ziansu commited on
Commit
dc95f53
·
verified ·
1 Parent(s): 2e9ff18

Training in progress, step 700, checkpoint

Browse files
checkpoint-700/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-700/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "o_proj",
27
+ "qkv_proj",
28
+ "gate_up_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-700/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e5befebf1017039d1a13a3c3c99e065d865220f99076a124e5bb5e00ad0954c
3
+ size 25200088
checkpoint-700/global_step700/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe25ca0f085369da201665a39f5fe2908d12210343ebb100b01c420432ae1062
3
+ size 18881328
checkpoint-700/global_step700/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80b1a7fbc7106d1380b3b997ab24a560d9439c581ef06bf63b0cb166fe1c9a4e
3
+ size 18881328
checkpoint-700/global_step700/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1b9ac3c76a7020e7a886be37641d5625f94430df0117e41c475b2f252686fae
3
+ size 18881328
checkpoint-700/global_step700/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297dc49f667b72b4867bfc58bacaa1b059a3a7eff8d860563f14d114155bcda8
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4acbdccfcf7e6582aa021d530f216dfd52863c6a800a69f97824d562372445d1
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8acde90012513a609ca1a6be91998041cec6762bfe4f70b31bc7eeeadff17c3d
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90ba35e8520ab10c4dcfaafb6772f7861b172f9cad345b983ce59318cdc969c
3
+ size 18881392
checkpoint-700/global_step700/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2135e09ba12f843660cab57322f0cb0f11a36eadc800f10fe17dbb688fc4837b
3
+ size 18881392
checkpoint-700/global_step700/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b206c519bc5d7f87c09bf2f645edb59ca80d56c932c9911017d5545d17b1a98c
3
+ size 25379244
checkpoint-700/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step700
checkpoint-700/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d1be83d8248a4d086961979df8c8adf273c0891e791d7b637d9e752cbaf971
3
+ size 15984
checkpoint-700/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df16bc8587b83b59d73ffcb4774bab640ed2bbf6249aba7b7112751df7280b58
3
+ size 15984
checkpoint-700/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8ebd66766c47747d9d34f4ee4e6f1e09fb1843f9769ec17242277c256d80133
3
+ size 15984
checkpoint-700/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44591b56351d86ebac6b6310a6b9a58bf9ebd5af691efd9614e457180a22080
3
+ size 15984
checkpoint-700/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2488c2baf1f7983e7e82c869c2ff023bdc7796ba97390c46686a4df8544a046
3
+ size 15984
checkpoint-700/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a864d68e543f00211ae2c48a5b9f47a92cf862dc03f0cda64f0647177108efe6
3
+ size 15984
checkpoint-700/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4ab980d3568f3d6a91c3cc4b09b1c84c8bbbd77347d21d918824619ddb9bc7f
3
+ size 15984
checkpoint-700/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a7008a4087300200a04419d46f39b98daf870297f179e965bf970ef908f90f3
3
+ size 15984
checkpoint-700/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:178a633ca77249e494a838a84b1947b0f7d11ddc3db2f6e8c894966583a0a8c6
3
+ size 1064
checkpoint-700/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-700/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-700/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-700/trainer_state.json ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8888888888888888,
5
+ "eval_steps": 50,
6
+ "global_step": 700,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012698412698412698,
13
+ "grad_norm": 0.04658036306500435,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 15.106437683105469,
16
+ "logits/rejected": 15.158523559570312,
17
+ "logps/chosen": -0.30069679021835327,
18
+ "logps/rejected": -0.30243945121765137,
19
+ "loss": 0.9981,
20
+ "rewards/accuracies": 0.3499999940395355,
21
+ "rewards/chosen": -0.45104512572288513,
22
+ "rewards/margins": 0.002613987773656845,
23
+ "rewards/rejected": -0.45365914702415466,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.025396825396825397,
28
+ "grad_norm": 0.05173320695757866,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 14.680102348327637,
31
+ "logits/rejected": 14.592491149902344,
32
+ "logps/chosen": -0.3225177228450775,
33
+ "logps/rejected": -0.27230435609817505,
34
+ "loss": 0.9967,
35
+ "rewards/accuracies": 0.26249998807907104,
36
+ "rewards/chosen": -0.4837765693664551,
37
+ "rewards/margins": -0.07532001286745071,
38
+ "rewards/rejected": -0.40845656394958496,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.0380952380952381,
43
+ "grad_norm": 0.04962443560361862,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 15.399703979492188,
46
+ "logits/rejected": 15.089459419250488,
47
+ "logps/chosen": -0.2997470498085022,
48
+ "logps/rejected": -0.28447264432907104,
49
+ "loss": 0.9988,
50
+ "rewards/accuracies": 0.3125,
51
+ "rewards/chosen": -0.4496205747127533,
52
+ "rewards/margins": -0.022911589592695236,
53
+ "rewards/rejected": -0.42670899629592896,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.050793650793650794,
58
+ "grad_norm": 0.05171326920390129,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 15.099847793579102,
61
+ "logits/rejected": 15.159170150756836,
62
+ "logps/chosen": -0.29869550466537476,
63
+ "logps/rejected": -0.2806033790111542,
64
+ "loss": 0.9841,
65
+ "rewards/accuracies": 0.375,
66
+ "rewards/chosen": -0.44804325699806213,
67
+ "rewards/margins": -0.02713816799223423,
68
+ "rewards/rejected": -0.42090511322021484,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.06349206349206349,
73
+ "grad_norm": 0.048664532601833344,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 15.207334518432617,
76
+ "logits/rejected": 15.135488510131836,
77
+ "logps/chosen": -0.3121686577796936,
78
+ "logps/rejected": -0.3194735050201416,
79
+ "loss": 0.9953,
80
+ "rewards/accuracies": 0.3499999940395355,
81
+ "rewards/chosen": -0.468252956867218,
82
+ "rewards/margins": 0.010957291349768639,
83
+ "rewards/rejected": -0.47921022772789,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.06349206349206349,
88
+ "eval_logits/chosen": 15.441752433776855,
89
+ "eval_logits/rejected": 15.288756370544434,
90
+ "eval_logps/chosen": -0.33557233214378357,
91
+ "eval_logps/rejected": -0.31198158860206604,
92
+ "eval_loss": 0.9914231300354004,
93
+ "eval_rewards/accuracies": 0.3125,
94
+ "eval_rewards/chosen": -0.5033585429191589,
95
+ "eval_rewards/margins": -0.03538615256547928,
96
+ "eval_rewards/rejected": -0.46797239780426025,
97
+ "eval_runtime": 19.0844,
98
+ "eval_samples_per_second": 26.723,
99
+ "eval_steps_per_second": 3.354,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.0761904761904762,
104
+ "grad_norm": 0.0722479596734047,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 15.281786918640137,
107
+ "logits/rejected": 15.110156059265137,
108
+ "logps/chosen": -0.30892473459243774,
109
+ "logps/rejected": -0.26251715421676636,
110
+ "loss": 1.0022,
111
+ "rewards/accuracies": 0.25,
112
+ "rewards/chosen": -0.4633871018886566,
113
+ "rewards/margins": -0.0696113258600235,
114
+ "rewards/rejected": -0.3937757611274719,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.08888888888888889,
119
+ "grad_norm": 0.07008200883865356,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 14.836176872253418,
122
+ "logits/rejected": 14.98499584197998,
123
+ "logps/chosen": -0.29483428597450256,
124
+ "logps/rejected": -0.29870957136154175,
125
+ "loss": 0.9849,
126
+ "rewards/accuracies": 0.4000000059604645,
127
+ "rewards/chosen": -0.44225144386291504,
128
+ "rewards/margins": 0.0058129094541072845,
129
+ "rewards/rejected": -0.44806432723999023,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.10158730158730159,
134
+ "grad_norm": 0.06503555178642273,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 15.508198738098145,
137
+ "logits/rejected": 15.592549324035645,
138
+ "logps/chosen": -0.3066270351409912,
139
+ "logps/rejected": -0.2757572531700134,
140
+ "loss": 0.9886,
141
+ "rewards/accuracies": 0.3125,
142
+ "rewards/chosen": -0.45994052290916443,
143
+ "rewards/margins": -0.046304650604724884,
144
+ "rewards/rejected": -0.41363590955734253,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.11428571428571428,
149
+ "grad_norm": 0.10515156388282776,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 15.301602363586426,
152
+ "logits/rejected": 15.421157836914062,
153
+ "logps/chosen": -0.31223705410957336,
154
+ "logps/rejected": -0.29449179768562317,
155
+ "loss": 0.981,
156
+ "rewards/accuracies": 0.2750000059604645,
157
+ "rewards/chosen": -0.46835556626319885,
158
+ "rewards/margins": -0.02661792002618313,
159
+ "rewards/rejected": -0.44173765182495117,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.12698412698412698,
164
+ "grad_norm": 0.05785346403717995,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 16.00307846069336,
167
+ "logits/rejected": 15.64977741241455,
168
+ "logps/chosen": -0.32283931970596313,
169
+ "logps/rejected": -0.28576889634132385,
170
+ "loss": 0.9883,
171
+ "rewards/accuracies": 0.2750000059604645,
172
+ "rewards/chosen": -0.4842589795589447,
173
+ "rewards/margins": -0.055605631321668625,
174
+ "rewards/rejected": -0.42865338921546936,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.12698412698412698,
179
+ "eval_logits/chosen": 15.624425888061523,
180
+ "eval_logits/rejected": 15.548928260803223,
181
+ "eval_logps/chosen": -0.33450835943222046,
182
+ "eval_logps/rejected": -0.31935107707977295,
183
+ "eval_loss": 0.9836427569389343,
184
+ "eval_rewards/accuracies": 0.359375,
185
+ "eval_rewards/chosen": -0.5017625689506531,
186
+ "eval_rewards/margins": -0.022735953330993652,
187
+ "eval_rewards/rejected": -0.4790266156196594,
188
+ "eval_runtime": 18.6768,
189
+ "eval_samples_per_second": 27.307,
190
+ "eval_steps_per_second": 3.427,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.13968253968253969,
195
+ "grad_norm": 0.08603859692811966,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 15.40850830078125,
198
+ "logits/rejected": 15.258935928344727,
199
+ "logps/chosen": -0.3209790587425232,
200
+ "logps/rejected": -0.29926618933677673,
201
+ "loss": 0.9852,
202
+ "rewards/accuracies": 0.4124999940395355,
203
+ "rewards/chosen": -0.4814685881137848,
204
+ "rewards/margins": -0.03256931155920029,
205
+ "rewards/rejected": -0.4488992691040039,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.1523809523809524,
210
+ "grad_norm": 0.13407552242279053,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 15.610095024108887,
213
+ "logits/rejected": 15.964601516723633,
214
+ "logps/chosen": -0.2977743446826935,
215
+ "logps/rejected": -0.3102283179759979,
216
+ "loss": 0.9839,
217
+ "rewards/accuracies": 0.38749998807907104,
218
+ "rewards/chosen": -0.4466615617275238,
219
+ "rewards/margins": 0.018680967390537262,
220
+ "rewards/rejected": -0.4653424620628357,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.16507936507936508,
225
+ "grad_norm": 0.1397980898618698,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 15.487627983093262,
228
+ "logits/rejected": 15.767982482910156,
229
+ "logps/chosen": -0.2769243121147156,
230
+ "logps/rejected": -0.3168947100639343,
231
+ "loss": 0.9737,
232
+ "rewards/accuracies": 0.4749999940395355,
233
+ "rewards/chosen": -0.415386438369751,
234
+ "rewards/margins": 0.05995568633079529,
235
+ "rewards/rejected": -0.47534212470054626,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.17777777777777778,
240
+ "grad_norm": 0.09849797189235687,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 15.779914855957031,
243
+ "logits/rejected": 15.66816234588623,
244
+ "logps/chosen": -0.2959491014480591,
245
+ "logps/rejected": -0.3029848635196686,
246
+ "loss": 0.9804,
247
+ "rewards/accuracies": 0.375,
248
+ "rewards/chosen": -0.4439236521720886,
249
+ "rewards/margins": 0.010553586296737194,
250
+ "rewards/rejected": -0.4544772207736969,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.19047619047619047,
255
+ "grad_norm": 0.08089074492454529,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 15.029818534851074,
258
+ "logits/rejected": 15.431653022766113,
259
+ "logps/chosen": -0.2956623435020447,
260
+ "logps/rejected": -0.3162347376346588,
261
+ "loss": 0.9728,
262
+ "rewards/accuracies": 0.4749999940395355,
263
+ "rewards/chosen": -0.443493515253067,
264
+ "rewards/margins": 0.030858617275953293,
265
+ "rewards/rejected": -0.4743521809577942,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.19047619047619047,
270
+ "eval_logits/chosen": 15.575506210327148,
271
+ "eval_logits/rejected": 15.54050064086914,
272
+ "eval_logps/chosen": -0.3363308906555176,
273
+ "eval_logps/rejected": -0.3436908721923828,
274
+ "eval_loss": 0.9609583616256714,
275
+ "eval_rewards/accuracies": 0.4375,
276
+ "eval_rewards/chosen": -0.5044962763786316,
277
+ "eval_rewards/margins": 0.01103996392339468,
278
+ "eval_rewards/rejected": -0.5155363082885742,
279
+ "eval_runtime": 18.6082,
280
+ "eval_samples_per_second": 27.407,
281
+ "eval_steps_per_second": 3.439,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.20317460317460317,
286
+ "grad_norm": 0.12168499082326889,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 15.47050952911377,
289
+ "logits/rejected": 15.637664794921875,
290
+ "logps/chosen": -0.32601848244667053,
291
+ "logps/rejected": -0.35739919543266296,
292
+ "loss": 0.9531,
293
+ "rewards/accuracies": 0.5249999761581421,
294
+ "rewards/chosen": -0.489027738571167,
295
+ "rewards/margins": 0.04707105830311775,
296
+ "rewards/rejected": -0.5360987782478333,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.21587301587301588,
301
+ "grad_norm": 0.12861700356006622,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 15.594339370727539,
304
+ "logits/rejected": 15.680140495300293,
305
+ "logps/chosen": -0.29271024465560913,
306
+ "logps/rejected": -0.3383347690105438,
307
+ "loss": 0.9386,
308
+ "rewards/accuracies": 0.5,
309
+ "rewards/chosen": -0.4390653669834137,
310
+ "rewards/margins": 0.06843684613704681,
311
+ "rewards/rejected": -0.5075021982192993,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.22857142857142856,
316
+ "grad_norm": 0.10320646315813065,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 15.644658088684082,
319
+ "logits/rejected": 15.526695251464844,
320
+ "logps/chosen": -0.30950039625167847,
321
+ "logps/rejected": -0.33660295605659485,
322
+ "loss": 0.9313,
323
+ "rewards/accuracies": 0.4124999940395355,
324
+ "rewards/chosen": -0.46425050497055054,
325
+ "rewards/margins": 0.04065385088324547,
326
+ "rewards/rejected": -0.5049043893814087,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.24126984126984127,
331
+ "grad_norm": 0.29178574681282043,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 15.795066833496094,
334
+ "logits/rejected": 15.640788078308105,
335
+ "logps/chosen": -0.34224197268486023,
336
+ "logps/rejected": -0.34523850679397583,
337
+ "loss": 0.9406,
338
+ "rewards/accuracies": 0.375,
339
+ "rewards/chosen": -0.5133630037307739,
340
+ "rewards/margins": 0.0044947536662220955,
341
+ "rewards/rejected": -0.5178577303886414,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.25396825396825395,
346
+ "grad_norm": 0.15747429430484772,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 15.24070930480957,
349
+ "logits/rejected": 15.132087707519531,
350
+ "logps/chosen": -0.3026728630065918,
351
+ "logps/rejected": -0.3765440583229065,
352
+ "loss": 0.9031,
353
+ "rewards/accuracies": 0.4749999940395355,
354
+ "rewards/chosen": -0.4540092945098877,
355
+ "rewards/margins": 0.11080671846866608,
356
+ "rewards/rejected": -0.5648160576820374,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.25396825396825395,
361
+ "eval_logits/chosen": 15.073077201843262,
362
+ "eval_logits/rejected": 15.098322868347168,
363
+ "eval_logps/chosen": -0.3540771007537842,
364
+ "eval_logps/rejected": -0.41381165385246277,
365
+ "eval_loss": 0.9153187274932861,
366
+ "eval_rewards/accuracies": 0.5,
367
+ "eval_rewards/chosen": -0.5311156511306763,
368
+ "eval_rewards/margins": 0.08960187435150146,
369
+ "eval_rewards/rejected": -0.6207175254821777,
370
+ "eval_runtime": 18.5936,
371
+ "eval_samples_per_second": 27.429,
372
+ "eval_steps_per_second": 3.442,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.26666666666666666,
377
+ "grad_norm": 0.9226244688034058,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 15.300783157348633,
380
+ "logits/rejected": 15.6528902053833,
381
+ "logps/chosen": -0.3110392093658447,
382
+ "logps/rejected": -0.4790540635585785,
383
+ "loss": 0.8977,
384
+ "rewards/accuracies": 0.625,
385
+ "rewards/chosen": -0.4665588438510895,
386
+ "rewards/margins": 0.25202232599258423,
387
+ "rewards/rejected": -0.7185810804367065,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.27936507936507937,
392
+ "grad_norm": 0.187363401055336,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 15.123028755187988,
395
+ "logits/rejected": 14.940861701965332,
396
+ "logps/chosen": -0.33024150133132935,
397
+ "logps/rejected": -0.35755541920661926,
398
+ "loss": 0.9074,
399
+ "rewards/accuracies": 0.42500001192092896,
400
+ "rewards/chosen": -0.49536222219467163,
401
+ "rewards/margins": 0.04097090661525726,
402
+ "rewards/rejected": -0.5363331437110901,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.2920634920634921,
407
+ "grad_norm": 0.27345994114875793,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 14.54762077331543,
410
+ "logits/rejected": 14.207303047180176,
411
+ "logps/chosen": -0.2951691150665283,
412
+ "logps/rejected": -0.41360992193222046,
413
+ "loss": 0.896,
414
+ "rewards/accuracies": 0.512499988079071,
415
+ "rewards/chosen": -0.4427536427974701,
416
+ "rewards/margins": 0.1776612401008606,
417
+ "rewards/rejected": -0.6204149723052979,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.3047619047619048,
422
+ "grad_norm": 0.20160575211048126,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 14.768750190734863,
425
+ "logits/rejected": 14.940885543823242,
426
+ "logps/chosen": -0.3044833838939667,
427
+ "logps/rejected": -0.4275297224521637,
428
+ "loss": 0.891,
429
+ "rewards/accuracies": 0.512499988079071,
430
+ "rewards/chosen": -0.4567251205444336,
431
+ "rewards/margins": 0.18456946313381195,
432
+ "rewards/rejected": -0.6412945985794067,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.31746031746031744,
437
+ "grad_norm": 0.9059060215950012,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 14.839933395385742,
440
+ "logits/rejected": 14.69981861114502,
441
+ "logps/chosen": -0.3137063980102539,
442
+ "logps/rejected": -0.49661844968795776,
443
+ "loss": 0.8621,
444
+ "rewards/accuracies": 0.5,
445
+ "rewards/chosen": -0.47055959701538086,
446
+ "rewards/margins": 0.2743679881095886,
447
+ "rewards/rejected": -0.7449275851249695,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.31746031746031744,
452
+ "eval_logits/chosen": 14.19374942779541,
453
+ "eval_logits/rejected": 14.215425491333008,
454
+ "eval_logps/chosen": -0.3999108076095581,
455
+ "eval_logps/rejected": -0.7892026305198669,
456
+ "eval_loss": 0.7948001623153687,
457
+ "eval_rewards/accuracies": 0.53125,
458
+ "eval_rewards/chosen": -0.5998662114143372,
459
+ "eval_rewards/margins": 0.5839377641677856,
460
+ "eval_rewards/rejected": -1.1838040351867676,
461
+ "eval_runtime": 18.6098,
462
+ "eval_samples_per_second": 27.405,
463
+ "eval_steps_per_second": 3.439,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.33015873015873015,
468
+ "grad_norm": 0.8104033470153809,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": 14.144885063171387,
471
+ "logits/rejected": 14.350593566894531,
472
+ "logps/chosen": -0.3469873368740082,
473
+ "logps/rejected": -0.8288809657096863,
474
+ "loss": 0.7939,
475
+ "rewards/accuracies": 0.5375000238418579,
476
+ "rewards/chosen": -0.5204810500144958,
477
+ "rewards/margins": 0.7228401899337769,
478
+ "rewards/rejected": -1.243321418762207,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.34285714285714286,
483
+ "grad_norm": 0.39150306582450867,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": 14.15583324432373,
486
+ "logits/rejected": 13.783352851867676,
487
+ "logps/chosen": -0.34353378415107727,
488
+ "logps/rejected": -1.1232259273529053,
489
+ "loss": 0.7635,
490
+ "rewards/accuracies": 0.5375000238418579,
491
+ "rewards/chosen": -0.5153006911277771,
492
+ "rewards/margins": 1.1695382595062256,
493
+ "rewards/rejected": -1.684838891029358,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.35555555555555557,
498
+ "grad_norm": 0.1740872859954834,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": 13.705289840698242,
501
+ "logits/rejected": 13.493337631225586,
502
+ "logps/chosen": -0.35998308658599854,
503
+ "logps/rejected": -1.3943986892700195,
504
+ "loss": 0.7678,
505
+ "rewards/accuracies": 0.48750001192092896,
506
+ "rewards/chosen": -0.539974570274353,
507
+ "rewards/margins": 1.5516235828399658,
508
+ "rewards/rejected": -2.0915980339050293,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.3682539682539683,
513
+ "grad_norm": 0.22531260550022125,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": 13.186914443969727,
516
+ "logits/rejected": 13.140413284301758,
517
+ "logps/chosen": -0.3548193573951721,
518
+ "logps/rejected": -1.2321991920471191,
519
+ "loss": 0.7719,
520
+ "rewards/accuracies": 0.5874999761581421,
521
+ "rewards/chosen": -0.5322290062904358,
522
+ "rewards/margins": 1.3160697221755981,
523
+ "rewards/rejected": -1.8482987880706787,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.38095238095238093,
528
+ "grad_norm": 0.5229180455207825,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": 13.780011177062988,
531
+ "logits/rejected": 13.604715347290039,
532
+ "logps/chosen": -0.4277075231075287,
533
+ "logps/rejected": -1.415838599205017,
534
+ "loss": 0.7644,
535
+ "rewards/accuracies": 0.4749999940395355,
536
+ "rewards/chosen": -0.6415613293647766,
537
+ "rewards/margins": 1.482196569442749,
538
+ "rewards/rejected": -2.123757839202881,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.38095238095238093,
543
+ "eval_logits/chosen": 13.13498592376709,
544
+ "eval_logits/rejected": 13.13513469696045,
545
+ "eval_logps/chosen": -0.476482629776001,
546
+ "eval_logps/rejected": -1.4701811075210571,
547
+ "eval_loss": 0.7514793872833252,
548
+ "eval_rewards/accuracies": 0.546875,
549
+ "eval_rewards/chosen": -0.7147239446640015,
550
+ "eval_rewards/margins": 1.4905478954315186,
551
+ "eval_rewards/rejected": -2.2052717208862305,
552
+ "eval_runtime": 18.6093,
553
+ "eval_samples_per_second": 27.406,
554
+ "eval_steps_per_second": 3.439,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.39365079365079364,
559
+ "grad_norm": 0.7556002736091614,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": 13.26073932647705,
562
+ "logits/rejected": 13.28388786315918,
563
+ "logps/chosen": -0.39378833770751953,
564
+ "logps/rejected": -1.4242979288101196,
565
+ "loss": 0.7092,
566
+ "rewards/accuracies": 0.5249999761581421,
567
+ "rewards/chosen": -0.5906823873519897,
568
+ "rewards/margins": 1.5457642078399658,
569
+ "rewards/rejected": -2.136446714401245,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.40634920634920635,
574
+ "grad_norm": 0.8167753219604492,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": 12.952977180480957,
577
+ "logits/rejected": 12.89118480682373,
578
+ "logps/chosen": -0.4167153835296631,
579
+ "logps/rejected": -1.1332799196243286,
580
+ "loss": 0.7364,
581
+ "rewards/accuracies": 0.512499988079071,
582
+ "rewards/chosen": -0.6250730752944946,
583
+ "rewards/margins": 1.074846625328064,
584
+ "rewards/rejected": -1.6999199390411377,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.41904761904761906,
589
+ "grad_norm": 2.9806692600250244,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": 12.890368461608887,
592
+ "logits/rejected": 12.765925407409668,
593
+ "logps/chosen": -0.5025959014892578,
594
+ "logps/rejected": -1.2589428424835205,
595
+ "loss": 0.748,
596
+ "rewards/accuracies": 0.612500011920929,
597
+ "rewards/chosen": -0.7538937926292419,
598
+ "rewards/margins": 1.1345205307006836,
599
+ "rewards/rejected": -1.8884143829345703,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.43174603174603177,
604
+ "grad_norm": 1.568097710609436,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": 13.032608032226562,
607
+ "logits/rejected": 12.877195358276367,
608
+ "logps/chosen": -0.5034081935882568,
609
+ "logps/rejected": -1.585137963294983,
610
+ "loss": 0.7516,
611
+ "rewards/accuracies": 0.612500011920929,
612
+ "rewards/chosen": -0.7551122903823853,
613
+ "rewards/margins": 1.6225944757461548,
614
+ "rewards/rejected": -2.37770676612854,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.4444444444444444,
619
+ "grad_norm": 0.5996735095977783,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": 12.859817504882812,
622
+ "logits/rejected": 12.712678909301758,
623
+ "logps/chosen": -0.5043476819992065,
624
+ "logps/rejected": -1.525444507598877,
625
+ "loss": 0.7497,
626
+ "rewards/accuracies": 0.7124999761581421,
627
+ "rewards/chosen": -0.7565216422080994,
628
+ "rewards/margins": 1.5316450595855713,
629
+ "rewards/rejected": -2.2881667613983154,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.4444444444444444,
634
+ "eval_logits/chosen": 12.228137969970703,
635
+ "eval_logits/rejected": 12.226001739501953,
636
+ "eval_logps/chosen": -0.5828607082366943,
637
+ "eval_logps/rejected": -1.6681612730026245,
638
+ "eval_loss": 0.7238383889198303,
639
+ "eval_rewards/accuracies": 0.6875,
640
+ "eval_rewards/chosen": -0.8742910623550415,
641
+ "eval_rewards/margins": 1.6279507875442505,
642
+ "eval_rewards/rejected": -2.502241611480713,
643
+ "eval_runtime": 18.6038,
644
+ "eval_samples_per_second": 27.414,
645
+ "eval_steps_per_second": 3.44,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.45714285714285713,
650
+ "grad_norm": 0.605993926525116,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": 11.993739128112793,
653
+ "logits/rejected": 11.75650691986084,
654
+ "logps/chosen": -0.5674928426742554,
655
+ "logps/rejected": -1.7509374618530273,
656
+ "loss": 0.7241,
657
+ "rewards/accuracies": 0.7124999761581421,
658
+ "rewards/chosen": -0.8512393236160278,
659
+ "rewards/margins": 1.7751665115356445,
660
+ "rewards/rejected": -2.626405954360962,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.46984126984126984,
665
+ "grad_norm": 0.931057870388031,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": 11.784490585327148,
668
+ "logits/rejected": 12.052295684814453,
669
+ "logps/chosen": -0.5866945385932922,
670
+ "logps/rejected": -1.8955312967300415,
671
+ "loss": 0.7141,
672
+ "rewards/accuracies": 0.75,
673
+ "rewards/chosen": -0.8800417184829712,
674
+ "rewards/margins": 1.9632551670074463,
675
+ "rewards/rejected": -2.843297243118286,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.48253968253968255,
680
+ "grad_norm": 1.3936405181884766,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": 11.842119216918945,
683
+ "logits/rejected": 11.340182304382324,
684
+ "logps/chosen": -0.7804869413375854,
685
+ "logps/rejected": -1.8759396076202393,
686
+ "loss": 0.6654,
687
+ "rewards/accuracies": 0.699999988079071,
688
+ "rewards/chosen": -1.1707303524017334,
689
+ "rewards/margins": 1.6431787014007568,
690
+ "rewards/rejected": -2.8139090538024902,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.49523809523809526,
695
+ "grad_norm": 1.737855076789856,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": 11.465726852416992,
698
+ "logits/rejected": 11.05290699005127,
699
+ "logps/chosen": -1.3201282024383545,
700
+ "logps/rejected": -2.3962795734405518,
701
+ "loss": 0.6301,
702
+ "rewards/accuracies": 0.8374999761581421,
703
+ "rewards/chosen": -1.9801921844482422,
704
+ "rewards/margins": 1.6142269372940063,
705
+ "rewards/rejected": -3.594419002532959,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.5079365079365079,
710
+ "grad_norm": 1.6870065927505493,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": 10.830609321594238,
713
+ "logits/rejected": 10.663077354431152,
714
+ "logps/chosen": -2.5642189979553223,
715
+ "logps/rejected": -3.535013198852539,
716
+ "loss": 0.6274,
717
+ "rewards/accuracies": 0.800000011920929,
718
+ "rewards/chosen": -3.8463282585144043,
719
+ "rewards/margins": 1.4561914205551147,
720
+ "rewards/rejected": -5.302519798278809,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.5079365079365079,
725
+ "eval_logits/chosen": 9.964677810668945,
726
+ "eval_logits/rejected": 9.858954429626465,
727
+ "eval_logps/chosen": -2.578787088394165,
728
+ "eval_logps/rejected": -3.803541898727417,
729
+ "eval_loss": 0.590033233165741,
730
+ "eval_rewards/accuracies": 0.796875,
731
+ "eval_rewards/chosen": -3.868180513381958,
732
+ "eval_rewards/margins": 1.837132453918457,
733
+ "eval_rewards/rejected": -5.705312728881836,
734
+ "eval_runtime": 18.5898,
735
+ "eval_samples_per_second": 27.434,
736
+ "eval_steps_per_second": 3.443,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.5206349206349207,
741
+ "grad_norm": 2.0417189598083496,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": 9.34677505493164,
744
+ "logits/rejected": 9.576300621032715,
745
+ "logps/chosen": -2.1631455421447754,
746
+ "logps/rejected": -3.024636745452881,
747
+ "loss": 0.6309,
748
+ "rewards/accuracies": 0.8125,
749
+ "rewards/chosen": -3.244718074798584,
750
+ "rewards/margins": 1.2922370433807373,
751
+ "rewards/rejected": -4.536954879760742,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.5333333333333333,
756
+ "grad_norm": 2.9144859313964844,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": 9.20117473602295,
759
+ "logits/rejected": 9.481060028076172,
760
+ "logps/chosen": -2.7644081115722656,
761
+ "logps/rejected": -3.905733585357666,
762
+ "loss": 0.5839,
763
+ "rewards/accuracies": 0.824999988079071,
764
+ "rewards/chosen": -4.14661169052124,
765
+ "rewards/margins": 1.7119888067245483,
766
+ "rewards/rejected": -5.858600616455078,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.546031746031746,
771
+ "grad_norm": 2.4795055389404297,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": 9.674077987670898,
774
+ "logits/rejected": 9.64409065246582,
775
+ "logps/chosen": -2.562514066696167,
776
+ "logps/rejected": -3.8458714485168457,
777
+ "loss": 0.5266,
778
+ "rewards/accuracies": 0.875,
779
+ "rewards/chosen": -3.843771457672119,
780
+ "rewards/margins": 1.9250361919403076,
781
+ "rewards/rejected": -5.768807411193848,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.5587301587301587,
786
+ "grad_norm": 1.897057056427002,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": 8.887510299682617,
789
+ "logits/rejected": 8.687074661254883,
790
+ "logps/chosen": -3.2801125049591064,
791
+ "logps/rejected": -4.673043251037598,
792
+ "loss": 0.5665,
793
+ "rewards/accuracies": 0.8500000238418579,
794
+ "rewards/chosen": -4.920168876647949,
795
+ "rewards/margins": 2.089395523071289,
796
+ "rewards/rejected": -7.009564399719238,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.5714285714285714,
801
+ "grad_norm": 2.1004762649536133,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": 8.606618881225586,
804
+ "logits/rejected": 8.299476623535156,
805
+ "logps/chosen": -3.3771705627441406,
806
+ "logps/rejected": -4.999676704406738,
807
+ "loss": 0.5118,
808
+ "rewards/accuracies": 0.824999988079071,
809
+ "rewards/chosen": -5.0657548904418945,
810
+ "rewards/margins": 2.433760166168213,
811
+ "rewards/rejected": -7.499515533447266,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.5714285714285714,
816
+ "eval_logits/chosen": 8.417736053466797,
817
+ "eval_logits/rejected": 8.183667182922363,
818
+ "eval_logps/chosen": -3.3982253074645996,
819
+ "eval_logps/rejected": -5.010103225708008,
820
+ "eval_loss": 0.5201926827430725,
821
+ "eval_rewards/accuracies": 0.796875,
822
+ "eval_rewards/chosen": -5.0973381996154785,
823
+ "eval_rewards/margins": 2.4178173542022705,
824
+ "eval_rewards/rejected": -7.515154838562012,
825
+ "eval_runtime": 18.6069,
826
+ "eval_samples_per_second": 27.409,
827
+ "eval_steps_per_second": 3.44,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.5841269841269842,
832
+ "grad_norm": 2.016348123550415,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": 9.348031997680664,
835
+ "logits/rejected": 8.707467079162598,
836
+ "logps/chosen": -3.687103271484375,
837
+ "logps/rejected": -5.414787769317627,
838
+ "loss": 0.4783,
839
+ "rewards/accuracies": 0.875,
840
+ "rewards/chosen": -5.5306549072265625,
841
+ "rewards/margins": 2.591526508331299,
842
+ "rewards/rejected": -8.12218189239502,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.5968253968253968,
847
+ "grad_norm": 2.9189071655273438,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": 8.294754028320312,
850
+ "logits/rejected": 7.891358852386475,
851
+ "logps/chosen": -3.737588405609131,
852
+ "logps/rejected": -5.187026023864746,
853
+ "loss": 0.534,
854
+ "rewards/accuracies": 0.875,
855
+ "rewards/chosen": -5.606382846832275,
856
+ "rewards/margins": 2.1741559505462646,
857
+ "rewards/rejected": -7.780538082122803,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.6095238095238096,
862
+ "grad_norm": 2.306356906890869,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": 8.484542846679688,
865
+ "logits/rejected": 8.39714241027832,
866
+ "logps/chosen": -3.494408369064331,
867
+ "logps/rejected": -5.29335880279541,
868
+ "loss": 0.4829,
869
+ "rewards/accuracies": 0.925000011920929,
870
+ "rewards/chosen": -5.241612911224365,
871
+ "rewards/margins": 2.6984262466430664,
872
+ "rewards/rejected": -7.940038204193115,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.6222222222222222,
877
+ "grad_norm": 2.2581255435943604,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": 8.763944625854492,
880
+ "logits/rejected": 8.361797332763672,
881
+ "logps/chosen": -3.9699864387512207,
882
+ "logps/rejected": -6.275031566619873,
883
+ "loss": 0.4437,
884
+ "rewards/accuracies": 0.949999988079071,
885
+ "rewards/chosen": -5.954979419708252,
886
+ "rewards/margins": 3.4575679302215576,
887
+ "rewards/rejected": -9.412548065185547,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.6349206349206349,
892
+ "grad_norm": 2.2695906162261963,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": 7.8348212242126465,
895
+ "logits/rejected": 7.482022285461426,
896
+ "logps/chosen": -3.7032783031463623,
897
+ "logps/rejected": -5.9005255699157715,
898
+ "loss": 0.4411,
899
+ "rewards/accuracies": 0.887499988079071,
900
+ "rewards/chosen": -5.554916858673096,
901
+ "rewards/margins": 3.2958710193634033,
902
+ "rewards/rejected": -8.850788116455078,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.6349206349206349,
907
+ "eval_logits/chosen": 7.651264190673828,
908
+ "eval_logits/rejected": 7.331784248352051,
909
+ "eval_logps/chosen": -3.6274948120117188,
910
+ "eval_logps/rejected": -5.359984874725342,
911
+ "eval_loss": 0.4819534122943878,
912
+ "eval_rewards/accuracies": 0.796875,
913
+ "eval_rewards/chosen": -5.441242694854736,
914
+ "eval_rewards/margins": 2.5987353324890137,
915
+ "eval_rewards/rejected": -8.03997802734375,
916
+ "eval_runtime": 18.6061,
917
+ "eval_samples_per_second": 27.41,
918
+ "eval_steps_per_second": 3.44,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.6476190476190476,
923
+ "grad_norm": 4.491377353668213,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": 8.346134185791016,
926
+ "logits/rejected": 7.885122776031494,
927
+ "logps/chosen": -3.1610424518585205,
928
+ "logps/rejected": -4.682709217071533,
929
+ "loss": 0.5284,
930
+ "rewards/accuracies": 0.862500011920929,
931
+ "rewards/chosen": -4.7415642738342285,
932
+ "rewards/margins": 2.2825000286102295,
933
+ "rewards/rejected": -7.0240631103515625,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.6603174603174603,
938
+ "grad_norm": 2.4325833320617676,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": 7.592903137207031,
941
+ "logits/rejected": 7.519273281097412,
942
+ "logps/chosen": -3.836571455001831,
943
+ "logps/rejected": -5.284958839416504,
944
+ "loss": 0.5357,
945
+ "rewards/accuracies": 0.8374999761581421,
946
+ "rewards/chosen": -5.754857063293457,
947
+ "rewards/margins": 2.1725804805755615,
948
+ "rewards/rejected": -7.927438259124756,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.6730158730158731,
953
+ "grad_norm": 3.2697038650512695,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": 8.396175384521484,
956
+ "logits/rejected": 8.135710716247559,
957
+ "logps/chosen": -3.09209942817688,
958
+ "logps/rejected": -4.844483375549316,
959
+ "loss": 0.5079,
960
+ "rewards/accuracies": 0.862500011920929,
961
+ "rewards/chosen": -4.638149261474609,
962
+ "rewards/margins": 2.6285760402679443,
963
+ "rewards/rejected": -7.266725063323975,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.6857142857142857,
968
+ "grad_norm": 3.9283788204193115,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": 7.992170810699463,
971
+ "logits/rejected": 7.327617645263672,
972
+ "logps/chosen": -3.6388747692108154,
973
+ "logps/rejected": -5.46083927154541,
974
+ "loss": 0.4713,
975
+ "rewards/accuracies": 0.8999999761581421,
976
+ "rewards/chosen": -5.458312511444092,
977
+ "rewards/margins": 2.7329471111297607,
978
+ "rewards/rejected": -8.191259384155273,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.6984126984126984,
983
+ "grad_norm": 5.740615367889404,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": 7.8473920822143555,
986
+ "logits/rejected": 7.583371162414551,
987
+ "logps/chosen": -3.4951674938201904,
988
+ "logps/rejected": -5.054746150970459,
989
+ "loss": 0.5543,
990
+ "rewards/accuracies": 0.875,
991
+ "rewards/chosen": -5.242751121520996,
992
+ "rewards/margins": 2.3393683433532715,
993
+ "rewards/rejected": -7.582118988037109,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.6984126984126984,
998
+ "eval_logits/chosen": 7.201205253601074,
999
+ "eval_logits/rejected": 6.811280727386475,
1000
+ "eval_logps/chosen": -3.9208078384399414,
1001
+ "eval_logps/rejected": -5.703615665435791,
1002
+ "eval_loss": 0.458388090133667,
1003
+ "eval_rewards/accuracies": 0.84375,
1004
+ "eval_rewards/chosen": -5.881211757659912,
1005
+ "eval_rewards/margins": 2.674211025238037,
1006
+ "eval_rewards/rejected": -8.555423736572266,
1007
+ "eval_runtime": 18.6149,
1008
+ "eval_samples_per_second": 27.397,
1009
+ "eval_steps_per_second": 3.438,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.7111111111111111,
1014
+ "grad_norm": 2.257397413253784,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": 7.826712608337402,
1017
+ "logits/rejected": 7.213566780090332,
1018
+ "logps/chosen": -4.419582843780518,
1019
+ "logps/rejected": -6.427667140960693,
1020
+ "loss": 0.4126,
1021
+ "rewards/accuracies": 0.8999999761581421,
1022
+ "rewards/chosen": -6.629374027252197,
1023
+ "rewards/margins": 3.0121266841888428,
1024
+ "rewards/rejected": -9.641500473022461,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.7238095238095238,
1029
+ "grad_norm": 3.2082905769348145,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": 6.789637565612793,
1032
+ "logits/rejected": 6.794576168060303,
1033
+ "logps/chosen": -3.8381495475769043,
1034
+ "logps/rejected": -5.592730522155762,
1035
+ "loss": 0.4379,
1036
+ "rewards/accuracies": 0.8999999761581421,
1037
+ "rewards/chosen": -5.757224082946777,
1038
+ "rewards/margins": 2.6318702697753906,
1039
+ "rewards/rejected": -8.389094352722168,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.7365079365079366,
1044
+ "grad_norm": 1.4739922285079956,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": 6.731423854827881,
1047
+ "logits/rejected": 6.7872209548950195,
1048
+ "logps/chosen": -2.9625697135925293,
1049
+ "logps/rejected": -4.8117570877075195,
1050
+ "loss": 0.4483,
1051
+ "rewards/accuracies": 0.925000011920929,
1052
+ "rewards/chosen": -4.443854808807373,
1053
+ "rewards/margins": 2.773780345916748,
1054
+ "rewards/rejected": -7.217635154724121,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.7492063492063492,
1059
+ "grad_norm": 2.3974905014038086,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": 7.254199981689453,
1062
+ "logits/rejected": 6.7625627517700195,
1063
+ "logps/chosen": -3.562770366668701,
1064
+ "logps/rejected": -5.307286262512207,
1065
+ "loss": 0.4229,
1066
+ "rewards/accuracies": 0.887499988079071,
1067
+ "rewards/chosen": -5.344155788421631,
1068
+ "rewards/margins": 2.616774082183838,
1069
+ "rewards/rejected": -7.960929870605469,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.7619047619047619,
1074
+ "grad_norm": 2.3709428310394287,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": 7.226127624511719,
1077
+ "logits/rejected": 6.73668909072876,
1078
+ "logps/chosen": -3.8387343883514404,
1079
+ "logps/rejected": -5.65582275390625,
1080
+ "loss": 0.4304,
1081
+ "rewards/accuracies": 0.887499988079071,
1082
+ "rewards/chosen": -5.7581024169921875,
1083
+ "rewards/margins": 2.725632429122925,
1084
+ "rewards/rejected": -8.483735084533691,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.7619047619047619,
1089
+ "eval_logits/chosen": 6.816856861114502,
1090
+ "eval_logits/rejected": 6.3922905921936035,
1091
+ "eval_logps/chosen": -3.8147382736206055,
1092
+ "eval_logps/rejected": -5.733050346374512,
1093
+ "eval_loss": 0.43386051058769226,
1094
+ "eval_rewards/accuracies": 0.875,
1095
+ "eval_rewards/chosen": -5.722107410430908,
1096
+ "eval_rewards/margins": 2.877467393875122,
1097
+ "eval_rewards/rejected": -8.59957504272461,
1098
+ "eval_runtime": 18.5848,
1099
+ "eval_samples_per_second": 27.442,
1100
+ "eval_steps_per_second": 3.444,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.7746031746031746,
1105
+ "grad_norm": 8.223690032958984,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": 6.017186164855957,
1108
+ "logits/rejected": 6.098165988922119,
1109
+ "logps/chosen": -4.070714950561523,
1110
+ "logps/rejected": -5.999022006988525,
1111
+ "loss": 0.4752,
1112
+ "rewards/accuracies": 0.862500011920929,
1113
+ "rewards/chosen": -6.106072902679443,
1114
+ "rewards/margins": 2.8924598693847656,
1115
+ "rewards/rejected": -8.998533248901367,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.7873015873015873,
1120
+ "grad_norm": 2.494403839111328,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": 5.941250801086426,
1123
+ "logits/rejected": 5.958924770355225,
1124
+ "logps/chosen": -3.984475612640381,
1125
+ "logps/rejected": -5.801859378814697,
1126
+ "loss": 0.4245,
1127
+ "rewards/accuracies": 0.887499988079071,
1128
+ "rewards/chosen": -5.97671365737915,
1129
+ "rewards/margins": 2.726074695587158,
1130
+ "rewards/rejected": -8.702788352966309,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.8,
1135
+ "grad_norm": 1.906548023223877,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": 6.673853874206543,
1138
+ "logits/rejected": 6.525673866271973,
1139
+ "logps/chosen": -3.4477615356445312,
1140
+ "logps/rejected": -5.480903148651123,
1141
+ "loss": 0.3671,
1142
+ "rewards/accuracies": 0.925000011920929,
1143
+ "rewards/chosen": -5.171643257141113,
1144
+ "rewards/margins": 3.0497121810913086,
1145
+ "rewards/rejected": -8.221354484558105,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.8126984126984127,
1150
+ "grad_norm": 3.656189441680908,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": 6.097588062286377,
1153
+ "logits/rejected": 6.049706935882568,
1154
+ "logps/chosen": -3.8336167335510254,
1155
+ "logps/rejected": -5.6922125816345215,
1156
+ "loss": 0.4461,
1157
+ "rewards/accuracies": 0.875,
1158
+ "rewards/chosen": -5.750425338745117,
1159
+ "rewards/margins": 2.787893772125244,
1160
+ "rewards/rejected": -8.53831958770752,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.8253968253968254,
1165
+ "grad_norm": 4.886603355407715,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": 7.281914710998535,
1168
+ "logits/rejected": 7.21079158782959,
1169
+ "logps/chosen": -3.3890902996063232,
1170
+ "logps/rejected": -5.331442356109619,
1171
+ "loss": 0.4231,
1172
+ "rewards/accuracies": 0.949999988079071,
1173
+ "rewards/chosen": -5.083634853363037,
1174
+ "rewards/margins": 2.9135282039642334,
1175
+ "rewards/rejected": -7.99716329574585,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.8253968253968254,
1180
+ "eval_logits/chosen": 7.003323554992676,
1181
+ "eval_logits/rejected": 6.476384162902832,
1182
+ "eval_logps/chosen": -3.6840155124664307,
1183
+ "eval_logps/rejected": -5.79384708404541,
1184
+ "eval_loss": 0.4155474007129669,
1185
+ "eval_rewards/accuracies": 0.875,
1186
+ "eval_rewards/chosen": -5.5260233879089355,
1187
+ "eval_rewards/margins": 3.164747476577759,
1188
+ "eval_rewards/rejected": -8.690771102905273,
1189
+ "eval_runtime": 18.6081,
1190
+ "eval_samples_per_second": 27.407,
1191
+ "eval_steps_per_second": 3.439,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.8380952380952381,
1196
+ "grad_norm": 4.255698204040527,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": 7.213356018066406,
1199
+ "logits/rejected": 6.562827110290527,
1200
+ "logps/chosen": -4.553462505340576,
1201
+ "logps/rejected": -7.089639186859131,
1202
+ "loss": 0.4137,
1203
+ "rewards/accuracies": 0.925000011920929,
1204
+ "rewards/chosen": -6.830193996429443,
1205
+ "rewards/margins": 3.804264783859253,
1206
+ "rewards/rejected": -10.6344575881958,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.8507936507936508,
1211
+ "grad_norm": 2.784740924835205,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": 7.139246463775635,
1214
+ "logits/rejected": 7.061759948730469,
1215
+ "logps/chosen": -3.2805087566375732,
1216
+ "logps/rejected": -5.112305641174316,
1217
+ "loss": 0.4138,
1218
+ "rewards/accuracies": 0.875,
1219
+ "rewards/chosen": -4.920762538909912,
1220
+ "rewards/margins": 2.7476963996887207,
1221
+ "rewards/rejected": -7.668459415435791,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.8634920634920635,
1226
+ "grad_norm": 2.966514825820923,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": 7.687324523925781,
1229
+ "logits/rejected": 6.8130292892456055,
1230
+ "logps/chosen": -3.9359238147735596,
1231
+ "logps/rejected": -6.452606201171875,
1232
+ "loss": 0.4267,
1233
+ "rewards/accuracies": 0.949999988079071,
1234
+ "rewards/chosen": -5.903885841369629,
1235
+ "rewards/margins": 3.7750232219696045,
1236
+ "rewards/rejected": -9.678911209106445,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.8761904761904762,
1241
+ "grad_norm": 2.919829845428467,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": 7.361714839935303,
1244
+ "logits/rejected": 6.8447113037109375,
1245
+ "logps/chosen": -4.811502456665039,
1246
+ "logps/rejected": -7.118119716644287,
1247
+ "loss": 0.3531,
1248
+ "rewards/accuracies": 0.9375,
1249
+ "rewards/chosen": -7.217253684997559,
1250
+ "rewards/margins": 3.4599266052246094,
1251
+ "rewards/rejected": -10.677180290222168,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.8888888888888888,
1256
+ "grad_norm": 4.350555896759033,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": 7.161977291107178,
1259
+ "logits/rejected": 6.46688985824585,
1260
+ "logps/chosen": -5.0110602378845215,
1261
+ "logps/rejected": -7.346589088439941,
1262
+ "loss": 0.4327,
1263
+ "rewards/accuracies": 0.8374999761581421,
1264
+ "rewards/chosen": -7.516589164733887,
1265
+ "rewards/margins": 3.503293514251709,
1266
+ "rewards/rejected": -11.01988410949707,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.8888888888888888,
1271
+ "eval_logits/chosen": 6.070926666259766,
1272
+ "eval_logits/rejected": 5.528128147125244,
1273
+ "eval_logps/chosen": -4.264724254608154,
1274
+ "eval_logps/rejected": -6.332221031188965,
1275
+ "eval_loss": 0.40030673146247864,
1276
+ "eval_rewards/accuracies": 0.875,
1277
+ "eval_rewards/chosen": -6.3970866203308105,
1278
+ "eval_rewards/margins": 3.1012446880340576,
1279
+ "eval_rewards/rejected": -9.498331069946289,
1280
+ "eval_runtime": 18.5969,
1281
+ "eval_samples_per_second": 27.424,
1282
+ "eval_steps_per_second": 3.441,
1283
+ "step": 700
1284
+ }
1285
+ ],
1286
+ "logging_steps": 10,
1287
+ "max_steps": 1500,
1288
+ "num_input_tokens_seen": 0,
1289
+ "num_train_epochs": 2,
1290
+ "save_steps": 50,
1291
+ "stateful_callbacks": {
1292
+ "TrainerControl": {
1293
+ "args": {
1294
+ "should_epoch_stop": false,
1295
+ "should_evaluate": false,
1296
+ "should_log": false,
1297
+ "should_save": true,
1298
+ "should_training_stop": false
1299
+ },
1300
+ "attributes": {}
1301
+ }
1302
+ },
1303
+ "total_flos": 1.70148503127851e+18,
1304
+ "train_batch_size": 1,
1305
+ "trial_name": null,
1306
+ "trial_params": null
1307
+ }
checkpoint-700/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5596c575b3ac9598d22b9072a75c78c8a21b1561e291767fb4db4d3d0245393
3
+ size 7224
checkpoint-700/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)