priyovamr commited on
Commit
2d8a71f
·
verified ·
1 Parent(s): 1206819

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Priyo_NeuralNetwork:
2
+ def __init__(self, input_size, hidden_size, output_size):
3
+ # Inisialisasi bobot dan bias secara acak
4
+ self.weights1 = np.random.randn(input_size, hidden_size)
5
+ self.bias1 = np.zeros(hidden_size)
6
+ self.weights2 = np.random.randn(hidden_size, output_size)
7
+ self.bias2 = np.zeros(output_size)
8
+
9
+ def sigmoid(self, x):
10
+ clipped_x = np.clip(x, -5, 5) # Clip values between -5 and 5
11
+ return 1 / (1 + np.exp(-clipped_x))
12
+
13
+ def forward(self, X):
14
+ # Perhitungan forward propagation
15
+ self.z1 = np.dot(X, self.weights1) + self.bias1
16
+ self.a1 = self.sigmoid(self.z1)
17
+ self.z2 = np.dot(self.a1, self.weights2) + self.bias2
18
+ self.a2 = self.sigmoid(self.z2)
19
+ return self.a2
20
+
21
+ def backward(self, X, y, learning_rate):
22
+ m = X.shape[0]
23
+ dZ2 = self.a2 - y
24
+ dW2 = 1/m * np.dot(self.a1.T, dZ2)
25
+ db2 = 1/m * np.sum(dZ2, axis=0)
26
+ dZ1 = np.dot(dZ2, self.weights2.T) * (1 - self.a1) * self.a1
27
+ dW1 = 1/m * np.dot(X.T, dZ1)
28
+ db1 = 1/m * np.sum(dZ1, axis=0)
29
+
30
+ return dW1, db1, dW2, db2
31
+
32
+ def train(self, X, y, epochs, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8):
33
+ m = X.shape[0]
34
+
35
+ # Initialize moments for Adam
36
+ v_dw1, v_db1, v_dw2, v_db2 = np.zeros_like(self.weights1), np.zeros_like(self.bias1), np.zeros_like(self.weights2), np.zeros_like(self.bias2)
37
+ s_dw1, s_db1, s_dw2, s_db2 = np.zeros_like(self.weights1), np.zeros_like(self.bias1), np.zeros_like(self.weights2), np.zeros_like(self.bias2)
38
+ t = 0
39
+
40
+ for epoch in range(epochs):
41
+ self.forward(X)
42
+ dW1, db1, dW2, db2 = self.backward(X, y, learning_rate)
43
+
44
+ # Update weights and biases using Adam
45
+ t += 1
46
+
47
+ # Update biased first moment estimate
48
+ v_dw1 = beta1 * v_dw1 + (1 - beta1) * dW1
49
+ v_db1 = beta1 * v_db1 + (1 - beta1) * db1
50
+ v_dw2 = beta1 * v_dw2 + (1 - beta1) * dW2
51
+ v_db2 = beta1 * v_db2 + (1 - beta1) * db2
52
+
53
+ # Update biased second raw moment estimate
54
+ s_dw1 = beta2 * s_dw1 + (1 - beta2) * np.square(dW1)
55
+ s_db1 = beta2 * s_db1 + (1 - beta2) * np.square(db1)
56
+ s_dw2 = beta2 * s_dw2 + (1 - beta2) * np.square(dW2)
57
+ s_db2 = beta2 * s_db2 + (1 - beta2) * np.square(db2)
58
+
59
+ # Compute bias-corrected first moment estimate
60
+ v_dw1_corrected = v_dw1 / (1 - beta1**t)
61
+ v_db1_corrected = v_db1 / (1 - beta1**t)
62
+ v_dw2_corrected = v_dw2 / (1 - beta1**t)
63
+ v_db2_corrected = v_db2 / (1 - beta1**t)
64
+
65
+ # Compute bias-corrected second raw moment estimate
66
+ s_dw1_corrected = s_dw1 / (1 - beta2**t)
67
+ s_db1_corrected = s_db1 / (1 - beta2**t)
68
+ s_dw2_corrected = s_dw2 / (1 - beta2**t)
69
+ s_db2_corrected = s_db2 / (1 - beta2**t)
70
+
71
+ # Update weights and biases
72
+ self.weights1 -= learning_rate * v_dw1_corrected / (np.sqrt(s_dw1_corrected) + epsilon)
73
+ self.bias1 -= learning_rate * v_db1_corrected / (np.sqrt(s_db1_corrected) + epsilon)
74
+ self.weights2 -= learning_rate * v_dw2_corrected / (np.sqrt(s_dw2_corrected) + epsilon)
75
+ self.bias2 -= learning_rate * v_db2_corrected / (np.sqrt(s_db2_corrected) + epsilon)
76
+
77
+ if (epoch+1) % 100 == 0:
78
+ print(f'Epoch {epoch+1}/{epochs}, loss: {self.loss(y, self.a2)}')
79
+
80
+ def loss(self, y_true, y_pred):
81
+ # Fungsi loss (misalnya binary cross-entropy)
82
+ return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
83
+
84
+ def predict(self, X):
85
+ # Prediksi menggunakan forward propagation
86
+ y_pred = self.forward(X)
87
+ # Rounding untuk klasifikasi biner
88
+ y_pred = np.round(y_pred)
89
+ return y_pred
90
+
91
+ def accuracy(self, X, y):
92
+ # Hitung akurasi
93
+ y_pred = self.predict(X)
94
+ accuracy = np.mean(y_pred == y)
95
+ return accuracy