336,
|
272 |
+
"eval_logps/chosen": -0.2611957788467407,
|
273 |
+
"eval_logps/rejected": -0.3492279350757599,
|
274 |
+
"eval_loss": 0.9302574396133423,
|
275 |
+
"eval_rewards/accuracies": 0.5657894611358643,
|
276 |
+
"eval_rewards/chosen": -0.3917936384677887,
|
277 |
+
"eval_rewards/margins": 0.13204820454120636,
|
278 |
+
"eval_rewards/rejected": -0.5238418579101562,
|
279 |
+
"eval_runtime": 21.4406,
|
280 |
+
"eval_samples_per_second": 28.311,
|
281 |
+
"eval_steps_per_second": 3.545,
|
282 |
+
"step": 150
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.17057569296375266,
|
286 |
+
"grad_norm": 0.11400051414966583,
|
287 |
+
"learning_rate": 4.860940925593703e-06,
|
288 |
+
"logits/chosen": 14.4571533203125,
|
289 |
+
"logits/rejected": 14.769159317016602,
|
290 |
+
"logps/chosen": -0.31032469868659973,
|
291 |
+
"logps/rejected": -0.34650668501853943,
|
292 |
+
"loss": 0.9396,
|
293 |
+
"rewards/accuracies": 0.512499988079071,
|
294 |
+
"rewards/chosen": -0.4654870927333832,
|
295 |
+
"rewards/margins": 0.05427298694849014,
|
296 |
+
"rewards/rejected": -0.519760012626648,
|
297 |
+
"step": 160
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.1812366737739872,
|
301 |
+
"grad_norm": 0.1102401539683342,
|
302 |
+
"learning_rate": 4.84320497372973e-06,
|
303 |
+
"logits/chosen": 13.959765434265137,
|
304 |
+
"logits/rejected": 14.27458381652832,
|
305 |
+
"logps/chosen": -0.2744378447532654,
|
306 |
+
"logps/rejected": -0.35702812671661377,
|
307 |
+
"loss": 0.9222,
|
308 |
+
"rewards/accuracies": 0.5375000238418579,
|
309 |
+
"rewards/chosen": -0.41165676712989807,
|
310 |
+
"rewards/margins": 0.12388546764850616,
|
311 |
+
"rewards/rejected": -0.5355421900749207,
|
312 |
+
"step": 170
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.19189765458422176,
|
316 |
+
"grad_norm": 0.14721031486988068,
|
317 |
+
"learning_rate": 4.824441214720629e-06,
|
318 |
+
"logits/chosen": 13.54602336883545,
|
319 |
+
"logits/rejected": 14.076690673828125,
|
320 |
+
"logps/chosen": -0.2713850140571594,
|
321 |
+
"logps/rejected": -0.40618976950645447,
|
322 |
+
"loss": 0.9052,
|
323 |
+
"rewards/accuracies": 0.675000011920929,
|
324 |
+
"rewards/chosen": -0.40707746148109436,
|
325 |
+
"rewards/margins": 0.20220720767974854,
|
326 |
+
"rewards/rejected": -0.6092846989631653,
|
327 |
+
"step": 180
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.2025586353944563,
|
331 |
+
"grad_norm": 0.1756824553012848,
|
332 |
+
"learning_rate": 4.804657878971252e-06,
|
333 |
+
"logits/chosen": 12.6314697265625,
|
334 |
+
"logits/rejected": 13.246849060058594,
|
335 |
+
"logps/chosen": -0.27216213941574097,
|
336 |
+
"logps/rejected": -0.4351380467414856,
|
337 |
+
"loss": 0.8996,
|
338 |
+
"rewards/accuracies": 0.6875,
|
339 |
+
"rewards/chosen": -0.40824323892593384,
|
340 |
+
"rewards/margins": 0.24446387588977814,
|
341 |
+
"rewards/rejected": -0.652707040309906,
|
342 |
+
"step": 190
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.21321961620469082,
|
346 |
+
"grad_norm": 0.15476027131080627,
|
347 |
+
"learning_rate": 4.783863644106502e-06,
|
348 |
+
"logits/chosen": 12.40199089050293,
|
349 |
+
"logits/rejected": 12.966108322143555,
|
350 |
+
"logps/chosen": -0.303610622882843,
|
351 |
+
"logps/rejected": -0.423031747341156,
|
352 |
+
"loss": 0.9015,
|
353 |
+
"rewards/accuracies": 0.5375000238418579,
|
354 |
+
"rewards/chosen": -0.4554159641265869,
|
355 |
+
"rewards/margins": 0.17913168668746948,
|
356 |
+
"rewards/rejected": -0.6345476508140564,
|
357 |
+
"step": 200
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.21321961620469082,
|
361 |
+
"eval_logits/chosen": 11.887229919433594,
|
362 |
+
"eval_logits/rejected": 12.5900239944458,
|
363 |
+
"eval_logps/chosen": -0.269090861082077,
|
364 |
+
"eval_logps/rejected": -0.42408913373947144,
|
365 |
+
"eval_loss": 0.8796805143356323,
|
366 |
+
"eval_rewards/accuracies": 0.6447368264198303,
|
367 |
+
"eval_rewards/chosen": -0.40363630652427673,
|
368 |
+
"eval_rewards/margins": 0.23249731957912445,
|
369 |
+
"eval_rewards/rejected": -0.6361336708068848,
|
370 |
+
"eval_runtime": 21.4455,
|
371 |
+
"eval_samples_per_second": 28.304,
|
372 |
+
"eval_steps_per_second": 3.544,
|
373 |
+
"step": 200
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.22388059701492538,
|
377 |
+
"grad_norm": 0.18212148547172546,
|
378 |
+
"learning_rate": 4.762067631165049e-06,
|
379 |
+
"logits/chosen": 12.375594139099121,
|
380 |
+
"logits/rejected": 12.701678276062012,
|
381 |
+
"logps/chosen": -0.3136894702911377,
|
382 |
+
"logps/rejected": -0.3944609761238098,
|
383 |
+
"loss": 0.8898,
|
384 |
+
"rewards/accuracies": 0.4625000059604645,
|
385 |
+
"rewards/chosen": -0.47053417563438416,
|
386 |
+
"rewards/margins": 0.12115727365016937,
|
387 |
+
"rewards/rejected": -0.5916914939880371,
|
388 |
+
"step": 210
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.2345415778251599,
|
392 |
+
"grad_norm": 0.5440058708190918,
|
393 |
+
"learning_rate": 4.7392794005985324e-06,
|
394 |
+
"logits/chosen": 11.23914909362793,
|
395 |
+
"logits/rejected": 11.926396369934082,
|
396 |
+
"logps/chosen": -0.3077571392059326,
|
397 |
+
"logps/rejected": -0.43772149085998535,
|
398 |
+
"loss": 0.8806,
|
399 |
+
"rewards/accuracies": 0.5375000238418579,
|
400 |
+
"rewards/chosen": -0.4616357684135437,
|
401 |
+
"rewards/margins": 0.19494646787643433,
|
402 |
+
"rewards/rejected": -0.656582236289978,
|
403 |
+
"step": 220
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.24520255863539445,
|
407 |
+
"grad_norm": 0.5628307461738586,
|
408 |
+
"learning_rate": 4.715508948078037e-06,
|
409 |
+
"logits/chosen": 11.177714347839355,
|
410 |
+
"logits/rejected": 11.534266471862793,
|
411 |
+
"logps/chosen": -0.31991320848464966,
|
412 |
+
"logps/rejected": -0.4394511282444,
|
413 |
+
"loss": 0.8778,
|
414 |
+
"rewards/accuracies": 0.550000011920929,
|
415 |
+
"rewards/chosen": -0.4798697829246521,
|
416 |
+
"rewards/margins": 0.17930689454078674,
|
417 |
+
"rewards/rejected": -0.6591767072677612,
|
418 |
+
"step": 230
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.255863539445629,
|
422 |
+
"grad_norm": 0.40485626459121704,
|
423 |
+
"learning_rate": 4.690766700109659e-06,
|
424 |
+
"logits/chosen": 10.132668495178223,
|
425 |
+
"logits/rejected": 10.29063606262207,
|
426 |
+
"logps/chosen": -0.3195653557777405,
|
427 |
+
"logps/rejected": -0.47949132323265076,
|
428 |
+
"loss": 0.8551,
|
429 |
+
"rewards/accuracies": 0.5874999761581421,
|
430 |
+
"rewards/chosen": -0.47934800386428833,
|
431 |
+
"rewards/margins": 0.23988890647888184,
|
432 |
+
"rewards/rejected": -0.7192369699478149,
|
433 |
+
"step": 240
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.26652452025586354,
|
437 |
+
"grad_norm": 0.6199322938919067,
|
438 |
+
"learning_rate": 4.665063509461098e-06,
|
439 |
+
"logits/chosen": 8.781888008117676,
|
440 |
+
"logits/rejected": 9.237382888793945,
|
441 |
+
"logps/chosen": -0.3370448052883148,
|
442 |
+
"logps/rejected": -0.610824465751648,
|
443 |
+
"loss": 0.8416,
|
444 |
+
"rewards/accuracies": 0.7250000238418579,
|
445 |
+
"rewards/chosen": -0.505567193031311,
|
446 |
+
"rewards/margins": 0.4106695055961609,
|
447 |
+
"rewards/rejected": -0.9162367582321167,
|
448 |
+
"step": 250
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 0.26652452025586354,
|
452 |
+
"eval_logits/chosen": 8.437722206115723,
|
453 |
+
"eval_logits/rejected": 8.843962669372559,
|
454 |
+
"eval_logps/chosen": -0.3058585226535797,
|
455 |
+
"eval_logps/rejected": -0.582990825176239,
|
456 |
+
"eval_loss": 0.8036603331565857,
|
457 |
+
"eval_rewards/accuracies": 0.6447368264198303,
|
458 |
+
"eval_rewards/chosen": -0.4587877094745636,
|
459 |
+
"eval_rewards/margins": 0.4156985878944397,
|
460 |
+
"eval_rewards/rejected": -0.8744862079620361,
|
461 |
+
"eval_runtime": 21.4423,
|
462 |
+
"eval_samples_per_second": 28.308,
|
463 |
+
"eval_steps_per_second": 3.544,
|
464 |
+
"step": 250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.2771855010660981,
|
468 |
+
"grad_norm": 0.3213505744934082,
|
469 |
+
"learning_rate": 4.638410650401267e-06,
|
470 |
+
"logits/chosen": 7.914826393127441,
|
471 |
+
"logits/rejected": 8.010818481445312,
|
472 |
+
"logps/chosen": -0.3556877374649048,
|
473 |
+
"logps/rejected": -0.7540119886398315,
|
474 |
+
"loss": 0.7811,
|
475 |
+
"rewards/accuracies": 0.6499999761581421,
|
476 |
+
"rewards/chosen": -0.5335315465927124,
|
477 |
+
"rewards/margins": 0.5974863171577454,
|
478 |
+
"rewards/rejected": -1.1310179233551025,
|
479 |
+
"step": 260
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.2878464818763326,
|
483 |
+
"grad_norm": 1.0119378566741943,
|
484 |
+
"learning_rate": 4.610819813755038e-06,
|
485 |
+
"logits/chosen": 7.584845542907715,
|
486 |
+
"logits/rejected": 7.812608242034912,
|
487 |
+
"logps/chosen": -0.3649575412273407,
|
488 |
+
"logps/rejected": -0.8042632937431335,
|
489 |
+
"loss": 0.7391,
|
490 |
+
"rewards/accuracies": 0.5249999761581421,
|
491 |
+
"rewards/chosen": -0.5474363565444946,
|
492 |
+
"rewards/margins": 0.6589586734771729,
|
493 |
+
"rewards/rejected": -1.206395149230957,
|
494 |
+
"step": 270
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.29850746268656714,
|
498 |
+
"grad_norm": 0.5339816808700562,
|
499 |
+
"learning_rate": 4.582303101775249e-06,
|
500 |
+
"logits/chosen": 6.687758445739746,
|
501 |
+
"logits/rejected": 6.233181476593018,
|
502 |
+
"logps/chosen": -0.415935218334198,
|
503 |
+
"logps/rejected": -1.2987438440322876,
|
504 |
+
"loss": 0.7419,
|
505 |
+
"rewards/accuracies": 0.6000000238418579,
|
506 |
+
"rewards/chosen": -0.6239027976989746,
|
507 |
+
"rewards/margins": 1.3242127895355225,
|
508 |
+
"rewards/rejected": -1.9481157064437866,
|
509 |
+
"step": 280
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.3091684434968017,
|
513 |
+
"grad_norm": 0.3514000475406647,
|
514 |
+
"learning_rate": 4.55287302283426e-06,
|
515 |
+
"logits/chosen": 6.2503981590271,
|
516 |
+
"logits/rejected": 5.798542499542236,
|
517 |
+
"logps/chosen": -0.4319223463535309,
|
518 |
+
"logps/rejected": -1.2257453203201294,
|
519 |
+
"loss": 0.7235,
|
520 |
+
"rewards/accuracies": 0.6000000238418579,
|
521 |
+
"rewards/chosen": -0.6478835344314575,
|
522 |
+
"rewards/margins": 1.1907342672348022,
|
523 |
+
"rewards/rejected": -1.8386180400848389,
|
524 |
+
"step": 290
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.31982942430703626,
|
528 |
+
"grad_norm": 0.6761008501052856,
|
529 |
+
"learning_rate": 4.522542485937369e-06,
|
530 |
+
"logits/chosen": 4.4480695724487305,
|
531 |
+
"logits/rejected": 4.290585994720459,
|
532 |
+
"logps/chosen": -0.42002564668655396,
|
533 |
+
"logps/rejected": -1.4215493202209473,
|
534 |
+
"loss": 0.7058,
|
535 |
+
"rewards/accuracies": 0.637499988079071,
|
536 |
+
"rewards/chosen": -0.6300384402275085,
|
537 |
+
"rewards/margins": 1.5022855997085571,
|
538 |
+
"rewards/rejected": -2.132323980331421,
|
539 |
+
"step": 300
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.31982942430703626,
|
543 |
+
"eval_logits/chosen": 4.789332389831543,
|
544 |
+
"eval_logits/rejected": 4.481485366821289,
|
545 |
+
"eval_logps/chosen": -0.4049508571624756,
|
546 |
+
"eval_logps/rejected": -1.395646095275879,
|
547 |
+
"eval_loss": 0.6695442199707031,
|
548 |
+
"eval_rewards/accuracies": 0.6710526347160339,
|
549 |
+
"eval_rewards/chosen": -0.6074262857437134,
|
550 |
+
"eval_rewards/margins": 1.4860429763793945,
|
551 |
+
"eval_rewards/rejected": -2.0934693813323975,
|
552 |
+
"eval_runtime": 21.4397,
|
553 |
+
"eval_samples_per_second": 28.312,
|
554 |
+
"eval_steps_per_second": 3.545,
|
555 |
+
"step": 300
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.3304904051172708,
|
559 |
+
"grad_norm": 0.44682690501213074,
|
560 |
+
"learning_rate": 4.491324795060491e-06,
|
561 |
+
"logits/chosen": 5.487166404724121,
|
562 |
+
"logits/rejected": 4.501384258270264,
|
563 |
+
"logps/chosen": -0.5215579867362976,
|
564 |
+
"logps/rejected": -1.7223398685455322,
|
565 |
+
"loss": 0.6988,
|
566 |
+
"rewards/accuracies": 0.612500011920929,
|
567 |
+
"rewards/chosen": -0.7823370695114136,
|
568 |
+
"rewards/margins": 1.8011726140975952,
|
569 |
+
"rewards/rejected": -2.5835094451904297,
|
570 |
+
"step": 310
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.3411513859275053,
|
574 |
+
"grad_norm": 0.41085830330848694,
|
575 |
+
"learning_rate": 4.4592336433146e-06,
|
576 |
+
"logits/chosen": 4.162590026855469,
|
577 |
+
"logits/rejected": 2.876271963119507,
|
578 |
+
"logps/chosen": -0.5402930974960327,
|
579 |
+
"logps/rejected": -1.7925996780395508,
|
580 |
+
"loss": 0.6811,
|
581 |
+
"rewards/accuracies": 0.625,
|
582 |
+
"rewards/chosen": -0.8104397058486938,
|
583 |
+
"rewards/margins": 1.8784599304199219,
|
584 |
+
"rewards/rejected": -2.688899517059326,
|
585 |
+
"step": 320
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.35181236673773986,
|
589 |
+
"grad_norm": 0.5611584186553955,
|
590 |
+
"learning_rate": 4.426283106939474e-06,
|
591 |
+
"logits/chosen": 4.088540077209473,
|
592 |
+
"logits/rejected": 3.081679582595825,
|
593 |
+
"logps/chosen": -0.541223406791687,
|
594 |
+
"logps/rejected": -1.9464069604873657,
|
595 |
+
"loss": 0.6614,
|
596 |
+
"rewards/accuracies": 0.699999988079071,
|
597 |
+
"rewards/chosen": -0.8118351101875305,
|
598 |
+
"rewards/margins": 2.1077752113342285,
|
599 |
+
"rewards/rejected": -2.919610023498535,
|
600 |
+
"step": 330
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.3624733475479744,
|
604 |
+
"grad_norm": 4.05828857421875,
|
605 |
+
"learning_rate": 4.3924876391293915e-06,
|
606 |
+
"logits/chosen": 3.3937134742736816,
|
607 |
+
"logits/rejected": 2.4182538986206055,
|
608 |
+
"logps/chosen": -0.6656067967414856,
|
609 |
+
"logps/rejected": -1.5255868434906006,
|
610 |
+
"loss": 0.6583,
|
611 |
+
"rewards/accuracies": 0.574999988079071,
|
612 |
+
"rewards/chosen": -0.9984102249145508,
|
613 |
+
"rewards/margins": 1.2899701595306396,
|
614 |
+
"rewards/rejected": -2.2883803844451904,
|
615 |
+
"step": 340
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.373134328358209,
|
619 |
+
"grad_norm": 0.8311880230903625,
|
620 |
+
"learning_rate": 4.357862063693486e-06,
|
621 |
+
"logits/chosen": 2.503194570541382,
|
622 |
+
"logits/rejected": 1.5284960269927979,
|
623 |
+
"logps/chosen": -0.6593035459518433,
|
624 |
+
"logps/rejected": -2.211193323135376,
|
625 |
+
"loss": 0.5911,
|
626 |
+
"rewards/accuracies": 0.699999988079071,
|
627 |
+
"rewards/chosen": -0.9889553189277649,
|
628 |
+
"rewards/margins": 2.3278346061706543,
|
629 |
+
"rewards/rejected": -3.3167896270751953,
|
630 |
+
"step": 350
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 0.373134328358209,
|
634 |
+
"eval_logits/chosen": 2.556962728500366,
|
635 |
+
"eval_logits/rejected": 1.830418586730957,
|
636 |
+
"eval_logps/chosen": -0.6546408534049988,
|
637 |
+
"eval_logps/rejected": -1.9014692306518555,
|
638 |
+
"eval_loss": 0.5961893200874329,
|
639 |
+
"eval_rewards/accuracies": 0.6842105388641357,
|
640 |
+
"eval_rewards/chosen": -0.9819613099098206,
|
641 |
+
"eval_rewards/margins": 1.8702424764633179,
|
642 |
+
"eval_rewards/rejected": -2.852203845977783,
|
643 |
+
"eval_runtime": 21.4393,
|
644 |
+
"eval_samples_per_second": 28.312,
|
645 |
+
"eval_steps_per_second": 3.545,
|
646 |
+
"step": 350
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.3837953091684435,
|
650 |
+
"grad_norm": 1.4237236976623535,
|
651 |
+
"learning_rate": 4.322421568553529e-06,
|
652 |
+
"logits/chosen": 3.0001542568206787,
|
653 |
+
"logits/rejected": 1.9715242385864258,
|
654 |
+
"logps/chosen": -0.8050466775894165,
|
655 |
+
"logps/rejected": -2.2938907146453857,
|
656 |
+
"loss": 0.58,
|
657 |
+
"rewards/accuracies": 0.737500011920929,
|
658 |
+
"rewards/chosen": -1.20756995677948,
|
659 |
+
"rewards/margins": 2.2332661151885986,
|
660 |
+
"rewards/rejected": -3.440835952758789,
|
661 |
+
"step": 360
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.39445628997867804,
|
665 |
+
"grad_norm": 2.2651443481445312,
|
666 |
+
"learning_rate": 4.286181699082008e-06,
|
667 |
+
"logits/chosen": 2.7526040077209473,
|
668 |
+
"logits/rejected": 2.05066180229187,
|
669 |
+
"logps/chosen": -1.6301355361938477,
|
670 |
+
"logps/rejected": -2.9630703926086426,
|
671 |
+
"loss": 0.5823,
|
672 |
+
"rewards/accuracies": 0.75,
|
673 |
+
"rewards/chosen": -2.4452033042907715,
|
674 |
+
"rewards/margins": 1.999402642250061,
|
675 |
+
"rewards/rejected": -4.444605827331543,
|
676 |
+
"step": 370
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.4051172707889126,
|
680 |
+
"grad_norm": 1.9120367765426636,
|
681 |
+
"learning_rate": 4.249158351283414e-06,
|
682 |
+
"logits/chosen": 1.9757938385009766,
|
683 |
+
"logits/rejected": 1.5915673971176147,
|
684 |
+
"logps/chosen": -2.063323497772217,
|
685 |
+
"logps/rejected": -2.899749755859375,
|
686 |
+
"loss": 0.5675,
|
687 |
+
"rewards/accuracies": 0.737500011920929,
|
688 |
+
"rewards/chosen": -3.094984769821167,
|
689 |
+
"rewards/margins": 1.2546398639678955,
|
690 |
+
"rewards/rejected": -4.3496246337890625,
|
691 |
+
"step": 380
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.4157782515991471,
|
695 |
+
"grad_norm": 3.0018720626831055,
|
696 |
+
"learning_rate": 4.211367764821722e-06,
|
697 |
+
"logits/chosen": 2.541440486907959,
|
698 |
+
"logits/rejected": 1.7436832189559937,
|
699 |
+
"logps/chosen": -2.279510736465454,
|
700 |
+
"logps/rejected": -3.3447775840759277,
|
701 |
+
"loss": 0.4969,
|
702 |
+
"rewards/accuracies": 0.8500000238418579,
|
703 |
+
"rewards/chosen": -3.4192657470703125,
|
704 |
+
"rewards/margins": 1.5979007482528687,
|
705 |
+
"rewards/rejected": -5.017167091369629,
|
706 |
+
"step": 390
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.42643923240938164,
|
710 |
+
"grad_norm": 1.9656275510787964,
|
711 |
+
"learning_rate": 4.172826515897146e-06,
|
712 |
+
"logits/chosen": 1.6748476028442383,
|
713 |
+
"logits/rejected": 1.0921740531921387,
|
714 |
+
"logps/chosen": -2.147991180419922,
|
715 |
+
"logps/rejected": -3.380042314529419,
|
716 |
+
"loss": 0.5135,
|
717 |
+
"rewards/accuracies": 0.8374999761581421,
|
718 |
+
"rewards/chosen": -3.221986770629883,
|
719 |
+
"rewards/margins": 1.8480768203735352,
|
720 |
+
"rewards/rejected": -5.07006311416626,
|
721 |
+
"step": 400
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.42643923240938164,
|
725 |
+
"eval_logits/chosen": 2.210231065750122,
|
726 |
+
"eval_logits/rejected": 1.679926872253418,
|
727 |
+
"eval_logps/chosen": -2.044506788253784,
|
728 |
+
"eval_logps/rejected": -3.713956356048584,
|
729 |
+
"eval_loss": 0.47455134987831116,
|
730 |
+
"eval_rewards/accuracies": 0.9342105388641357,
|
731 |
+
"eval_rewards/chosen": -3.0667598247528076,
|
732 |
+
"eval_rewards/margins": 2.5041754245758057,
|
733 |
+
"eval_rewards/rejected": -5.570935249328613,
|
734 |
+
"eval_runtime": 21.4401,
|
735 |
+
"eval_samples_per_second": 28.311,
|
736 |
+
"eval_steps_per_second": 3.545,
|
737 |
+
"step": 400
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.43710021321961623,
|
741 |
+
"grad_norm": 2.501361131668091,
|
742 |
+
"learning_rate": 4.133551509975264e-06,
|
743 |
+
"logits/chosen": 1.9820306301116943,
|
744 |
+
"logits/rejected": 1.3992068767547607,
|
745 |
+
"logps/chosen": -2.300197124481201,
|
746 |
+
"logps/rejected": -3.813164472579956,
|
747 |
+
"loss": 0.498,
|
748 |
+
"rewards/accuracies": 0.8500000238418579,
|
749 |
+
"rewards/chosen": -3.4502956867218018,
|
750 |
+
"rewards/margins": 2.2694506645202637,
|
751 |
+
"rewards/rejected": -5.7197465896606445,
|
752 |
+
"step": 410
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.44776119402985076,
|
756 |
+
"grad_norm": 3.828648090362549,
|
757 |
+
"learning_rate": 4.093559974371725e-06,
|
758 |
+
"logits/chosen": 2.7997095584869385,
|
759 |
+
"logits/rejected": 2.4387598037719727,
|
760 |
+
"logps/chosen": -2.687736749649048,
|
761 |
+
"logps/rejected": -4.425741195678711,
|
762 |
+
"loss": 0.4494,
|
763 |
+
"rewards/accuracies": 0.862500011920929,
|
764 |
+
"rewards/chosen": -4.031605243682861,
|
765 |
+
"rewards/margins": 2.607006788253784,
|
766 |
+
"rewards/rejected": -6.638613224029541,
|
767 |
+
"step": 420
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.4584221748400853,
|
771 |
+
"grad_norm": 2.635803461074829,
|
772 |
+
"learning_rate": 4.052869450695776e-06,
|
773 |
+
"logits/chosen": 2.942661762237549,
|
774 |
+
"logits/rejected": 2.019963026046753,
|
775 |
+
"logps/chosen": -2.98117733001709,
|
776 |
+
"logps/rejected": -4.717232704162598,
|
777 |
+
"loss": 0.4796,
|
778 |
+
"rewards/accuracies": 0.8500000238418579,
|
779 |
+
"rewards/chosen": -4.471765518188477,
|
780 |
+
"rewards/margins": 2.60408353805542,
|
781 |
+
"rewards/rejected": -7.075850009918213,
|
782 |
+
"step": 430
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.4690831556503198,
|
786 |
+
"grad_norm": 3.140829086303711,
|
787 |
+
"learning_rate": 4.011497787155938e-06,
|
788 |
+
"logits/chosen": 3.2747459411621094,
|
789 |
+
"logits/rejected": 2.2958083152770996,
|
790 |
+
"logps/chosen": -3.129321575164795,
|
791 |
+
"logps/rejected": -4.921725273132324,
|
792 |
+
"loss": 0.4468,
|
793 |
+
"rewards/accuracies": 0.862500011920929,
|
794 |
+
"rewards/chosen": -4.69398307800293,
|
795 |
+
"rewards/margins": 2.688605785369873,
|
796 |
+
"rewards/rejected": -7.3825883865356445,
|
797 |
+
"step": 440
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.47974413646055436,
|
801 |
+
"grad_norm": 2.7932240962982178,
|
802 |
+
"learning_rate": 3.969463130731183e-06,
|
803 |
+
"logits/chosen": 2.205420970916748,
|
804 |
+
"logits/rejected": 1.4024155139923096,
|
805 |
+
"logps/chosen": -2.7564563751220703,
|
806 |
+
"logps/rejected": -4.563851356506348,
|
807 |
+
"loss": 0.4073,
|
808 |
+
"rewards/accuracies": 0.887499988079071,
|
809 |
+
"rewards/chosen": -4.1346845626831055,
|
810 |
+
"rewards/margins": 2.711092472076416,
|
811 |
+
"rewards/rejected": -6.8457770347595215,
|
812 |
+
"step": 450
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.47974413646055436,
|
816 |
+
"eval_logits/chosen": 2.0136826038360596,
|
817 |
+
"eval_logits/rejected": 1.561701774597168,
|
818 |
+
"eval_logps/chosen": -2.7486908435821533,
|
819 |
+
"eval_logps/rejected": -4.690793514251709,
|
820 |
+
"eval_loss": 0.41499289870262146,
|
821 |
+
"eval_rewards/accuracies": 0.9210526347160339,
|
822 |
+
"eval_rewards/chosen": -4.123035907745361,
|
823 |
+
"eval_rewards/margins": 2.913153648376465,
|
824 |
+
"eval_rewards/rejected": -7.036189079284668,
|
825 |
+
"eval_runtime": 21.4387,
|
826 |
+
"eval_samples_per_second": 28.313,
|
827 |
+
"eval_steps_per_second": 3.545,
|
828 |
+
"step": 450
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.4904051172707889,
|
832 |
+
"grad_norm": 2.7059199810028076,
|
833 |
+
"learning_rate": 3.92678391921108e-06,
|
834 |
+
"logits/chosen": 2.257246494293213,
|
835 |
+
"logits/rejected": 1.6654322147369385,
|
836 |
+
"logps/chosen": -3.389554500579834,
|
837 |
+
"logps/rejected": -5.6951165199279785,
|
838 |
+
"loss": 0.4004,
|
839 |
+
"rewards/accuracies": 0.949999988079071,
|
840 |
+
"rewards/chosen": -5.084332466125488,
|
841 |
+
"rewards/margins": 3.4583427906036377,
|
842 |
+
"rewards/rejected": -8.542675018310547,
|
843 |
+
"step": 460
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.5010660980810234,
|
847 |
+
"grad_norm": 2.245579719543457,
|
848 |
+
"learning_rate": 3.88347887310836e-06,
|
849 |
+
"logits/chosen": 2.3386971950531006,
|
850 |
+
"logits/rejected": 2.086036205291748,
|
851 |
+
"logps/chosen": -3.2753937244415283,
|
852 |
+
"logps/rejected": -5.4362359046936035,
|
853 |
+
"loss": 0.3976,
|
854 |
+
"rewards/accuracies": 0.875,
|
855 |
+
"rewards/chosen": -4.913090705871582,
|
856 |
+
"rewards/margins": 3.241262912750244,
|
857 |
+
"rewards/rejected": -8.154353141784668,
|
858 |
+
"step": 470
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.511727078891258,
|
862 |
+
"grad_norm": 2.8131167888641357,
|
863 |
+
"learning_rate": 3.839566987447492e-06,
|
864 |
+
"logits/chosen": 1.6951004266738892,
|
865 |
+
"logits/rejected": 1.3795586824417114,
|
866 |
+
"logps/chosen": -3.2933483123779297,
|
867 |
+
"logps/rejected": -5.050060749053955,
|
868 |
+
"loss": 0.3982,
|
869 |
+
"rewards/accuracies": 0.8999999761581421,
|
870 |
+
"rewards/chosen": -4.940022945404053,
|
871 |
+
"rewards/margins": 2.635068416595459,
|
872 |
+
"rewards/rejected": -7.5750908851623535,
|
873 |
+
"step": 480
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.5223880597014925,
|
877 |
+
"grad_norm": 2.6465814113616943,
|
878 |
+
"learning_rate": 3.795067523432826e-06,
|
879 |
+
"logits/chosen": 3.136894702911377,
|
880 |
+
"logits/rejected": 2.6332411766052246,
|
881 |
+
"logps/chosen": -4.419378757476807,
|
882 |
+
"logps/rejected": -6.467301845550537,
|
883 |
+
"loss": 0.3974,
|
884 |
+
"rewards/accuracies": 0.9125000238418579,
|
885 |
+
"rewards/chosen": -6.629067420959473,
|
886 |
+
"rewards/margins": 3.071885585784912,
|
887 |
+
"rewards/rejected": -9.700952529907227,
|
888 |
+
"step": 490
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 0.5330490405117271,
|
892 |
+
"grad_norm": 3.6718053817749023,
|
893 |
+
"learning_rate": 3.7500000000000005e-06,
|
894 |
+
"logits/chosen": 1.681780457496643,
|
895 |
+
"logits/rejected": 1.0038775205612183,
|
896 |
+
"logps/chosen": -3.266970157623291,
|
897 |
+
"logps/rejected": -5.594450950622559,
|
898 |
+
"loss": 0.367,
|
899 |
+
"rewards/accuracies": 0.925000011920929,
|
900 |
+
"rewards/chosen": -4.900455474853516,
|
901 |
+
"rewards/margins": 3.4912209510803223,
|
902 |
+
"rewards/rejected": -8.391676902770996,
|
903 |
+
"step": 500
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.5330490405117271,
|
907 |
+
"eval_logits/chosen": 2.110192060470581,
|
908 |
+
"eval_logits/rejected": 1.7233155965805054,
|
909 |
+
"eval_logps/chosen": -3.0329930782318115,
|
910 |
+
"eval_logps/rejected": -5.3280930519104,
|
911 |
+
"eval_loss": 0.387028306722641,
|
912 |
+
"eval_rewards/accuracies": 0.9210526347160339,
|
913 |
+
"eval_rewards/chosen": -4.549489498138428,
|
914 |
+
"eval_rewards/margins": 3.4426498413085938,
|
915 |
+
"eval_rewards/rejected": -7.9921393394470215,
|
916 |
+
"eval_runtime": 21.4417,
|
917 |
+
"eval_samples_per_second": 28.309,
|
918 |
+
"eval_steps_per_second": 3.545,
|
919 |
+
"step": 500
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.5437100213219617,
|
923 |
+
"grad_norm": 3.392418622970581,
|
924 |
+
"learning_rate": 3.7043841852542884e-06,
|
925 |
+
"logits/chosen": 3.0106852054595947,
|
926 |
+
"logits/rejected": 2.309483528137207,
|
927 |
+
"logps/chosen": -3.4964828491210938,
|
928 |
+
"logps/rejected": -5.438345909118652,
|
929 |
+
"loss": 0.3776,
|
930 |
+
"rewards/accuracies": 0.925000011920929,
|
931 |
+
"rewards/chosen": -5.244723796844482,
|
932 |
+
"rewards/margins": 2.9127936363220215,
|
933 |
+
"rewards/rejected": -8.15751838684082,
|
934 |
+
"step": 510
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.5543710021321961,
|
938 |
+
"grad_norm": 3.551785707473755,
|
939 |
+
"learning_rate": 3.658240087799655e-06,
|
940 |
+
"logits/chosen": 2.8624072074890137,
|
941 |
+
"logits/rejected": 2.425307512283325,
|
942 |
+
"logps/chosen": -3.780029773712158,
|
943 |
+
"logps/rejected": -5.929925918579102,
|
944 |
+
"loss": 0.3999,
|
945 |
+
"rewards/accuracies": 0.887499988079071,
|
946 |
+
"rewards/chosen": -5.670044898986816,
|
947 |
+
"rewards/margins": 3.224843978881836,
|
948 |
+
"rewards/rejected": -8.894887924194336,
|
949 |
+
"step": 520
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.5650319829424307,
|
953 |
+
"grad_norm": 3.0529866218566895,
|
954 |
+
"learning_rate": 3.611587947962319e-06,
|
955 |
+
"logits/chosen": 2.3145668506622314,
|
956 |
+
"logits/rejected": 1.5088326930999756,
|
957 |
+
"logps/chosen": -3.1259171962738037,
|
958 |
+
"logps/rejected": -5.282050132751465,
|
959 |
+
"loss": 0.3346,
|
960 |
+
"rewards/accuracies": 0.9125000238418579,
|
961 |
+
"rewards/chosen": -4.688876152038574,
|
962 |
+
"rewards/margins": 3.234198808670044,
|
963 |
+
"rewards/rejected": -7.923074245452881,
|
964 |
+
"step": 530
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.5756929637526652,
|
968 |
+
"grad_norm": 1.7146470546722412,
|
969 |
+
"learning_rate": 3.564448228912682e-06,
|
970 |
+
"logits/chosen": 2.5195610523223877,
|
971 |
+
"logits/rejected": 2.286477565765381,
|
972 |
+
"logps/chosen": -4.000255107879639,
|
973 |
+
"logps/rejected": -6.475634574890137,
|
974 |
+
"loss": 0.3675,
|
975 |
+
"rewards/accuracies": 0.925000011920929,
|
976 |
+
"rewards/chosen": -6.000383377075195,
|
977 |
+
"rewards/margins": 3.713069438934326,
|
978 |
+
"rewards/rejected": -9.713452339172363,
|
979 |
+
"step": 540
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.5863539445628998,
|
983 |
+
"grad_norm": 8.31704330444336,
|
984 |
+
"learning_rate": 3.516841607689501e-06,
|
985 |
+
"logits/chosen": 1.8846759796142578,
|
986 |
+
"logits/rejected": 1.5663390159606934,
|
987 |
+
"logps/chosen": -3.9287109375,
|
988 |
+
"logps/rejected": -6.041600704193115,
|
989 |
+
"loss": 0.3921,
|
990 |
+
"rewards/accuracies": 0.862500011920929,
|
991 |
+
"rewards/chosen": -5.89306640625,
|
992 |
+
"rewards/margins": 3.1693339347839355,
|
993 |
+
"rewards/rejected": -9.062400817871094,
|
994 |
+
"step": 550
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.5863539445628998,
|
998 |
+
"eval_logits/chosen": 2.0545763969421387,
|
999 |
+
"eval_logits/rejected": 1.7521167993545532,
|
1000 |
+
"eval_logps/chosen": -3.2991809844970703,
|
1001 |
+
"eval_logps/rejected": -5.87559175491333,
|
1002 |
+
"eval_loss": 0.35785165429115295,
|
1003 |
+
"eval_rewards/accuracies": 0.9342105388641357,
|
1004 |
+
"eval_rewards/chosen": -4.948771953582764,
|
1005 |
+
"eval_rewards/margins": 3.8646163940429688,
|
1006 |
+
"eval_rewards/rejected": -8.813387870788574,
|
1007 |
+
"eval_runtime": 21.439,
|
1008 |
+
"eval_samples_per_second": 28.313,
|
1009 |
+
"eval_steps_per_second": 3.545,
|
1010 |
+
"step": 550
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.5970149253731343,
|
1014 |
+
"grad_norm": 4.491275787353516,
|
1015 |
+
"learning_rate": 3.4687889661302577e-06,
|
1016 |
+
"logits/chosen": 2.9886631965637207,
|
1017 |
+
"logits/rejected": 2.2341508865356445,
|
1018 |
+
"logps/chosen": -4.050547122955322,
|
1019 |
+
"logps/rejected": -6.301305294036865,
|
1020 |
+
"loss": 0.3701,
|
1021 |
+
"rewards/accuracies": 0.887499988079071,
|
1022 |
+
"rewards/chosen": -6.0758209228515625,
|
1023 |
+
"rewards/margins": 3.3761372566223145,
|
1024 |
+
"rewards/rejected": -9.451958656311035,
|
1025 |
+
"step": 560
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.6076759061833689,
|
1029 |
+
"grad_norm": 2.40407395362854,
|
1030 |
+
"learning_rate": 3.4203113817116955e-06,
|
1031 |
+
"logits/chosen": 3.0933375358581543,
|
1032 |
+
"logits/rejected": 2.4652345180511475,
|
1033 |
+
"logps/chosen": -3.9168992042541504,
|
1034 |
+
"logps/rejected": -5.933487892150879,
|
1035 |
+
"loss": 0.3481,
|
1036 |
+
"rewards/accuracies": 0.8999999761581421,
|
1037 |
+
"rewards/chosen": -5.875349521636963,
|
1038 |
+
"rewards/margins": 3.024883508682251,
|
1039 |
+
"rewards/rejected": -8.900232315063477,
|
1040 |
+
"step": 570
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.6183368869936035,
|
1044 |
+
"grad_norm": 4.073615550994873,
|
1045 |
+
"learning_rate": 3.3714301183045382e-06,
|
1046 |
+
"logits/chosen": 2.5948500633239746,
|
1047 |
+
"logits/rejected": 2.202971935272217,
|
1048 |
+
"logps/chosen": -3.6740527153015137,
|
1049 |
+
"logps/rejected": -6.205447196960449,
|
1050 |
+
"loss": 0.3571,
|
1051 |
+
"rewards/accuracies": 0.9125000238418579,
|
1052 |
+
"rewards/chosen": -5.511078834533691,
|
1053 |
+
"rewards/margins": 3.7970924377441406,
|
1054 |
+
"rewards/rejected": -9.308171272277832,
|
1055 |
+
"step": 580
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.6289978678038379,
|
1059 |
+
"grad_norm": 2.427555799484253,
|
1060 |
+
"learning_rate": 3.3221666168464584e-06,
|
1061 |
+
"logits/chosen": 1.6076780557632446,
|
1062 |
+
"logits/rejected": 1.0556285381317139,
|
1063 |
+
"logps/chosen": -3.609313488006592,
|
1064 |
+
"logps/rejected": -5.912892818450928,
|
1065 |
+
"loss": 0.3666,
|
1066 |
+
"rewards/accuracies": 0.875,
|
1067 |
+
"rewards/chosen": -5.413969993591309,
|
1068 |
+
"rewards/margins": 3.455368757247925,
|
1069 |
+
"rewards/rejected": -8.869338989257812,
|
1070 |
+
"step": 590
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.6396588486140725,
|
1074 |
+
"grad_norm": 3.910998821258545,
|
1075 |
+
"learning_rate": 3.272542485937369e-06,
|
1076 |
+
"logits/chosen": 2.5494394302368164,
|
1077 |
+
"logits/rejected": 1.9157211780548096,
|
1078 |
+
"logps/chosen": -4.038924217224121,
|
1079 |
+
"logps/rejected": -6.580315589904785,
|
1080 |
+
"loss": 0.3017,
|
1081 |
+
"rewards/accuracies": 0.862500011920929,
|
1082 |
+
"rewards/chosen": -6.058385372161865,
|
1083 |
+
"rewards/margins": 3.812087297439575,
|
1084 |
+
"rewards/rejected": -9.87047290802002,
|
1085 |
+
"step": 600
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.6396588486140725,
|
1089 |
+
"eval_logits/chosen": 2.179999589920044,
|
1090 |
+
"eval_logits/rejected": 1.918432593345642,
|
1091 |
+
"eval_logps/chosen": -3.3114354610443115,
|
1092 |
+
"eval_logps/rejected": -6.157403469085693,
|
1093 |
+
"eval_loss": 0.3409230411052704,
|
1094 |
+
"eval_rewards/accuracies": 0.9210526347160339,
|
1095 |
+
"eval_rewards/chosen": -4.967153549194336,
|
1096 |
+
"eval_rewards/margins": 4.268952369689941,
|
1097 |
+
"eval_rewards/rejected": -9.236105918884277,
|
1098 |
+
"eval_runtime": 21.4405,
|
1099 |
+
"eval_samples_per_second": 28.311,
|
1100 |
+
"eval_steps_per_second": 3.545,
|
1101 |
+
"step": 600
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.650319829424307,
|
1105 |
+
"grad_norm": 3.6193580627441406,
|
1106 |
+
"learning_rate": 3.222579492361179e-06,
|
1107 |
+
"logits/chosen": 2.680032968521118,
|
1108 |
+
"logits/rejected": 1.9571218490600586,
|
1109 |
+
"logps/chosen": -3.6821212768554688,
|
1110 |
+
"logps/rejected": -6.76863956451416,
|
1111 |
+
"loss": 0.3429,
|
1112 |
+
"rewards/accuracies": 0.9375,
|
1113 |
+
"rewards/chosen": -5.523181915283203,
|
1114 |
+
"rewards/margins": 4.629776954650879,
|
1115 |
+
"rewards/rejected": -10.152959823608398,
|
1116 |
+
"step": 610
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.6609808102345416,
|
1120 |
+
"grad_norm": 4.7948808670043945,
|
1121 |
+
"learning_rate": 3.1722995515381644e-06,
|
1122 |
+
"logits/chosen": 2.570702075958252,
|
1123 |
+
"logits/rejected": 2.2683706283569336,
|
1124 |
+
"logps/chosen": -4.124785423278809,
|
1125 |
+
"logps/rejected": -6.595047950744629,
|
1126 |
+
"loss": 0.3355,
|
1127 |
+
"rewards/accuracies": 0.925000011920929,
|
1128 |
+
"rewards/chosen": -6.187178134918213,
|
1129 |
+
"rewards/margins": 3.7053933143615723,
|
1130 |
+
"rewards/rejected": -9.892572402954102,
|
1131 |
+
"step": 620
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.6716417910447762,
|
1135 |
+
"grad_norm": 2.727231025695801,
|
1136 |
+
"learning_rate": 3.121724717912138e-06,
|
1137 |
+
"logits/chosen": 2.0630054473876953,
|
1138 |
+
"logits/rejected": 1.4909979104995728,
|
1139 |
+
"logps/chosen": -3.6443302631378174,
|
1140 |
+
"logps/rejected": -6.239049911499023,
|
1141 |
+
"loss": 0.3218,
|
1142 |
+
"rewards/accuracies": 0.925000011920929,
|
1143 |
+
"rewards/chosen": -5.466495513916016,
|
1144 |
+
"rewards/margins": 3.8920791149139404,
|
1145 |
+
"rewards/rejected": -9.358574867248535,
|
1146 |
+
"step": 630
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.6823027718550106,
|
1150 |
+
"grad_norm": 4.138846397399902,
|
1151 |
+
"learning_rate": 3.0708771752766397e-06,
|
1152 |
+
"logits/chosen": 1.6833502054214478,
|
1153 |
+
"logits/rejected": 1.2245066165924072,
|
1154 |
+
"logps/chosen": -4.318512916564941,
|
1155 |
+
"logps/rejected": -7.222353935241699,
|
1156 |
+
"loss": 0.2868,
|
1157 |
+
"rewards/accuracies": 0.925000011920929,
|
1158 |
+
"rewards/chosen": -6.477769374847412,
|
1159 |
+
"rewards/margins": 4.35576057434082,
|
1160 |
+
"rewards/rejected": -10.833529472351074,
|
1161 |
+
"step": 640
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.6929637526652452,
|
1165 |
+
"grad_norm": 7.172155380249023,
|
1166 |
+
"learning_rate": 3.019779227044398e-06,
|
1167 |
+
"logits/chosen": 2.5162904262542725,
|
1168 |
+
"logits/rejected": 2.0894787311553955,
|
1169 |
+
"logps/chosen": -4.13573694229126,
|
1170 |
+
"logps/rejected": -7.199030876159668,
|
1171 |
+
"loss": 0.3491,
|
1172 |
+
"rewards/accuracies": 0.9375,
|
1173 |
+
"rewards/chosen": -6.2036051750183105,
|
1174 |
+
"rewards/margins": 4.594940185546875,
|
1175 |
+
"rewards/rejected": -10.798544883728027,
|
1176 |
+
"step": 650
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.6929637526652452,
|
1180 |
+
"eval_logits/chosen": 2.003471612930298,
|
1181 |
+
"eval_logits/rejected": 1.8008451461791992,
|
1182 |
+
"eval_logps/chosen": -3.2873525619506836,
|
1183 |
+
"eval_logps/rejected": -6.338763236999512,
|
1184 |
+
"eval_loss": 0.31618499755859375,
|
1185 |
+
"eval_rewards/accuracies": 0.9342105388641357,
|
1186 |
+
"eval_rewards/chosen": -4.931028842926025,
|
1187 |
+
"eval_rewards/margins": 4.5771164894104,
|
1188 |
+
"eval_rewards/rejected": -9.508145332336426,
|
1189 |
+
"eval_runtime": 21.415,
|
1190 |
+
"eval_samples_per_second": 28.345,
|
1191 |
+
"eval_steps_per_second": 3.549,
|
1192 |
+
"step": 650
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.7036247334754797,
|
1196 |
+
"grad_norm": 3.3068535327911377,
|
1197 |
+
"learning_rate": 2.9684532864643123e-06,
|
1198 |
+
"logits/chosen": 2.852752208709717,
|
1199 |
+
"logits/rejected": 2.3139753341674805,
|
1200 |
+
"logps/chosen": -3.9495348930358887,
|
1201 |
+
"logps/rejected": -6.509753227233887,
|
1202 |
+
"loss": 0.2684,
|
1203 |
+
"rewards/accuracies": 0.9125000238418579,
|
1204 |
+
"rewards/chosen": -5.924302101135254,
|
1205 |
+
"rewards/margins": 3.8403282165527344,
|
1206 |
+
"rewards/rejected": -9.764630317687988,
|
1207 |
+
"step": 660
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.7142857142857143,
|
1211 |
+
"grad_norm": 2.737560987472534,
|
1212 |
+
"learning_rate": 2.9169218667902562e-06,
|
1213 |
+
"logits/chosen": 3.034759998321533,
|
1214 |
+
"logits/rejected": 2.2936713695526123,
|
1215 |
+
"logps/chosen": -3.855508327484131,
|
1216 |
+
"logps/rejected": -6.571882724761963,
|
1217 |
+
"loss": 0.2887,
|
1218 |
+
"rewards/accuracies": 0.9375,
|
1219 |
+
"rewards/chosen": -5.783262252807617,
|
1220 |
+
"rewards/margins": 4.0745625495910645,
|
1221 |
+
"rewards/rejected": -9.857824325561523,
|
1222 |
+
"step": 670
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.7249466950959488,
|
1226 |
+
"grad_norm": 4.387801647186279,
|
1227 |
+
"learning_rate": 2.8652075714060296e-06,
|
1228 |
+
"logits/chosen": 1.5638288259506226,
|
1229 |
+
"logits/rejected": 1.1110167503356934,
|
1230 |
+
"logps/chosen": -3.7569847106933594,
|
1231 |
+
"logps/rejected": -6.927552223205566,
|
1232 |
+
"loss": 0.3319,
|
1233 |
+
"rewards/accuracies": 0.9624999761581421,
|
1234 |
+
"rewards/chosen": -5.635476589202881,
|
1235 |
+
"rewards/margins": 4.755851745605469,
|
1236 |
+
"rewards/rejected": -10.391328811645508,
|
1237 |
+
"step": 680
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.7356076759061834,
|
1241 |
+
"grad_norm": 2.357923746109009,
|
1242 |
+
"learning_rate": 2.813333083910761e-06,
|
1243 |
+
"logits/chosen": 2.058987855911255,
|
1244 |
+
"logits/rejected": 1.6591012477874756,
|
1245 |
+
"logps/chosen": -4.124215126037598,
|
1246 |
+
"logps/rejected": -7.349566459655762,
|
1247 |
+
"loss": 0.2362,
|
1248 |
+
"rewards/accuracies": 0.925000011920929,
|
1249 |
+
"rewards/chosen": -6.186322212219238,
|
1250 |
+
"rewards/margins": 4.838027000427246,
|
1251 |
+
"rewards/rejected": -11.024351119995117,
|
1252 |
+
"step": 690
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 0.746268656716418,
|
1256 |
+
"grad_norm": 4.507752895355225,
|
1257 |
+
"learning_rate": 2.761321158169134e-06,
|
1258 |
+
"logits/chosen": 2.295815944671631,
|
1259 |
+
"logits/rejected": 1.4525251388549805,
|
1260 |
+
"logps/chosen": -3.4264607429504395,
|
1261 |
+
"logps/rejected": -6.397761344909668,
|
1262 |
+
"loss": 0.3257,
|
1263 |
+
"rewards/accuracies": 0.925000011920929,
|
1264 |
+
"rewards/chosen": -5.139691352844238,
|
1265 |
+
"rewards/margins": 4.45695161819458,
|
1266 |
+
"rewards/rejected": -9.596643447875977,
|
1267 |
+
"step": 700
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 0.746268656716418,
|
1271 |
+
"eval_logits/chosen": 1.9169458150863647,
|
1272 |
+
"eval_logits/rejected": 1.761539101600647,
|
1273 |
+
"eval_logps/chosen": -3.324993848800659,
|
1274 |
+
"eval_logps/rejected": -6.471699237823486,
|
1275 |
+
"eval_loss": 0.3062504529953003,
|
1276 |
+
"eval_rewards/accuracies": 0.9473684430122375,
|
1277 |
+
"eval_rewards/chosen": -4.987491607666016,
|
1278 |
+
"eval_rewards/margins": 4.720058441162109,
|
1279 |
+
"eval_rewards/rejected": -9.707548141479492,
|
1280 |
+
"eval_runtime": 21.4456,
|
1281 |
+
"eval_samples_per_second": 28.304,
|
1282 |
+
"eval_steps_per_second": 3.544,
|
1283 |
+
"step": 700
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.7569296375266524,
|
1287 |
+
"grad_norm": 6.864930629730225,
|
1288 |
+
"learning_rate": 2.70919460833079e-06,
|
1289 |
+
"logits/chosen": 1.8696104288101196,
|
1290 |
+
"logits/rejected": 1.4743572473526,
|
1291 |
+
"logps/chosen": -3.4536032676696777,
|
1292 |
+
"logps/rejected": -6.400083065032959,
|
1293 |
+
"loss": 0.3255,
|
1294 |
+
"rewards/accuracies": 0.8999999761581421,
|
1295 |
+
"rewards/chosen": -5.180405616760254,
|
1296 |
+
"rewards/margins": 4.4197187423706055,
|
1297 |
+
"rewards/rejected": -9.60012435913086,
|
1298 |
+
"step": 710
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.767590618336887,
|
1302 |
+
"grad_norm": 5.012319087982178,
|
1303 |
+
"learning_rate": 2.6569762988232838e-06,
|
1304 |
+
"logits/chosen": 2.861811399459839,
|
1305 |
+
"logits/rejected": 2.266331911087036,
|
1306 |
+
"logps/chosen": -4.254661560058594,
|
1307 |
+
"logps/rejected": -6.501154899597168,
|
1308 |
+
"loss": 0.2845,
|
1309 |
+
"rewards/accuracies": 0.8999999761581421,
|
1310 |
+
"rewards/chosen": -6.381992816925049,
|
1311 |
+
"rewards/margins": 3.3697407245635986,
|
1312 |
+
"rewards/rejected": -9.751731872558594,
|
1313 |
+
"step": 720
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.7782515991471215,
|
1317 |
+
"grad_norm": 1.460620403289795,
|
1318 |
+
"learning_rate": 2.604689134322999e-06,
|
1319 |
+
"logits/chosen": 2.917189836502075,
|
1320 |
+
"logits/rejected": 2.3850274085998535,
|
1321 |
+
"logps/chosen": -3.6072356700897217,
|
1322 |
+
"logps/rejected": -6.3972039222717285,
|
1323 |
+
"loss": 0.2696,
|
1324 |
+
"rewards/accuracies": 0.925000011920929,
|
1325 |
+
"rewards/chosen": -5.410854339599609,
|
1326 |
+
"rewards/margins": 4.184950828552246,
|
1327 |
+
"rewards/rejected": -9.595805168151855,
|
1328 |
+
"step": 730
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.7889125799573561,
|
1332 |
+
"grad_norm": 5.478528022766113,
|
1333 |
+
"learning_rate": 2.5523560497083927e-06,
|
1334 |
+
"logits/chosen": 2.2212367057800293,
|
1335 |
+
"logits/rejected": 1.6661183834075928,
|
1336 |
+
"logps/chosen": -3.353309154510498,
|
1337 |
+
"logps/rejected": -6.527769565582275,
|
1338 |
+
"loss": 0.2622,
|
1339 |
+
"rewards/accuracies": 0.949999988079071,
|
1340 |
+
"rewards/chosen": -5.029964447021484,
|
1341 |
+
"rewards/margins": 4.761690616607666,
|
1342 |
+
"rewards/rejected": -9.791654586791992,
|
1343 |
+
"step": 740
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.7995735607675906,
|
1347 |
+
"grad_norm": 2.7094156742095947,
|
1348 |
+
"learning_rate": 2.5e-06,
|
1349 |
+
"logits/chosen": 2.9158451557159424,
|
1350 |
+
"logits/rejected": 2.286925792694092,
|
1351 |
+
"logps/chosen": -4.0971856117248535,
|
1352 |
+
"logps/rejected": -6.912562370300293,
|
1353 |
+
"loss": 0.3243,
|
1354 |
+
"rewards/accuracies": 0.887499988079071,
|
1355 |
+
"rewards/chosen": -6.145778179168701,
|
1356 |
+
"rewards/margins": 4.2230658531188965,
|
1357 |
+
"rewards/rejected": -10.368844985961914,
|
1358 |
+
"step": 750
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.7995735607675906,
|
1362 |
+
"eval_logits/chosen": 2.0261385440826416,
|
1363 |
+
"eval_logits/rejected": 1.8928862810134888,
|
1364 |
+
"eval_logps/chosen": -3.538414478302002,
|
1365 |
+
"eval_logps/rejected": -6.846959114074707,
|
1366 |
+
"eval_loss": 0.2867603600025177,
|
1367 |
+
"eval_rewards/accuracies": 0.9342105388641357,
|
1368 |
+
"eval_rewards/chosen": -5.307621479034424,
|
1369 |
+
"eval_rewards/margins": 4.962815761566162,
|
1370 |
+
"eval_rewards/rejected": -10.270438194274902,
|
1371 |
+
"eval_runtime": 21.4446,
|
1372 |
+
"eval_samples_per_second": 28.305,
|
1373 |
+
"eval_steps_per_second": 3.544,
|
1374 |
+
"step": 750
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.8102345415778252,
|
1378 |
+
"grad_norm": 2.477257490158081,
|
1379 |
+
"learning_rate": 2.447643950291608e-06,
|
1380 |
+
"logits/chosen": 1.8020350933074951,
|
1381 |
+
"logits/rejected": 1.3997737169265747,
|
1382 |
+
"logps/chosen": -3.34975004196167,
|
1383 |
+
"logps/rejected": -6.07710075378418,
|
1384 |
+
"loss": 0.2394,
|
1385 |
+
"rewards/accuracies": 0.9125000238418579,
|
1386 |
+
"rewards/chosen": -5.024625301361084,
|
1387 |
+
"rewards/margins": 4.091025352478027,
|
1388 |
+
"rewards/rejected": -9.11565113067627,
|
1389 |
+
"step": 760
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.8208955223880597,
|
1393 |
+
"grad_norm": 4.726482391357422,
|
1394 |
+
"learning_rate": 2.3953108656770018e-06,
|
1395 |
+
"logits/chosen": 2.757497787475586,
|
1396 |
+
"logits/rejected": 2.435739517211914,
|
1397 |
+
"logps/chosen": -4.294445991516113,
|
1398 |
+
"logps/rejected": -7.038791656494141,
|
1399 |
+
"loss": 0.3113,
|
1400 |
+
"rewards/accuracies": 0.925000011920929,
|
1401 |
+
"rewards/chosen": -6.441669464111328,
|
1402 |
+
"rewards/margins": 4.116518497467041,
|
1403 |
+
"rewards/rejected": -10.558187484741211,
|
1404 |
+
"step": 770
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.8315565031982942,
|
1408 |
+
"grad_norm": 2.759181022644043,
|
1409 |
+
"learning_rate": 2.3430237011767166e-06,
|
1410 |
+
"logits/chosen": 2.788053274154663,
|
1411 |
+
"logits/rejected": 2.1961398124694824,
|
1412 |
+
"logps/chosen": -3.792672634124756,
|
1413 |
+
"logps/rejected": -7.1101579666137695,
|
1414 |
+
"loss": 0.3043,
|
1415 |
+
"rewards/accuracies": 0.9125000238418579,
|
1416 |
+
"rewards/chosen": -5.689009666442871,
|
1417 |
+
"rewards/margins": 4.976227760314941,
|
1418 |
+
"rewards/rejected": -10.665237426757812,
|
1419 |
+
"step": 780
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.8422174840085288,
|
1423 |
+
"grad_norm": 3.382880687713623,
|
1424 |
+
"learning_rate": 2.290805391669212e-06,
|
1425 |
+
"logits/chosen": 2.3644931316375732,
|
1426 |
+
"logits/rejected": 1.838971495628357,
|
1427 |
+
"logps/chosen": -3.919532060623169,
|
1428 |
+
"logps/rejected": -7.125067710876465,
|
1429 |
+
"loss": 0.2825,
|
1430 |
+
"rewards/accuracies": 0.9375,
|
1431 |
+
"rewards/chosen": -5.879298210144043,
|
1432 |
+
"rewards/margins": 4.8083038330078125,
|
1433 |
+
"rewards/rejected": -10.687601089477539,
|
1434 |
+
"step": 790
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.8528784648187633,
|
1438 |
+
"grad_norm": 3.331052541732788,
|
1439 |
+
"learning_rate": 2.238678841830867e-06,
|
1440 |
+
"logits/chosen": 2.3921093940734863,
|
1441 |
+
"logits/rejected": 1.9997615814208984,
|
1442 |
+
"logps/chosen": -3.46040678024292,
|
1443 |
+
"logps/rejected": -6.8662567138671875,
|
1444 |
+
"loss": 0.3094,
|
1445 |
+
"rewards/accuracies": 0.949999988079071,
|
1446 |
+
"rewards/chosen": -5.190610885620117,
|
1447 |
+
"rewards/margins": 5.108774662017822,
|
1448 |
+
"rewards/rejected": -10.299385070800781,
|
1449 |
+
"step": 800
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.8528784648187633,
|
1453 |
+
"eval_logits/chosen": 2.198673963546753,
|
1454 |
+
"eval_logits/rejected": 2.091115713119507,
|
1455 |
+
"eval_logps/chosen": -3.606259346008301,
|
1456 |
+
"eval_logps/rejected": -7.107792854309082,
|
1457 |
+
"eval_loss": 0.27349653840065,
|
1458 |
+
"eval_rewards/accuracies": 0.9473684430122375,
|
1459 |
+
"eval_rewards/chosen": -5.409388542175293,
|
1460 |
+
"eval_rewards/margins": 5.25230073928833,
|
1461 |
+
"eval_rewards/rejected": -10.661689758300781,
|
1462 |
+
"eval_runtime": 21.4427,
|
1463 |
+
"eval_samples_per_second": 28.308,
|
1464 |
+
"eval_steps_per_second": 3.544,
|
1465 |
+
"step": 800
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.8635394456289979,
|
1469 |
+
"grad_norm": 1.6861388683319092,
|
1470 |
+
"learning_rate": 2.186666916089239e-06,
|
1471 |
+
"logits/chosen": 3.2604496479034424,
|
1472 |
+
"logits/rejected": 2.558086395263672,
|
1473 |
+
"logps/chosen": -3.778765916824341,
|
1474 |
+
"logps/rejected": -6.954268455505371,
|
1475 |
+
"loss": 0.2923,
|
1476 |
+
"rewards/accuracies": 0.925000011920929,
|
1477 |
+
"rewards/chosen": -5.668148994445801,
|
1478 |
+
"rewards/margins": 4.763254165649414,
|
1479 |
+
"rewards/rejected": -10.431403160095215,
|
1480 |
+
"step": 810
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.8742004264392325,
|
1484 |
+
"grad_norm": 3.100459575653076,
|
1485 |
+
"learning_rate": 2.134792428593971e-06,
|
1486 |
+
"logits/chosen": 2.6463425159454346,
|
1487 |
+
"logits/rejected": 2.2412638664245605,
|
1488 |
+
"logps/chosen": -4.3968634605407715,
|
1489 |
+
"logps/rejected": -7.397219181060791,
|
1490 |
+
"loss": 0.2767,
|
1491 |
+
"rewards/accuracies": 0.862500011920929,
|
1492 |
+
"rewards/chosen": -6.595294952392578,
|
1493 |
+
"rewards/margins": 4.500533103942871,
|
1494 |
+
"rewards/rejected": -11.09582805633545,
|
1495 |
+
"step": 820
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 0.8848614072494669,
|
1499 |
+
"grad_norm": 2.7398672103881836,
|
1500 |
+
"learning_rate": 2.0830781332097446e-06,
|
1501 |
+
"logits/chosen": 2.8484559059143066,
|
1502 |
+
"logits/rejected": 2.408825635910034,
|
1503 |
+
"logps/chosen": -3.5274035930633545,
|
1504 |
+
"logps/rejected": -6.786914825439453,
|
1505 |
+
"loss": 0.2587,
|
1506 |
+
"rewards/accuracies": 0.8999999761581421,
|
1507 |
+
"rewards/chosen": -5.291105270385742,
|
1508 |
+
"rewards/margins": 4.889266014099121,
|
1509 |
+
"rewards/rejected": -10.180373191833496,
|
1510 |
+
"step": 830
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.8955223880597015,
|
1514 |
+
"grad_norm": 4.221662521362305,
|
1515 |
+
"learning_rate": 2.031546713535688e-06,
|
1516 |
+
"logits/chosen": 2.5181362628936768,
|
1517 |
+
"logits/rejected": 2.1050801277160645,
|
1518 |
+
"logps/chosen": -3.7997944355010986,
|
1519 |
+
"logps/rejected": -7.4044928550720215,
|
1520 |
+
"loss": 0.2985,
|
1521 |
+
"rewards/accuracies": 0.9750000238418579,
|
1522 |
+
"rewards/chosen": -5.6996917724609375,
|
1523 |
+
"rewards/margins": 5.407048225402832,
|
1524 |
+
"rewards/rejected": -11.10673999786377,
|
1525 |
+
"step": 840
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 0.906183368869936,
|
1529 |
+
"grad_norm": 4.389741897583008,
|
1530 |
+
"learning_rate": 1.9802207729556023e-06,
|
1531 |
+
"logits/chosen": 1.7594547271728516,
|
1532 |
+
"logits/rejected": 1.5125747919082642,
|
1533 |
+
"logps/chosen": -3.7186477184295654,
|
1534 |
+
"logps/rejected": -7.241146087646484,
|
1535 |
+
"loss": 0.278,
|
1536 |
+
"rewards/accuracies": 0.949999988079071,
|
1537 |
+
"rewards/chosen": -5.577971935272217,
|
1538 |
+
"rewards/margins": 5.28374719619751,
|
1539 |
+
"rewards/rejected": -10.861719131469727,
|
1540 |
+
"step": 850
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 0.906183368869936,
|
1544 |
+
"eval_logits/chosen": 2.196138381958008,
|
1545 |
+
"eval_logits/rejected": 2.091784715652466,
|
1546 |
+
"eval_logps/chosen": -3.610405683517456,
|
1547 |
+
"eval_logps/rejected": -7.241917610168457,
|
1548 |
+
"eval_loss": 0.2656216025352478,
|
1549 |
+
"eval_rewards/accuracies": 0.9473684430122375,
|
1550 |
+
"eval_rewards/chosen": -5.415609359741211,
|
1551 |
+
"eval_rewards/margins": 5.447267532348633,
|
1552 |
+
"eval_rewards/rejected": -10.862876892089844,
|
1553 |
+
"eval_runtime": 21.4468,
|
1554 |
+
"eval_samples_per_second": 28.303,
|
1555 |
+
"eval_steps_per_second": 3.544,
|
1556 |
+
"step": 850
|
1557 |
+
}
|
1558 |
+
],
|
1559 |
+
"logging_steps": 10,
|
1560 |
+
"max_steps": 1500,
|
1561 |
+
"num_input_tokens_seen": 0,
|
1562 |
+
"num_train_epochs": 2,
|
1563 |
+
"save_steps": 50,
|
1564 |
+
"stateful_callbacks": {
|
1565 |
+
"TrainerControl": {
|
1566 |
+
"args": {
|
1567 |
+
"should_epoch_stop": false,
|
1568 |
+
"should_evaluate": false,
|
1569 |
+
"should_log": false,
|
1570 |
+
"should_save": true,
|
1571 |
+
"should_training_stop": false
|
1572 |
+
},
|
1573 |
+
"attributes": {}
|
1574 |
+
}
|
1575 |
+
},
|
1576 |
+
"total_flos": 2.0364770657288847e+18,
|
1577 |
+
"train_batch_size": 1,
|
1578 |
+
"trial_name": null,
|
1579 |
+
"trial_params": null
|
1580 |
+
}
|
checkpoint-850/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29030fd2c9579a53d4cbb5166f67721176cc7b02c89ae9a2d5722caa76c57c96
|
3 |
+
size 7224
|
checkpoint-850/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|