prithivMLmods commited on
Commit
d666311
Β·
verified Β·
1 Parent(s): 8b21241

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -1
README.md CHANGED
@@ -18,4 +18,192 @@ _/ |_ _______ |__|_____ ____ ____ __ __ | | __ __ _____
18
  | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \
19
  |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| /
20
  \/ \//_____/ \/
21
- </pre>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \
19
  |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| /
20
  \/ \//_____/ \/
21
+ </pre>
22
+
23
+ # **Triangulum-v2 10B: Multilingual Large Language Models (LLMs)**
24
+
25
+ Triangulum-v2 10B is an advanced collection of pretrained and instruction-tuned generative models, designed for multilingual applications. Building on the success of its predecessor, Triangulum-v2 10B incorporates enhanced training techniques and improved multilingual capabilities, making it even more effective for complex reasoning tasks and diverse linguistic contexts.
26
+
27
+ # **Key Features**
28
+
29
+ - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance.
30
+
31
+ - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety.
32
+
33
+ - **Multilingual Support**: Designed to handle multiple languages with improved accuracy and fluency, ensuring broad applicability across diverse linguistic contexts.
34
+
35
+ # **Training Approach**
36
+
37
+ 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities.
38
+ 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets.
39
+ 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes.
40
+
41
+ # **How to Use with Transformers**
42
+
43
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
44
+
45
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import pipeline
50
+
51
+ model_id = "prithivMLmods/Triangulum-v2-10B"
52
+ pipe = pipeline(
53
+ "text-generation",
54
+ model=model_id,
55
+ torch_dtype=torch.bfloat16,
56
+ device_map="auto",
57
+ )
58
+ messages = [
59
+ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
60
+ {"role": "user", "content": "Who are you?"},
61
+ ]
62
+ outputs = pipe(
63
+ messages,
64
+ max_new_tokens=256,
65
+ )
66
+ print(outputs[0]["generated_text"][-1])
67
+ ```
68
+
69
+ # **Demo Inference with LlamaForCausalLM**
70
+
71
+ ```python
72
+ import torch
73
+ from transformers import AutoTokenizer, LlamaForCausalLM
74
+
75
+ # Load tokenizer and model
76
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-v2-10B', trust_remote_code=True)
77
+ model = LlamaForCausalLM.from_pretrained(
78
+ "prithivMLmods/Triangulum-v2-10B",
79
+ torch_dtype=torch.float16,
80
+ device_map="auto",
81
+ load_in_8bit=False,
82
+ load_in_4bit=True,
83
+ use_flash_attention_2=True
84
+ )
85
+
86
+ # Define a list of system and user prompts
87
+ prompts = [
88
+ """<|im_start|>system
89
+ You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
90
+ <|im_start|>user
91
+ Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
92
+ <|im_start|>assistant"""
93
+ ]
94
+
95
+ # Generate responses for each prompt
96
+ for chat in prompts:
97
+ print(f"Prompt:\n{chat}\n")
98
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
99
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
100
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
101
+ print(f"Response:\n{response}\n{'-'*80}\n")
102
+ ```
103
+
104
+ # **Key Adjustments**
105
+ 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
106
+ 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
107
+ 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.
108
+
109
+ You can expand the list of prompts to explore a variety of scenarios and responses.
110
+
111
+ # **Use Cases for Triangulum-v2 10B**
112
+
113
+ - Multilingual content generation
114
+ - Question answering and dialogue systems
115
+ - Text summarization and analysis
116
+ - Translation and localization tasks
117
+
118
+ # **Technical Details**
119
+
120
+ Triangulum-v2 10B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.
121
+
122
+ # **How to Run Triangulum-v2 10B on Ollama Locally**
123
+
124
+ ```markdown
125
+ # How to Run Ollama Locally
126
+
127
+ This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease.
128
+
129
+ ---
130
+
131
+ ## Example 1: How to Run the Triangulum-v2-10B Model
132
+
133
+ The **Triangulum-v2-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants.
134
+
135
+ ### Step 1: Download the Model
136
+
137
+ First, download the **Triangulum-v2-10B-F16.gguf** model using the following command:
138
+
139
+ ```bash
140
+ ollama run triangulum-v2-10b-f16.gguf
141
+ ```
142
+
143
+ ### Step 2: Model Initialization and Download
144
+
145
+ Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following:
146
+
147
+ ```plaintext
148
+ pulling manifest
149
+ pulling 8934d96d3f08... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.8 GB
150
+ pulling 8c17c2ebb0ea... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 7.0 KB
151
+ pulling 7c23fb36d801... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.8 KB
152
+ pulling 2e0493f67d0c... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 59 B
153
+ pulling fa304d675061... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 91 B
154
+ pulling 42ba7f8a01dd... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 557 B
155
+ verifying sha256 digest
156
+ writing manifest
157
+ removing any unused layers
158
+ success
159
+ >>> Send a message (/? for help)
160
+ ```
161
+
162
+ ### Step 3: Interact with the Model
163
+
164
+ Once the model is ready, you can send a prompt. For example, let's ask:
165
+
166
+ ```plaintext
167
+ >>> What can you do for me?
168
+ ```
169
+
170
+ If you asked the same question, you should receive a response like this:
171
+
172
+ ```plaintext
173
+ As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with:
174
+
175
+ 1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture.
176
+ 2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems.
177
+ 3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases.
178
+ 4. Translation: I can translate text from one language to another.
179
+ 5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions.
180
+ 6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing.
181
+ 7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises.
182
+ 8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss.
183
+
184
+ Please let me know if there is anything specific you would like me to help you with.
185
+ ```
186
+
187
+ ### Step 4: Exit the Program
188
+
189
+ To exit the program, simply type:
190
+
191
+ ```plaintext
192
+ /exit
193
+ ```
194
+
195
+ ## Example 2: Running Multi-Modal Models (Future Use)
196
+
197
+ Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available.
198
+
199
+ ## Notes on Using Quantized Models
200
+
201
+ Quantized models like **triangulum-v2-10b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference.
202
+
203
+ 1. Ensure your system has sufficient VRAM or CPU resources.
204
+ 2. Use the `.gguf` model format for compatibility with Ollama.
205
+
206
+ # **Conclusion**
207
+
208
+ Running the **Triangulum-v2-10B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.
209
+ ```