Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -18,15 +18,13 @@ The backbone is based on a SegResNet, a 3D U-Net variant. If you want to just lo
|
|
18 |
## Running instructions
|
19 |
|
20 |
|
21 |
-
#
|
22 |
|
23 |
This notebook demonstrates how to:
|
24 |
-
1. Load a pre-trained
|
25 |
2. Set up preprocessing and postprocessing pipelines
|
26 |
-
3. Perform
|
27 |
-
4.
|
28 |
-
|
29 |
-
The model segments 118 different anatomical structures from CT scans.
|
30 |
|
31 |
## Setup
|
32 |
Install requirements and import necessary packages
|
@@ -44,55 +42,27 @@ Install requirements and import necessary packages
|
|
44 |
```python
|
45 |
# Imports
|
46 |
import torch
|
47 |
-
from lighter_zoo import
|
48 |
from monai.transforms import (
|
49 |
Compose, LoadImage, EnsureType, Orientation,
|
50 |
-
ScaleIntensityRange, CropForeground
|
51 |
-
Activations, AsDiscrete, KeepLargestConnectedComponent,
|
52 |
-
SaveImage
|
53 |
)
|
54 |
from monai.inferers import SlidingWindowInferer
|
55 |
```
|
56 |
|
57 |
-
Note: you may need to restart the kernel to use updated packages.
|
58 |
-
|
59 |
-
|
60 |
## Load Model
|
61 |
Download and initialize the pre-trained model from HuggingFace Hub
|
62 |
|
63 |
|
64 |
```python
|
65 |
# Load pre-trained model
|
66 |
-
model =
|
67 |
-
"project-lighter/
|
68 |
-
force_download=True
|
69 |
-
)
|
70 |
-
```
|
71 |
-
|
72 |
-
|
73 |
-
config.json: 0%| | 0.00/162 [00:00<?, ?B/s]
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
model.safetensors: 0%| | 0.00/349M [00:00<?, ?B/s]
|
78 |
-
|
79 |
-
|
80 |
-
## Configure Inference
|
81 |
-
Set up sliding window inference for processing large volumes
|
82 |
-
|
83 |
-
|
84 |
-
```python
|
85 |
-
# Configure sliding window inference
|
86 |
-
inferer = SlidingWindowInferer(
|
87 |
-
roi_size=[96, 160, 160], # Size of patches to process
|
88 |
-
sw_batch_size=2, # Number of windows to process in parallel
|
89 |
-
overlap=0.625, # Overlap between windows (reduces boundary artifacts)
|
90 |
-
mode="gaussian" # Gaussian weighting for overlap regions
|
91 |
)
|
92 |
```
|
93 |
|
94 |
## Setup Processing Pipelines
|
95 |
-
Define preprocessing
|
96 |
|
97 |
|
98 |
```python
|
@@ -111,24 +81,13 @@ preprocess = Compose([
|
|
111 |
),
|
112 |
CropForeground() # Remove background to reduce computation
|
113 |
])
|
114 |
-
|
115 |
-
# Postprocessing pipeline
|
116 |
-
postprocess = Compose([
|
117 |
-
Activations(softmax=True), # Apply softmax to get probabilities
|
118 |
-
AsDiscrete(argmax=True, dtype=torch.int32), # Convert to class labels
|
119 |
-
KeepLargestConnectedComponent(), # Remove small disconnected regions
|
120 |
-
Invert(transform=preprocess), # Restore original space
|
121 |
-
# Save the result
|
122 |
-
SaveImage(output_dir="./segmentations")
|
123 |
-
])
|
124 |
```
|
125 |
|
126 |
-
|
127 |
-
warn_deprecated(argname, msg, warning_category)
|
128 |
|
129 |
|
130 |
## Run Inference
|
131 |
-
Process an input CT scan and
|
132 |
|
133 |
|
134 |
```python
|
@@ -140,19 +99,36 @@ input_tensor = preprocess(input_path)
|
|
140 |
|
141 |
# Run inference
|
142 |
with torch.no_grad():
|
143 |
-
output =
|
144 |
|
145 |
-
#
|
146 |
-
output
|
147 |
-
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
print("✅ Segmentation completed and saved")
|
152 |
```
|
153 |
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
|
|
18 |
## Running instructions
|
19 |
|
20 |
|
21 |
+
# CT-FM Feature Extractor
|
22 |
|
23 |
This notebook demonstrates how to:
|
24 |
+
1. Load a SSL pre-trained model
|
25 |
2. Set up preprocessing and postprocessing pipelines
|
26 |
+
3. Perform inference on CT volumes
|
27 |
+
4. Plot distribution of features extracted
|
|
|
|
|
28 |
|
29 |
## Setup
|
30 |
Install requirements and import necessary packages
|
|
|
42 |
```python
|
43 |
# Imports
|
44 |
import torch
|
45 |
+
from lighter_zoo import SegResEncoder
|
46 |
from monai.transforms import (
|
47 |
Compose, LoadImage, EnsureType, Orientation,
|
48 |
+
ScaleIntensityRange, CropForeground
|
|
|
|
|
49 |
)
|
50 |
from monai.inferers import SlidingWindowInferer
|
51 |
```
|
52 |
|
|
|
|
|
|
|
53 |
## Load Model
|
54 |
Download and initialize the pre-trained model from HuggingFace Hub
|
55 |
|
56 |
|
57 |
```python
|
58 |
# Load pre-trained model
|
59 |
+
model = SegResEncoder.from_pretrained(
|
60 |
+
"project-lighter/ct_fm_feature_extractor"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
```
|
63 |
|
64 |
## Setup Processing Pipelines
|
65 |
+
Define preprocessing transforms
|
66 |
|
67 |
|
68 |
```python
|
|
|
81 |
),
|
82 |
CropForeground() # Remove background to reduce computation
|
83 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
```
|
85 |
|
86 |
+
monai.transforms.croppad.array CropForeground.__init__:allow_smaller: Current default value of argument `allow_smaller=True` has been deprecated since version 1.2. It will be changed to `allow_smaller=False` in version 1.5.
|
|
|
87 |
|
88 |
|
89 |
## Run Inference
|
90 |
+
Process an input CT scan and extract features
|
91 |
|
92 |
|
93 |
```python
|
|
|
99 |
|
100 |
# Run inference
|
101 |
with torch.no_grad():
|
102 |
+
output = model(input_tensor.unsqueeze(0))[-1]
|
103 |
|
104 |
+
# Average pooling compressed the feature vector across all patches. If this is not desired, remove this line and
|
105 |
+
# use the output tensor directly which will give you the feature maps in a low-dimensional space.
|
106 |
+
avg_output = torch.nn.functional.adaptive_avg_pool3d(output, 1).squeeze()
|
107 |
|
108 |
+
print("✅ Feature extraction completed")
|
109 |
+
print(f"Output shape: {avg_output.shape}")
|
|
|
110 |
```
|
111 |
|
112 |
+
✅ Feature extraction completed
|
113 |
+
Output shape: torch.Size([512])
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
```python
|
118 |
+
# Plot distribution of features
|
119 |
+
import matplotlib.pyplot as plt
|
120 |
+
_ = plt.hist(avg_output.cpu().numpy(), bins=100)
|
121 |
+
```
|
122 |
|
123 |
|
124 |
+
|
125 |
+

|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
```python
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
|